ããªãã®å€ãã¯ãããããKaggleãç¥ã£ãŠããããå°ãªããšãèããããšãããã§ããã ã èããããšããªã人åãïŒKaggleã¯ãäŒæ¥ãäºæž¬ã¢ãã«ãäœæããããã®ã³ã³ãã¹ããéå¬ãããã©ãããã©ãŒã ã§ãã ãã®äººæ°ã¯éåžžã«é«ããå€ãã®å Žåããã«ã°ã¹ãã®å°é家ã¯ç«¶äºãã®ãã®ãç解ããŠããŸãã åã³ã³ããã£ã·ã§ã³ã®åè ã¯ãäž»å¬è ã«ãã£ãŠæå®ãããã¡ããªãã¯ã«åŸã£ãŠèªåçã«æ±ºå®ãããŸãã ãšããããKaggleã¯ããŸããŸãªæç¹ã§FacebookãMicrosoftãããã³çŸåšã®ãµã€ãææè ã§ãã Googleã«ãã£ãŠãã¹ããããŠããŸãã Yandexãæ°åãã§ãã¯ããŸããã ååãšããŠãKaggleã³ãã¥ããã£ã«ã¯çŸå®ã«éåžžã«è¿ãåé¡ã解決ããæ©äŒãäžããããŸããäžæ¹ã§ã競äºãé¢çœãããä»æ¹ã§å å®ãªä»äºãæã€éçšè ãšããŠäŒç€Ÿãä¿é²ããŸãã ãã ãã競äºãçµç¹ããŠããäŒç€Ÿããã®ãµãŒãã¹ã®åè ã®1人ã®ã¢ã«ãŽãªãºã ãå«ãã§ãããšèšãããå Žåããããä¿¡ããªãã§ãã ããã éåžžãäžããã®ãœãªã¥ãŒã·ã§ã³ã¯è€éãããŠååã«çç£çã§ã¯ãªããå®éã«ã¯ã¡ããªãã¯å€ã®1000åã®1ãè¿œããããå¿ èŠã¯ãããŸããã ãããã£ãŠãäž»å¬è ã¯ãã¢ã«ãŽãªãºã ã®ã¢ãããŒããšã€ããªãã®ãŒã®éšåã«ããé¢å¿ãæã£ãŠããŸãã
Kaggleã ããããŒã¿åæã®ç«¶äºçžæã§ã¯ãããŸããã ä»ã«ããããŸãïŒ DrivenData ã DataScience.net ã CodaLab ã ããã«ãã³ã³ãã¹ãã¯æ©æ¢°åŠç¿ã«é¢é£ããç§åŠäŒè°ã®æ çµã¿ã§éå¬ãããŸãïŒSIGKDDãRecSysãCIKMã
解決çãæåãããã«ã¯ãäžæ¹ã§çè«ãç 究ããä»æ¹ã§ããŸããŸãªã¢ãããŒããšã¢ãã«ã®äœ¿çšãå®è·µããå¿ èŠããããŸãã èšãæããã°ããã«ã°ã¹ãã«åå ããããšã§ãããŒã¿åæãå¯èœã«ãªããŸãã åé¡ã¯ããããã«åå ããæ¹æ³ãåŠã¶ããšã§ãã
3幎åãæ°äººã®SHADã®åŠçãéãŸããKaggleããååŸããã¿ã¹ã¯ãå«ãããŸããŸãªèå³æ·±ãã¿ã¹ã¯ã解決ãå§ããŸããã ããšãã°ããããã®äººãã¡ã®äžã«ã¯ãçŸåšã®2äœã®åè ã§ãããKaggleè©äŸ¡ã®æè¿ã®ãªãŒããŒã§ãã Stanislav SemenovãããŸããã æéã®çµéãšãšãã«ãäŒè°ã¯æ©æ¢°åŠç¿ãã¬ãŒãã³ã°ãšåŒã°ããŸããã 圌ãã¯äººæ°ãç²åŸããåå è ã¯å®æçã«è³åãåãåãããäºãã®æ±ºå®ã«ã€ããŠè©±ãåããçµéšãå ±æãå§ããŸããã
