TL-GANã¢ãã«ã§ã®å¶åŸ¡ãããåæã®äŸïŒãã©ã³ã¹ãã¢ã¬ã³ããªæœåšç©ºéGANããã©ã³ã¹ãã¢ã¬ã³ããªé ããã空éãæã€çæçã³ã³ãã³ããããã¯ãŒã¯ïŒ
ãã¹ãŠã®ã³ãŒããšãªã³ã©ã€ã³ãã¢ã¯ããããžã§ã¯ãããŒãžã§å ¥æã§ããŸã ã
説æãããŠããããã«åçãæ®ãããã«ã³ã³ãã¥ãŒã¿ãŒããã¬ãŒãã³ã°ããŸã
å€å¥ã¿ã¹ã¯ãšçæã¿ã¹ã¯
人ãçµµãæãã®ã¯ç°¡åã§ããç§ãã¡ã¯å¹Œãé ããçµµãæãããšãåŠã³ãŸãã æ©æ¢°åŠç¿ã§ã¯ãããã¯å€å¥åé¡/ååž°ã®ã¿ã¹ã¯ã§ãã å ¥åç»åããã®ç¹åŸŽã®äºæž¬ã ç¹ã«ãã£ãŒãã©ãŒãã³ã°ã¢ãã«ã«ãããML / AIã¡ãœããã®æè¿ã®é²æ©ã¯ããªããžã§ã¯ãã®èŠèŠèªèïŒããšãã°ãImageNetåé¡ã«ããAlexNetããResNetãžïŒãæ€åº/ã»ã°ã¡ã³ããŒã·ã§ã³ãªã©ã®ã¿ã¹ã¯ã§ç€ºãããããã«ããããã®ã¿ã¹ã¯ã«åªãã人éã®èœåã«éãããäžåãå ŽåããããŸããªããžã§ã¯ãïŒCOCOããŒã¿ã»ããã®RCNNããYOLOãªã©ïŒãªã©
ããã§ãã説æããçŸå®çãªç»åãäœæãããšããéã®äœæ¥ã¯ã¯ããã«è€éã§ãããã°ã©ãã£ãã¯ãã¶ã€ã³ã®é·å¹Žã®èšç·Žãå¿ èŠãšããŸãã æ©æ¢°åŠç¿ã§ã¯ãããã¯çæã¿ã¹ã¯ã§ãããèå¥ã¢ãã«ãããã¯ããã«è€éã§ããçæã¢ãã«ã¯ãããå°ããªåæããŒã¿ã«åºã¥ããŠãããå€ãã®æ å ±ïŒããšãã°ãããçšåºŠã®è©³çŽ°ã¬ãã«ãšå€åã®ãã«ã€ã¡ãŒãžïŒãçæããå¿ èŠãããããã§ãã
ãã®ãããªã¢ããªã±ãŒã·ã§ã³ã®äœæã¯è€éã§ãããå€ãã®å Žåã çæã¢ãã« ïŒããçšåºŠå¶åŸ¡ã§ããïŒã¯éåžžã«äŸ¿å©ã§ãã
- ã³ã³ãã³ãã®äœæ ïŒåºåäŒç€Ÿãããããã®ç»åãæ¿å ¥ãããWebããŒãžã®ã³ã³ãã³ããšã¹ã¿ã€ã«ã«äžèŽããé åçãªç»åãèªåçã«äœæãããšããŸãã ãã¶ã€ããŒã¯ã€ã³ã¹ãã¬ãŒã·ã§ã³ãæ±ããŠããããäŒæ©ãããå€ãããæ ç±çãã®èšå·ã«é¢é£ä»ãããã20åã®éŽã®ãã¿ãŒã³ãçæããã¢ã«ãŽãªãºã ã泚æããŠããŸãã æ°ããã²ãŒã ã§ã¯ãç°¡åãªèª¬æããçŸå®çãªã¢ãã¿ãŒãçæã§ããŸãã
- ã³ã³ãã³ãã«åºã¥ããã¹ããŒãç·šé ïŒåç家ã¯ãæ°ã¯ãªãã¯ã§åçã®è¡šæ ãããã®æ°ã髪åãå€æŽããŸãã ããªãŠããã®ã¹ã¿ãžãªã®ã¢ãŒãã£ã¹ãã¯ãæãã®å€ã«æ®åœ±ããã·ã§ããããæããæã«æ®åœ±ããŠããããã«å€æããç»é¢ã®å·ŠåŽã«æ¥å ãåœãŠãŸãã