ãã¬ãŒãã³ã°ã§æ£ç¢ºã«äœãããããæ確ã«ããããã«ãããã€ãã®äŸãæããŸãã åäŸã§ã¯ãæåã«ã¹ããŒãªãŒã®ãããããªãããã次ã«ãããªã«åºã¥ããããã¹ãããããŸãã
è»ã®ç»åãåé¡ããã¿ã¹ã¯
MachineLearning.ruãžã®ãªã³ã¯ã
æšå¹ŽãAvitoã¯å€ãã®ã³ã³ãã¹ããéå¬ããŸããã å«ã-è»ã®ãã©ã³ãã®èªèã®ããã®ç«¶äºããã®åè ãYevgeny Nizhibitskyã¯ããã¬ãŒãã³ã°äžã®åœŒã®æ±ºå®ã«ã€ããŠè©±ããŸããã
åé¡ã®å£°æ ã è»ã®ç»åãããã¡ãŒã«ãŒãšã¢ãã«ã決å®ããå¿ èŠããããŸãã ã¡ããªãã¯ã¯ãäºæž¬ã®ç²ŸåºŠãã€ãŸãæ£è§£ã®å²åã§ããã ãµã³ãã«ã¯3ã€ã®éšåã§æ§æãããŠããŸãããæåã®éšåã¯æåã«ãã¬ãŒãã³ã°ã«äœ¿çšã§ãã2çªç®ã¯åŸã§äžãããã3çªç®ã¯æçµçãªäºæž¬ã衚瀺ããããã«å¿ èŠã§ããã
ã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ ã ç§ã¯ãã®éãã£ãšéšå±ãææ¿ããŠããããŒã ã³ã³ãã¥ãŒã¿ãŒãšè·å Žã§æäŸãããŠãããµãŒããŒãå©çšããŸããã
ã¢ãã«ã®æŠèŠ ã ç§ãã¡ã®ã¿ã¹ã¯ã¯èªèãªã®ã§ãæåã«å©çšãããããšã¯ãããç¥ãããŠããImageNetã§ã®ç»ååé¡å質ã®ã¬ãã«ã®åäžã§ãã ãåç¥ã®ããã«ãçŸä»£å»ºç¯ã¯äººéãããããã«é«ãå質ãéæã§ããŸãã ããã§ãæè¿ã®èšäºã®ã¬ãã¥ãŒããå§ããŠãImageNetã«åºã¥ããã¢ãŒããã¯ãã£ãå®è£ ãããã³å質ã®èŠçŽè¡šããŸãšããŸããã
Inceptionããã³ResNetã¢ãŒããã¯ãã£ã§æé«ã®å質ãéæãããããšã«æ³šæããŠãã ããã
ãããã¯ãŒã¯ã®åŸ®èª¿æŽ ã ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ããŒããããã¬ãŒãã³ã°ããããšã¯ãããªãæéããããäœæ¥ã§ãããçµæã®ç¹ã§å¿ ãããå¹æçã§ã¯ãããŸããã ãããã£ãŠããããã¯ãŒã¯ã®åãã¬ãŒãã³ã°ææ³ããã䜿çšãããŸãïŒImageNetã§æ¢ã«ãã¬ãŒãã³ã°ããããããã¯ãŒã¯ãååŸãããæåŸã®ã¬ã€ã€ãŒãå¿ èŠãªã¯ã©ã¹æ°ã®ã¬ã€ã€ãŒã«çœ®ãæãããããã®åŸããããã¯ãŒã¯ã¯äœãåŠç¿çã§æ§æããç¶ããŸããã競åããã®ããŒã¿ã䜿çšããŸãã ãã®ã¹ããŒã ã«ããããããã¯ãŒã¯ãããéããããé«å質ã«ãã¬ãŒãã³ã°ã§ããŸãã
æåã®GoogLeNetåãã¬ãŒãã³ã°ã¢ãããŒãã¯ãæ€èšŒäžã«çŽ92ïŒ ã®ç²ŸåºŠã瀺ããŸããã
äœç©ã®äºæž¬ ã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠãã¹ããµã³ãã«ãäºæž¬ãããšãå質ãåäžããŸãã ãããè¡ãã«ã¯ãå ã®ç»åã®ããŸããŸãªå Žæã§é©åãªãµã€ãºã®ãã©ã°ã¡ã³ããåãåããçµæãå¹³åããŸãã 1x10ã®ã¯ãããã¯ãç»åã®äžå¿ã4ã€ã®è§ãæ®åœ±ããããã¹ãŠãåãã§ããããæ°Žå¹³ã«åæ ãããããšãæå³ããŸãã ã芧ã®ãšãããå質ã¯åäžããŠããŸãããäºæž¬æéã¯å¢å ããŠããŸãã
çµæã®æ€èšŒ ã ãµã³ãã«ã®2çªç®ã®éšåã衚瀺ãããåŸããµã³ãã«ãããã€ãã®éšåã«åå²ããŸããã ãã以éã®çµæã¯ãã¹ãŠãã®ããŒãã£ã·ã§ã³ã«è¡šç€ºãããŸãã
ResNet-34ããŒã ã ã¢ãŒããã¯ãã£äœæè ã®æ¢è£œã®ãªããžããªã䜿çšã§ããŸãããé©åãªåœ¢åŒã§ãã¹ãã®äºæž¬ãååŸããã«ã¯ãããã€ãã®ã¹ã¯ãªãããä¿®æ£ããå¿ èŠããããŸãã ããã«ããã³ãã«ãã倧éã®ã¡ã¢ãªæ¶è²»ã®åé¡ã解決ããå¿ èŠããããŸãã æ€èšŒã®ç²ŸåºŠã¯çŽ95ïŒ ã§ãã
Inception-v3 TensorFlow ããã§ã¯ãæ¢è£œã®å®è£ ã䜿çšãããŸããããç»åã®ååŠçãå€æŽããããããã®çææã«ç»åã®åãåããå¶éãããŸããã çµæã¯ã»ãŒ96ïŒ ã®ç²ŸåºŠã§ãã
ã¢ãã«ã®ã¢ã³ãµã³ãã« ã çµæã¯ã2ã€ã®ResNetã¢ãã«ãš2ã€ã®Inception-v3ã¢ãã«ã§ãã ã¢ãã«ãæ··åããããšã«ãããæ€èšŒäžã«ã©ã®ãããªå質ãåŸãããŸããïŒ ã¯ã©ã¹ã®ç¢ºçã¯ã幟äœå¹³åã䜿çšããŠå¹³ååãããŸããã é 延ãµã³ãã«ã§éã¿ïŒãã®å Žåã¯åºŠïŒãéžæãããŸããã
çµæ GTX 980ã®ResNetãã¬ãŒãã³ã°ã«ã¯60æéããããŸããããTitanXã®Inception-v3ã«ã¯48æéããããŸããã ã³ã³ãã¹ãäžã«ãæ°ããã¢ãŒããã¯ãã£ãåããæ°ãããã¬ãŒã ã¯ãŒã¯ãè©Šãããšãã§ããŸããã
éè¡ã®é¡§å®¢ãåé¡ããã¿ã¹ã¯
Kaggleãžã®ãªã³ã¯ ã
ã¹ã¿ãã¹ã©ãã»ã»ã¡ããã¯ã圌ãšä»ã®Kaggleãããã®åå è ãã©ã®ããã«ååãã倧æéè¡BNPããªãã®é¡§å®¢ããã®ã¢ããªã±ãŒã·ã§ã³ãåé¡ããã³ã³ãã¹ãã§è³ãç²åŸããããèªããŸãã