- ããŒã¿å¢åŒ· ïŒãããŒã³éçºè ã¯ããã¬ãŒãã³ã°ããŒã¿ã»ãããå¢ããããã«ãç¹å®ã®äºæ ã·ããªãªã®çŸå®çãªãããªãåæã§ããŸãã éè¡ã¯ãäžæ£é²æ¢ã·ã¹ãã ãæ¹åããããã«ãæ¢åã®ããŒã¿ã»ããã§ã¯äžååãªç¹å®ã®çš®é¡ã®äžæ£ããŒã¿ãåæã§ããŸãã
ãã®èšäºã§ã¯ãææ°ã®ã¢ãã«ã®æ©èœãæ¡åŒµããæ°ããã€ã³ã¿ãŒãã§ã€ã¹ãæäŸããã Transparent Latent-space GANïŒTL-GANïŒãšåŒã°ããæè¿ã®äœæ¥ã«ã€ããŠèª¬æããŸãã çŸåšãæè¡çãªè©³çŽ°ãèšèŒãããããã¥ã¡ã³ãã®äœæã«åãçµãã§ããŸãã
çæã¢ãã«ã®æŠèŠ
ãã£ãŒãã©ãŒãã³ã°ã³ãã¥ããã£ã¯ãçæã¢ãã«ãæ¥éã«æ¹åããŠããŸãã 次ã®3ã€ã®ææãªã¿ã€ããåºå¥ã§ããŸããäžå³ã«ç€ºãããã«ã èªå·±ååž°ã¢ãã« ã å€åãªãŒããšã³ã³ãŒããŒïŒVAEïŒ ãããã³çæçæµå¯Ÿãããã¯ãŒã¯ïŒGANïŒã§ãã 詳现ã«èå³ãããå Žåã¯ãOpenAIã®åªããããã°èšäºãã芧ãã ããã
çæãããã¯ãŒã¯ã®æ¯èŒã ãŠã©ãŒã¿ãŒã«ãŒå€§åŠã®STAT946F17ã³ãŒã¹ã®ç»å
çŸæç¹ã§ã¯ãGANãããã¯ãŒã¯ã«ãã£ãŠæé«å質ã®ç»åãçæãããŸãïŒãã©ããªã¢ãªã¹ãã£ãã¯ã§å€æ§ã§ãããé«è§£å床ã§èª¬åŸåã®ãã詳现ããããŸãïŒã Nvidiaã®èŠäºãªpg-GANïŒ åŸã ã«æé·ããGAN ïŒãããã¯ãŒã¯ãã芧ãã ããã ãããã£ãŠããã®èšäºã§ã¯GANã¢ãã«ã«çŠç¹ãåœãŠãŸãã
Nvidiaã«ãã£ãŠçæãããåæpg-GAN ã ã©ã®ç»åãçŸå®ãšã¯é¢ä¿ãããŸããã
GANã¢ãã«ã®åé¡ç®¡ç
ã©ã³ãã ã§å¶åŸ¡ãããç»åçæ
GANã®ãªãªãžãã«ããŒãžã§ã³ãšããã«åºã¥ããå€ãã®äººæ°ã¢ãã«ïŒ DC-GANãpg-GANãªã© ïŒã¯ãæåž«ãªãã§ã¢ãã«ãæå°ããŠããŸãã ãã¬ãŒãã³ã°åŸãçæãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ã©ã³ãã ãã€ãºãå ¥åãšããŠåãåãããã¬ãŒãã³ã°ããŒã¿ã»ãããšã»ãšãã©åºå¥ã§ããªããã©ããªã¢ãªã¹ãã£ãã¯ãªç»åãäœæããŸãã ãã ããçæãããç»åã®æ©èœãè¿œå ã§å¶åŸ¡ããããšã¯ã§ããŸããã ã»ãšãã©ã®ã¢ããªã±ãŒã·ã§ã³ïŒããšãã°ãæåã®ã»ã¯ã·ã§ã³ã§èª¬æããã·ããªãªïŒã§ã¯ããŠãŒã¶ãŒã¯ä»»æã®å±æ§ ïŒããšãã°ã幎霢ã髪ã®è²ãè¡šæ ãªã©ïŒã§ãã¿ãŒã³ãäœæããããšèããŠããŸããçæ³çã«ã¯ãåæ©èœãã¹ã ãŒãºã«æ§æããŸãã