åé¡ã®å£°æ ã ä¿éºç³è«ããã®é£èªåãããããŒã¿ã«ãããšãè¿œå ã®æåãã§ãã¯ãªãã§èŠæ±ã確èªã§ãããã©ãããäºæž¬ããå¿ èŠããããŸãã éè¡ã«ãšã£ãŠãããã¯ã¢ããªã±ãŒã·ã§ã³ã®åŠçãèªååããããã»ã¹ã§ãããããŒã¿ã¢ããªã¹ãã«ãšã£ãŠã¯ããã€ããªåé¡ã«ããæ©æ¢°åŠç¿ã®ã¿ã¹ã¯ã«ãããŸããã çŽ23äžã®ãªããžã§ã¯ããš130ã®æšèããããŸãã ã¡ããªãã¯-LogLoss ã åã£ãããŒã ãããŒã¿ã解èªãã圌ãã競äºã«åã€ã®ãå©ããããšã¯æ³šç®ã«å€ããŸãã
æšèã®äººå·¥ãã€ãºãåãé€ã ã æåã«è¡ãããšã¯ãããŒã¿ãèŠãããšã§ãã ããã€ãã®ããšãããã«æããã«ãªããŸãã ãŸãããã¹ãŠã®èšå·ã¯0ã20ã®å€ãåããŸãã次ã«ãèšå·ã®ååžãèŠããšã次ã®å³ãèŠãããšãã§ããŸãã
ãªããã äºå®ãå¿ååãšãã€ãºã®å€ãããŒã¿ã®æ®µéã§ãã©ã³ãã ãã€ãºããã¹ãŠã®å€ã«è¿œå ããããã®åŸ0ãã20ãŸã§ã®ã»ã°ã¡ã³ãã«å¯ŸããŠã¹ã±ãŒãªã³ã°ãå®è¡ãããŸãããéå€æã¯2段éã§å®è¡ãããŸããã ã ããªãŒãåå²æã«ãŸã ãããå€ãéžæããå Žåãããã¯å¿ èŠã§ãããïŒ ã¯ããéå€æåŸãå€æ°ã®éããããæå³ãæã¡å§ããã«ããŽãªå€æ°ã®å Žåãã¯ã³ãããã³ãŒãã£ã³ã°ãå®è¡ã§ããããã«ãªããŸãã
ç·åœ¢äŸåæ©èœã®åé€ ã ãŸããããã€ãã®å åã¯ä»ã®å åã®åèšã§ããããšã«æ°ä»ããŸããã ããããäžèŠã§ããããšã¯æããã§ãã ãã®æ±ºå®ã®ããã«ãç¹åŸŽã®ãµãã»ãããåãããŸããã ååž°ã¯ãä»ã®å€æ°ãäºæž¬ããããã«ããã®ãããªãµãã»ããã«åºã¥ããŠæ§ç¯ãããŸããã äºæž¬å€ãçã«è¿ãå ŽåïŒäººå·¥ãã€ãºãèæ ®ãã䟡å€ãããå ŽåïŒã笊å·ãåé€ã§ããŸãã ããããããŒã ã¯ãããæ°ã«ãããæ¢æã®ãã£ã«ã¿ãŒãããå±æ§ã®ã»ãããå©çšããŸããã ãããã¯ä»ã®èª°ãã«ãã£ãŠæºåãããŸããã Kaggleã®æ©èœã®1ã€ã¯ãåå è ã調æ»çµæãå ±æããããã®ãã©ãŒã©ã ãšå ¬éãœãªã¥ãŒã·ã§ã³ã®ååšã§ãã
䜿çšãããã®ãç解ããæ¹æ³ã¯ïŒ å°ããªããã¯ããããŸãã å€ã倧äŒã®èª°ããé«ãå°äœãç²åŸããã®ã«åœ¹ç«ã€ãã¯ããã¯ã䜿çšããããšãç¥ã£ãŠãããšããŸãããïŒç°¡åãªæ±ºå®ã¯éåžžãã©ãŒã©ã ã§æžãããŠããŸãïŒã çŸåšã®å€§äŒã§ãã®åå è ãåã³ãªãŒããŒã«ãªã£ãå Žåãããããåããã¯ããã¯ãããã§æ®åœ±ãããŸãã
ã«ããŽãªãŒå€æ°ã®ã³ãŒãã£ã³ã° ã ç¹å®ã®å€æ°V22ã«å€æ°ã®å€ãå«ãŸããŠããã®ã¯å°è±¡çã§ããããåæã«ãç¹å®ã®å€ã®ãµããµã³ãã«ãååŸãããšãä»ã®å€æ°ã®ã¬ãã«ïŒããŸããŸãªå€ïŒã®æ°ãèããæžå°ããŸãã ç¹ã«ãã¿ãŒã²ããå€æ°ãšè¯å¥œãªçžé¢é¢ä¿ããããŸãã äœãã§ããŸããïŒ æãç°¡åãªè§£æ±ºçã¯ãV22å€ããšã«åå¥ã®ã¢ãã«ãæ§ç¯ããããšã§ãããããã¯ãããªãŒã®æåã®åå²ã§å€æ°ã®ãã¹ãŠã®å€ãåå²ããããšãšåãã§ãã
åä¿¡ããæ å ±ã䜿çšããå¥ã®æ¹æ³ããããŸã-ã¿ãŒã²ããå€æ°ã®å¹³åå€ããšã³ã³ãŒãããŸãã ã€ãŸããã«ããŽãªå€æ°ã®åå€ã¯ããã®å±æ§ãåãå€ããšããªããžã§ã¯ãã®ã¿ãŒã²ããã®å¹³åå€ã«çœ®ãæããããŸãã ãã®ãããªã³ãŒãã£ã³ã°ããã¬ãŒãã³ã°ã»ããå šäœã«å¯ŸããŠçŽæ¥è¡ãããšã¯äžå¯èœã§ãããã®ããã»ã¹ã§ã¯ãã¿ãŒã²ããå€æ°ã«é¢ããæ å ±ãå±æ§ã«æé»çã«å°å ¥ããŸãã ã»ãšãã©ãã¹ãŠã®ã¢ãã«ãå¿ ãæ€åºããæ å ±ã«ã€ããŠè©±ããŠããã
ãããã£ãŠããã®ãããªçµ±èšã¯æãç³ã¿ã®å Žåã«èæ ®ãããŸãã 以äžã«äŸã瀺ããŸãã
ããŒã¿ã3ã€ã®éšåã«åå²ãããŠãããšããŸãã ãã¬ãŒãã³ã°ãµã³ãã«ã®åãã©ãŒã«ãã«ã€ããŠãä»ã®2ã€ã®ãã©ãŒã«ãã®æ°ããæ©èœãšããã¬ãŒãã³ã°ã»ããå šäœã®ãã¹ããµã³ãã«ã«ã€ããŠæ€èšããŸãã ããã«ãããã¿ãŒã²ããå€æ°ã«é¢ããæ å ±ã¯ãµã³ãã«ã«ããã»ã©æ瀺çã«å ¥åããããã¢ãã«ã¯ååŸããç¥èã䜿çšã§ããããã«ãªããŸãã
ä»ã«äœãåé¡ããããŸããïŒ ã¯ã-ãŸããªã«ããŽãªãŒãšçžäºæ€èšŒä»ãã
ãŸãã«ééããã«ããŽãª ã ç¹å®ã®ã«ããŽãªãæ°åããçºçããã察å¿ãããªããžã§ã¯ããã¯ã©ã¹0ã«å±ããŠãããšããŸããã¿ãŒã²ããå€æ°ã®å¹³åå€ããŒãã«ãªããŸãã ãã ãããã¹ããµã³ãã«ã§ã¯ãŸã£ããç°ãªãç¶æ³ãçºçããå ŽåããããŸãã 解ã¯å¹³æ»åãããå¹³åïŒãŸãã¯å¹³æ»åããã尀床ïŒã§ããã次ã®åŒã§èšç®ãããŸãã
ããã§ãã°ããŒãã«å¹³åã¯ãµã³ãã«å šäœã«ãããã¿ãŒã²ããå€æ°ã®å¹³åå€ãnrowsã¯ã«ããŽãªå€æ°ã®ç¹å®ã®å€ã«ééããåæ°ãalphaã¯æ£ååãã©ã¡ãŒã¿ãŒïŒ10ãªã©ïŒã§ãã ããå€ããŸããªå Žåãã°ããŒãã«å¹³åã®éã¿ã倧ãããªããååãªå Žåãçµæã¯ã«ããŽãªã®åæå¹³åã«è¿ããªããŸãã ãšããã§ããã®åŒã䜿çšãããšãã«ããŽãªå€æ°ã®ä»¥åã¯æªç¥ã®å€ãåŠçããããšãã§ããŸãã