ãã®ãããªå¶åŸ¡åæã®ããã«ãå€æ°ã®GANããªã¢ã³ããäœæãããŠããŸãã ãããã¯ãã¹ã¿ã€ã«è»¢éãããã¯ãŒã¯ãšæ¡ä»¶ä»ããžã§ãã¬ãŒã¿ãŒã®2ã€ã®ã¿ã€ãã«æ¡ä»¶ä»ãã§åå²ã§ããŸãã
ã¹ã¿ã€ã«è»¢éãããã¯ãŒã¯
CycleGANããã³pix2pixã¹ã¿ã€ã«ã®è»¢éãããã¯ãŒã¯ã¯ãããé åïŒãã¡ã€ã³ïŒããå¥ã®é åïŒããšãã°ã銬ããã·ããŠãã«ãã¹ã±ããããã«ã©ãŒç»åã«ïŒã«ç»åã転éããããã«ãã¬ãŒãã³ã°ãããŠããŸãã ãã®çµæã2ã€ã®åå¥ã®ç¶æ éã§ç¹å®ã®èšå·ãã¹ã ãŒãºã«å€æŽããããšã¯ã§ããŸããïŒããšãã°ãé¡ã«å°ãã²ããè¿œå ããïŒã ããã«ã1ã€ã®ãããã¯ãŒã¯ã1ã€ã®ã¿ã€ãã®éä¿¡çšã«èšèšãããŠããããã10åã®æ©èœãæ§æããã«ã¯10åã®ç°ãªããã¥ãŒã©ã«ãããã¯ãŒã¯ãå¿ èŠã«ãªããŸãã
æ¡ä»¶ãžã§ãã¬ãŒã¿ãŒ
æ¡ä»¶ä»ããžã§ãã¬ãŒã¿ãŒ- æ¡ä»¶ä»ãGAN ã AC-GANããã³Stack-GAN-åŠç¿ã®éçšã§ãç»åãšãªããžã§ã¯ãã®ã©ãã«ãåæã«åŠç¿ããŸããããã«ãããå±æ§ãèšå®ããŠç»åãçæã§ããŸãã çæããã»ã¹ã«æ°ããæ©èœãè¿œå ããå ŽåãGANã¢ãã«å šäœãåãã¬ãŒãã³ã°ããå¿ èŠããããŸãããããã«ã¯èšå€§ãªèšç®ãªãœãŒã¹ãšæéãå¿ èŠã§ãïŒããšãã°ãçæ³çãªãã€ããŒãã©ã¡ãŒã¿ãŒã»ãããåããåäžã®K80 GPUã§æ°æ¥ããæ°é±éïŒã ããã«ããã¬ãŒãã³ã°ãå®äºããã«ã¯ããã¹ãŠã®ãŠãŒã¶ãŒå®çŸ©ãªããžã§ã¯ãã©ãã«ãå«ã1ã€ã®ããŒã¿ã»ããã«äŸåããè€æ°ã®ããŒã¿ã»ããã®ç°ãªãã©ãã«ã䜿çšããªãããã«ããå¿ èŠããããŸãã
éæãªé ããã空éïŒ éæãªæœåšç©ºéGAN ãTL-GANïŒãåããçæ競äºãããã¯ãŒã¯ã¯ãå¶åŸ¡ãããçæã«ç°ãªãã¢ãããŒãã䜿çšãããããã®åé¡ã解決ããŸãã åäžã®ãããã¯ãŒã¯ã䜿çšããŠã1ã€ä»¥äžã®æ©èœãã·ãŒã ã¬ã¹ã«æ§æããæ©èœãæäŸããŸã ã ããã«ã1æé以å ã«æ°ããã«ã¹ã¿ã æ©èœãå¹æçã«è¿œå ã§ããŸãã
TL-GANïŒå¶åŸ¡ãããåæãšç·šéãžã®æ°ããå¹æçãªã¢ãããŒã
ãã®ç¥ç§çãªéæãªé ããã空éãäœã
åã®ã»ã¯ã·ã§ã³ã§ç€ºããããã«ãé¡ã®é«è§£å床ã®åå®çãªç»åãçæããNvidiaã®pg-GANã¢ãã«ã䜿çšããŸãã çæãããç»åã®ãã¹ãŠã®ç¬Šå·1024Ã1024pxã¯ãïŒç»åã³ã³ãã³ãã®äœæ¬¡å è¡šçŸãšããŠïŒé ããã空éã®512次å ãã€ãºãã¯ãã«ã«ãã£ãŠã®ã¿æ±ºå®ãããŸãã ãããã£ãŠã é ãããã¹ããŒã¹ãæ§æãããã®ãç解ããïŒã€ãŸããéæã«ããïŒå Žåãçæããã»ã¹ãå®å šã«å¶åŸ¡ã§ããŸã ã
TL-GANã¢ãããŒã·ã§ã³ïŒçæããã»ã¹ã管çããããã®é ãããã¹ããŒã¹ãç解ãã
äºåã«èšç·Žãããpg-GANãããã¯ãŒã¯ãè©ŠããŠã¿ããšãé ãããã¹ããŒã¹ã«ã¯å®éã«2ã€ã®åªããç¹æ§ãããããšãããããŸããã
- ããã¯ååã«æºããããŠããŸããã€ãŸãã空éå ã®ã»ãšãã©ã®ãã€ã³ãã¯åŠ¥åœãªç»åãçæããŸãã
- ããã¯éåžžã«é£ç¶çã§ããã€ãŸããé ããã空éå ã®2ç¹éã®è£éã¯ãéåžžã察å¿ããç»åã®ã¹ã ãŒãºãªé·ç§»ã«ã€ãªãããŸãã
çŽæã¯ãé ããã空éã«ã¯ãç§ãã¡ãå¿ èŠãšããå±æ§ãäºæž¬ããæ¹åããããšèšããŸãïŒäŸãã°ãç·æ§/女æ§ïŒã ãã®å Žåããããã®æ¹åã®åäœãã¯ãã«ã¯ãçæããã»ã¹ãå¶åŸ¡ããããã®è»žã«ãªããŸãïŒããç·æ§çãŸãã¯å¥³æ§çãªé¡ïŒã
ã¢ãããŒãïŒè»žæ©èœãéã
é ããã空éã§å±æ§ã®ãããã®è»žãèŠã€ããããã«ãé ããããã¯ãã«éã®æ¥ç¶ãæ§ç¯ããŸã ã¿ã°ã©ãã« æåž«ãšãã¢ã§ãã¬ãŒãã³ã°ã䜿çšãã ã æ¢åã®ããŒã¿ã»ããã«ã¯ç»åã®ã¿ãå«ãŸããŠãããããåé¡ã¯ãããã®ãã¢ãååŸããæ¹æ³ã§ã ããã³å¯Ÿå¿ãããªããžã§ã¯ãã©ãã« ã
é ããã¯ãã«zãã¿ã°ã©ãã«yã«é¢é£ä»ããæ¹æ³
å¯èœãªã¢ãããŒãïŒ
1ã€ã®ãªãã·ã§ã³ã¯ã察å¿ããé ããã¯ãã«ãèšç®ããããšã§ã ç»å é¢å¿ã®ããã©ãã«ãæã€æ¢åã®ããŒã¿ã»ãããã ã ãã ããGANã¯ç°¡åãªèšç®æ¹æ³ãæäŸããŸãã ããã®ã¢ã€ãã¢ãå®è£ ããã®ãé£ãããªããŸãã
2çªç®ã®ãªãã·ã§ã³ã¯ãåæç»åãçæããããšã§ã ã©ã³ãã ãªé ããã¯ãã«ããGANã䜿çšãã ã©ããã£ãŠ ã åé¡ã¯ãåæç»åã«ã¿ã°ãä»ããããŠããªããããã¢ã¯ã»ã¹å¯èœãªã¿ã°ä»ãããŒã¿ã®ã»ããã䜿çšããã®ãé£ããããšã§ãã