çžäºæ€èšŒ ä»ã®ãã©ãŒã«ãã®ã«ããŽãªå€æ°ã®å¹³æ»åãããå¹³åããã¹ãŠèšç®ãããšããŸãã æšæºçãªäº€å·®æ€èšŒkãã©ãŒã«ãã«ãã£ãŠã¢ãã«ã®å質ãè©äŸ¡ã§ããŸããïŒ ãã äŸãèŠãŠã¿ãŸãããã
ããšãã°ã3çªç®ã®åå²ã§ã¢ãã«ãè©äŸ¡ããããšããŸãã æåã®2ã€ã®ãã©ãŒã«ãã§ã¢ãã«ããã¬ãŒãã³ã°ããŸããã3çªç®ã®ãã¹ããã©ãŒã«ãã䜿çšããŠèšç®ããéã«ãã¿ãŒã²ããå€æ°ã®å¹³åå€ãæã€æ°ããå€æ°ããããŸãã ããã«ãããçµæãæ£ããè©äŸ¡ããããšã¯ã§ããŸããããçºçããåé¡ã¯ããã©ãŒã«ãå ã®ãã©ãŒã«ãã®çµ±èšãã«ãŠã³ãããããšã§è§£æ±ºãããŸãã ããäžåºŠäŸãèŠãŠã¿ãŸãããã
ãŸã 3çªç®ã®ã¢ãã«ãè©äŸ¡ãããã§ãã æåã®2åå²ïŒæšå®ã®ãã¬ãŒãã³ã°ãµã³ãã«ïŒãä»ã®3åå²ã«åå²ãããããã§æ¢ã«åæãããã·ããªãªã«åŸã£ãŠæ°ãã笊å·ãèšç®ãã3åå²ïŒããã¯æšå®ã®ãã¹ããµã³ãã«ã§ãïŒã§æåã®2åå²ãäžç·ã«èšç®ããŸãã ããããã°ãã¢ãã«ããã¬ãŒãã³ã°ãããšãã«3çªç®ã®ãã©ãŒã«ãããã®æ å ±ã¯äœ¿çšããããè©äŸ¡ã¯æ£çŽã«ãªããŸãã ç§ãã¡ãè°è«ããŠãã競äºã§ã¯ããã®ãããªçžäºæ€èšŒã®ã¿ãã¢ãã«ã®å質ãæ£ããè©äŸ¡ããããšãã§ããŸããã ãã¡ããããå€éšãããã³ãå éšãã®æãç³ã¿ã®æ°ã¯ä»»æã§ãã
æšèã®äœæ ã æ¢ã«è¿°ã¹ãã¿ãŒã²ããå€æ°ã®å¹³æ»åãããå¹³åå€ã ãã§ãªãã蚌æ ã®éã¿ã䜿çšããŸããã ããã¯ã»ãšãã©åãã§ããã察æ°å€æãããŸãã ããã«ãæ£èŠåãè¡ããªãã°ã«ãŒãå ã®ããžãã£ãã¯ã©ã¹ãšãã¬ãã£ãã¯ã©ã¹ã®ãªããžã§ã¯ãã®æ°ã®å·®ãšãã圢åŒã®æ©èœãæçšã§ããããšãå€æããŸããã çŽæã¯æ¬¡ã®ãšããã§ããã¹ã±ãŒã«ã¯ã¯ã©ã¹ã«å¯Ÿããèªä¿¡ã®åºŠåãã瀺ããŸãããéçå±æ§ãã©ããããïŒ å®éãããããåæ§ã®æ¹æ³ã§åŠçããããšããã¹ãŠã®å€ã¯ã°ããŒãã«å¹³åã®æ£èŠåã§ãè©°ãŸããããšã«ãªããŸãã 1ã€ã®ãªãã·ã§ã³ã¯ãå€ããã³ã«åå²ããããšã§ãããã³ã¯ãå¥ã ã®ã«ããŽãªãŒãšèŠãªãããŸãã å¥ã®æ¹æ³ã¯ãåãã¿ãŒã²ããã䜿çšããŠãåãèšå·ã§ç¹å®ã®ç·åœ¢ã¢ãã«ãäœæããããšã§ãã åèšã§ããã£ã«ã¿ãŒåŠçããã80ã®ãµã€ã³ã®ãã¡çŽ2000ã®ãµã€ã³ãå€æããŸããã