TL-GANã¢ãã«ã®äž»ãªé©æ°ã¯ãã¢ãã«ã䜿çšããåå¥ã®æœåº ïŒåå¥ã©ãã«ã®åé¡åãŸãã¯é£ç¶ã®ååž°åïŒã®ãã¬ãŒãã³ã°ã§ãã ã¿ã°ä»ãããŒã¿ã®æ¢åã®ã»ããã䜿çšããïŒ ã ïŒããã®åŸãèšç·Žãããå€æ°ã®GANãžã§ãã¬ãŒã¿ãŒã§èµ·åããŸã ç¹åŸŽæœåºãããã¯ãŒã¯ãäœ¿çš ã ããã«ããããã£ãŒãã£ã©ãã«ãäºæž¬ã§ããŸãã åæç»å èšç·Žãããç¹åŸŽæœåºãããã¯ãŒã¯ïŒæœåºïŒã䜿çšããŸãã ãããã£ãŠãåæç»åãéããŠãæ¥ç¶ã確ç«ãããŸã ãã㊠ã©ããã£ãŠ ãã㊠ã
ããã§ããã¢ã®é ããããã¯ãã«ãšç¹åŸŽãã§ããŸããã ãªã°ã¬ããµãŒã¢ãã«ããã¬ãŒãã³ã°ã§ããŸã ãã£ãŒãã£ã®ãã¹ãŠã®è»žãéããŠãç»åçæããã»ã¹ãå¶åŸ¡ããŸãã
å³ïŒTL-GANã¢ãã«ã®ã¢ãŒããã¯ãã£
äžã®å³ã¯ãTL-GANã¢ãã«ã®ã¢ãŒããã¯ãã£ã瀺ããŠããã5ã€ã®ã¹ããããå«ãŸããŠããŸãã
- ååžã®ç 究 ã ããèšç·ŽãããGANã¢ãã«ãšçæãããã¯ãŒã¯ãéžæããŸãã æé«ã®å質ã®é¡çæãæäŸãããããèšç·Žãããpg-GANïŒNvidia補ïŒã䜿çšããŸããã
- åé¡ ã ç¹æ§ãæœåºããããã«äºåã«èšç·Žãããã¢ãã«ãéžæããŸãïŒæœåºåšã¯ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãŸãã¯ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®ä»ã®ã¢ãã«ã«ããããšãã§ããŸãïŒããŸãã¯ã¿ã°ä»ãããŒã¿ã®ã»ããã䜿çšããŠç¬èªã®æœåºåšãèšç·ŽããŸãã CelebAãããã§åçŽãªç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããŸããïŒ40åã®ã¿ã°ãæã€30,000ãè¶ ããé¡ïŒã
- äžä»£ ã ããã€ãã®ã©ã³ãã ãªé ããã¯ãã«ãäœæããèšç·ŽãããGANãžã§ãã¬ãŒã¿ãŒãééããŠåæç»åãäœæããèšç·Žãããå±æ§æœåºããŒã«ã䜿çšããŠåç»åã®ç¹åŸŽãçæããŸãã
- çžé¢é¢ä¿ ã äžè¬åç·åœ¢ã¢ãã«ïŒGLMïŒã䜿çšããŠãé ãããã¯ãã«ãšç¹åŸŽéã®ååž°ãå®è£ ããŸãã ååž°çŽç·ã®åŸãã¯ãç¹æ§ã®è»žã«ãªããŸãã
- ç 究 1ã€ã®é ãããã¯ãã«ããå§ããŠãæšèã®1ã€ãŸãã¯è€æ°ã®è»žã«æ²¿ã£ãŠç§»åãããããåçã®çæã«ã©ã®ããã«åœ±é¿ãããã調ã¹ãŸãã
ããã»ã¹ãå€§å¹ ã«æé©åããŸãããäºåã«ãã¬ãŒãã³ã°ãããGANã¢ãã«ã§ã¯ã1ã€ã®GPUãæèŒãããã·ã³ã§ãã£ãŒãã£ãŒè»žã®ç¹å®ã«1æéããããããŸãã ã ããã¯ããã¬ãŒãã³ã°ã®è»¢éãåçã®ãµã€ãºã®çž®å°ãåæç»åã®äºåãã£ãã·ã¥ãªã©ãå«ãããã€ãã®ãšã³ãžãã¢ãªã³ã°ããªãã¯ã«ãã£ãŠå®çŸãããŸãã
çµæ
ãã®åçŽãªã¢ã€ãã¢ãã©ã®ããã«æ©èœããããèŠãŠã¿ãŸãããã
ãªããžã§ã¯ãã®è»žã«æ²¿ã£ãŠé衚瀺ã®ãã¯ãã«ã移åãã
æåã«ãæ€åºãããç¹åŸŽè»žã䜿çšããŠãçæãããç»åã®å¯Ÿå¿ããç¹åŸŽãå¶åŸ¡ã§ãããã©ããã確èªããŸããã ãããè¡ãã«ã¯ãã©ã³ãã ãªãã¯ãã«ãäœæããŸã GANã®é ãããã¹ããŒã¹ã§ãåæç»åãçæããŸã çæãããã¯ãŒã¯ãä»ããŠæž¡ã ã 次ã«ã1ã€ã®è»žã«æ²¿ã£ãŠé衚瀺ã®ãã¯ãã«ã移åããŸã ïŒé ããã空éã®åäœãã¯ãã«ãããšãã°ãé¡ã®æ§å¥ã«å¯Ÿå¿ããïŒè·é¢ã§ æ°ããäœçœ®ã« æ°ããç»åãçæããŸã ã çæ³çã«ã¯ãæ°ããç»åã®å¯Ÿå¿ããç¹åŸŽã¯ãäºæ³ãããæ¹åã«å€åããã¯ãã§ãã
å±æ§ã®ããã€ãã®è»žïŒæ§å¥ã幎霢ãªã©ïŒã«æ²¿ã£ãŠãã¯ãã«ã移åããçµæã以äžã«ç€ºããŸãã é©ãã»ã©ããŸããããŸãïŒ ç·æ§/女æ§ãè¥è /è人ãªã©ã®éã§ç»åãã¹ã ãŒãºã«å€æã§ããŸãã
絡ã¿åã£ããã£ãŒãã£ã®è»žã«æ²¿ã£ãŠé衚瀺ã®ãã¯ãã«ã移åããæåã®çµæ
çžé¢ãã£ãŒãã£è»žã®è§£æ
äžèšã®äŸã§ã¯ãå ã®ã¡ãœããã®æ¬ ç¹ãã€ãŸãå±æ§ã®æ··ä¹±ãã軞ãèŠããŸãã ããšãã°ãé¡ã®æ¯ãæžããå¿ èŠãããå Žåãçæãããé¡ã¯ãããã§ããã³ã«ãªããŸãããããã¯äºæããçµæã§ã¯ãããŸããã åé¡ã¯ãæ§å¥ãšã²ããæ¬è³ªçã«çžé¢ããŠããããšã§ãã ããç¹æ§ã®å€åã¯ãå¥ã®ç¹æ§ã®å€åã«ã€ãªãããŸãã 髪åãå·»ãæ¯ãªã©ãä»ã®æ©èœã§ãåæ§ã®ããšãèµ·ãããŸããã 次ã®å³ã«ç€ºãããã«ãé ããã空éã®ãã²ããå±æ§ã®å ã®è»žã¯ããåºã軞ã«åçŽã§ã¯ãããŸããã
ãã®åé¡ã解決ããããã«ãåçŽãªç·åœ¢ä»£æ°ã®ææ³ã䜿çšããŸããã ç¹ã«ã圌ã¯ã²ãã®è»žãåºã®è»žã«çŽäº€ããæ°ããæ¹åã«æ圱ããŸãããããã«ããããããã®çžé¢ãå¹æçã«æé€ãããçæãããé¡ã®ããã2ã€ã®å åã解ããå¯èœæ§ããããŸãã
ç·åœ¢ä»£æ°ææ³ã䜿çšããçžé¢ç¹åŸŽè»žã®è§£æ
ãã®æ¹æ³ãåã人ã«é©çšããŸããã ä»åã¯ãæ§å¥ãšå¹Žéœ¢ã®è»žããµããŒã軞ãšããŠéžæãããä»ã®ãã¹ãŠã®è»žãæ§å¥ãšå¹Žéœ¢ã«çŽäº€ããããã«æ圱ãããŸãã é¢ã¯ãæ°ããçæãããæ©èœè»žã«æ²¿ã£ãŠé衚瀺ã®ãã¯ãã«ã移åããããšã§çæãããŸãïŒäžå³ãåç §ïŒã äºæ³ã©ããã髪åãã²ãã®ãããªæšèã¯åºã«åœ±é¿ãäžããŸããã
èšå·ã®ãã€ãã®ãªã軞ã«æ²¿ã£ãŠé衚瀺ã®ãã¯ãã«ã移åããçµæã®æ¹å
æè»ãªã€ã³ã¿ã©ã¯ãã£ãç·šé
ç»åçæããã»ã¹ã®ç®¡çã«ãããTL-GANã¢ãã«ã®æè»æ§ã確èªããããã«ã以äžã«ç€ºãããã«ãç°ãªã軞ã«æ²¿ã£ãŠãªããžã§ã¯ãã®å€ãã¹ã ãŒãºã«å€æŽã§ããã€ã³ã¿ã©ã¯ãã£ããªã°ã©ãã£ã«ã«ã€ã³ã¿ãŒãã§ã€ã¹ãäœæããŸããã
TL-GANã䜿çšããã€ã³ã¿ã©ã¯ãã£ããªç·šé
ç¹°ãè¿ããŸãããæšèã®è»žã«æ²¿ã£ãŠç»åãå€æŽãããšãã¢ãã«ã¯é©ãã»ã©ããŸãæ©èœããŸãïŒ
ãŸãšã
ãã®ãããžã§ã¯ãã¯ãGANïŒçæçæµå¯Ÿãããã¯ãŒã¯ïŒãªã©ãæåž«ãªãã§çæã¢ãã«ã管çããæ°ããæ¹æ³ã瀺ããŠããŸãã äºåã«èšç·ŽãããGANãžã§ãã¬ãŒã¿ãŒïŒNvidiaã®pg-GANïŒã䜿çšããŠãéèŠãªæ©èœã®è»žã衚瀺ããããšã§ãé ãããã¹ããŒã¹ãéæã«ããŸããã é ãã空éã§ãã¯ãã«ããã®ãããªè»žã«æ²¿ã£ãŠç§»åãããšã察å¿ããç»åããã®æ©èœã«æ²¿ã£ãŠå€æãããå¶åŸ¡ãããåæãšç·šéãæäŸãããŸãã
ãã®æ¹æ³ã«ã¯æ確ãªå©ç¹ããããŸãã
- å¹çïŒãžã§ãã¬ãŒã¿ãŒã«æ°ããã¿ã°ãã¥ãŒããŒãè¿œå ããããã«ãGANã¢ãã«ãåãã¬ãŒãã³ã°ããå¿ èŠããªãããã40ã¿ã°ã®ãã¥ãŒããŒãè¿œå ããã®ã«1æéãããããŸããã
- æè»æ§ïŒä»»æã®ããŒã¿ã»ããã§ãã¬ãŒãã³ã°ãããä»»æã®ãã£ãŒãã£ãšã¯ã¹ãã©ã¯ã¿ãŒã䜿çšããŠãååã«ãã¬ãŒãã³ã°ãããGANã«ããå€ãã®æ©èœãè¿œå ã§ããŸãã
å«çã«é¢ããããã€ãã®èšè
ãã®äœæ¥ã«ãããç»åã®çæã詳现ã«å¶åŸ¡ã§ããŸãããããã§ãããŒã¿ã»ããã®ç¹æ§ã«å€§ããäŸåããŸãã ããªãŠããã¹ã¿ãŒã®åçã®ãã¬ãŒãã³ã°ã¯ãã¢ãã«ãã»ãšãã©çœäººã§é åçãªäººã ã®åçãéåžžã«ããŸãçæããããšãæå³ããŸãã ããã¯ããŠãŒã¶ãŒã人é¡ã®ããäžéšãè¡šãé¡ãäœæã§ãããšããäºå®ã«ã€ãªãããŸãã ãã®ãµãŒãã¹ãå®éã®ã¢ããªã±ãŒã·ã§ã³ãšããŠå±éããå ŽåããŠãŒã¶ãŒã®å€æ§æ§ãèæ ®ããŠå ã®ããŒã¿ã»ãããæ¡åŒµããããšããå§ãããŸãã
ãã®ããŒã«ã¯åµé çãªããã»ã¹ã«ã¯å€§ãã«åœ¹ç«ã¡ãŸãããèŠãç®ãæªãç®çã§äœ¿çšããå¯èœæ§ãèŠããŠããå¿ èŠããããŸãã ä»»æã®ã¿ã€ãã®çŸå®çãªé¡ãäœæããå Žåãç»é¢ã«è¡šç€ºããã人ç©ãã©ã®çšåºŠä¿¡é Œã§ããŸããïŒ ä»æ¥ããã®çš®ã®åé¡ã«ã€ããŠè°è«ããããšãéèŠã§ãã Deepfakeãã¯ãããžãŒã®æè¿ã®äŸã§èŠãããã«ãAIã¯æ¥éã«é²æ©ããŠããã®ã§ããã®ãããªã¢ããªã±ãŒã·ã§ã³ãæé©ã«å±éããæ¹æ³ã«ã€ããŠã®è°è«ãéå§ããããšã¯äººé¡ã«ãšã£ãŠäžå¯æ¬ ã§ãã
ãªã³ã©ã€ã³ãã¢ãšã³ãŒã
ãã®äœæ¥ã®ãã¹ãŠã®ã³ãŒããšãªã³ã©ã€ã³ãã¢ã¯ãGitHubããŒãžã§å ¥æã§ããŸã ã
ãã©ãŠã¶ã§ã¢ãã«ã䜿çšããå Žå
ã³ãŒããã¢ãã«ããŸãã¯ããŒã¿ãããŠã³ããŒãããå¿ èŠã¯ãããŸããã ãã® Readme ã»ã¯ã·ã§ã³ã®æ瀺ã«åŸã£ãŠãã ããã ãããªã«ç€ºãããã«ããã©ãŠã¶ãŒã§é¡ãå€æŽã§ããŸãã
ã³ãŒããè©ŠããŠã¿ããå Žå
GitHubãªããžããªã®ReadmeããŒãžã«ç§»åããã ãã§ãã TensorflowãšKerasã䜿çšããŠAnaconda Python 3.6ã§ã³ã³ãã€ã«ãããã³ãŒãã
è²¢ç®ãããå Žå
ãããã ããŒã«ãªã¯ãšã¹ããéä¿¡ããããGitHubã§åé¡ãå ±åããŠãã ããã
ç§ã«ã€ããŠ
ç§ã¯æè¿ããã©ãŠã³å€§åŠã§èšç®ããã³èªç¥ç¥çµçç©åŠã®å士å·ãååŸããæ©æ¢°åŠç¿ãå°éãšããã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã®ä¿®å£«å·ãååŸããŸããã éå»ã«ãç§ã¯è³å ã®ãã¥ãŒãã³ãã©ã®ããã«éåçã«æ å ±ãåŠçããèŠèŠãªã©ã®é«ã¬ãã«ã®æ©èœãéæããããç 究ããŠããŸããã ç§ã¯ãç¥èœã®åæãã·ãã¥ã¬ãŒã·ã§ã³ãå®è£ ãããã³è€éãªå®äžçã®åé¡ã解決ããããã®AIã®äœ¿çšã«å¯Ÿããã¢ã«ãŽãªãºã çã¢ãããŒãã奜ãã§ãã ãã¯ãããžãŒæ¥çã®ML / AIç 究è ãšããŠã®ä»äºãç©æ¥µçã«æ¢ããŠããŸãã
è¬èŸ
ãã®äœæ¥ã¯ãInSight AI奚åŠéããã°ã©ã ã®ãããžã§ã¯ããšããŠ3é±éã§è¡ãããŸããã ããã°ã©ã ãã£ã¬ã¯ã¿ãŒã®Emmanuel AmeisenãšMatt Rubashkinã®å šè¬çãªãªãŒããŒã·ãããç¹ã«Emmanuelã®ææ¡ãšèšäºã®ç·šéã«æè¬ããŸãã ãŸããçŽ æŽãããåŠç¿ç°å¢ãšå€ãã®ããšãåŠãã ä»ã®Insight AIããã°ã©ã ã®åå è ã«å¯ŸããŠãInsightã®ãã¹ãŠã®åŸæ¥å¡ã«æè¬ããŸãã ãããžã§ã¯ããéçºããæ¹åã決å®ããéã®å€ãã®ãã³ããšã€ã³ã¹ãã¬ãŒã·ã§ã³ãšããã®èšäºã®æ§æãšç·šéã«å€å€§ãªå©ããããŠãããRubin Xiaã«æè¬ããŸãã