ã¹ã¿ããã³ã°ãšãã¬ã³ã ã ã»ãšãã©ã®ç«¶äºãšåæ§ã«ããœãªã¥ãŒã·ã§ã³ã®éèŠãªéšåã¯ã¢ãã«ã®ã¹ã¿ãã¯ã§ãã èŠããã«ãã¹ã¿ããã³ã°ã®æ¬è³ªã¯ãããã¢ãã«ã®äºæž¬ããµã€ã³ãšããŠå¥ã®ã¢ãã«ã«è»¢éããããšã§ãã ãã ããå床ãã¬ãŒãã³ã°ããªãããšãéèŠã§ãã äŸãèŠãŠã¿ãŸãããã
Alexander Dyakonovã®ããã°ããæ¹ç·š
ããšãã°ããµã³ãã«ãã¹ã¿ããã³ã°ã¹ããŒãžã§3ã€ã«åå²ããããšã«ããŸããã çµ±èšãšåæ§ã«ã2ã€ã®ãã©ãŒã«ãã§ã¢ãã«ããã¬ãŒãã³ã°ããæ®ãã®ãã©ãŒã«ãã®äºæž¬å€ãè¿œå ããå¿ èŠããããŸãã ãã¹ããµã³ãã«ã§ã¯ãââãã©ãŒã«ãã®åãã¢ããã¢ãã«ã®äºæž¬ãå¹³åã§ããŸãã åã¹ã¿ããã³ã°ã¬ãã«ã¯ãæ¢åã®ããŒã¿ã»ããã«åºã¥ãã¢ãã«ã®æ°ããæ©èœäºæž¬ã®ã°ã«ãŒããè¿œå ããããã»ã¹ã§ãã
æåã®ã¬ãã«ã§ã¯ãããŒã ã«ã¯200ã250ã®ç°ãªãã¢ãã«ãããã2çªç®ã®ã¬ãã«ã§ã¯ããã«20ã30ã3çªç®ã®ã¢ãã«ã§ã¯ããã«ããã€ããããŸããã ãã®çµæããã¬ã³ããã€ãŸãç°ãªãã¢ãã«ã®äºæž¬ãæ··åãããŸãã ããŸããŸãªã¢ã«ãŽãªãºã ã䜿çšãããŸããïŒããŸããŸãªãã©ã¡ãŒã¿ãŒã䜿çšããåŸé ããŒã¹ãã£ã³ã°ãã©ã³ãã ãã©ã¬ã¹ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã äž»ãªã¢ã€ãã¢ã¯ãããšãæé«ã®å質ãåŸãããªãå Žåã§ããããŸããŸãªãã©ã¡ãŒã¿ãŒãæã€æãå€æ§ãªã¢ãã«ãé©çšããããšã§ãã
ããŒã ã¯ãŒã¯ éåžžãåå è ã¯å šå¡ããã§ã«èªåã®ææãæã£ãŠããå Žåã競æã®çµäºåã«ããŒã ã«åå ããŸãã ç§ãã¡ã¯æåããä»ã®KeglersãšããŒã ãçµã¿ãŸããã åããŒã ã¡ã³ããŒã«ã¯ãããŒã¿ã»ãããšã¹ã¯ãªããããã¹ãããå ±æã¯ã©ãŠãã«ãã©ã«ããŒããããŸããã äžè¬çãªçžäºæ€èšŒæé ã¯ãçžäºã«æ¯èŒã§ããããã«äºåã«æ¿èªãããŠããŸãã 圹å²ã¯æ¬¡ã®ããã«åé ãããŸãããç§ã¯æ°ããå åãæãã€ãã2çªç®ã®åå è ãã¢ãã«ãæ§ç¯ãã3çªç®ãã¢ãã«ãéžæãã4çªç®ãããã»ã¹å šäœãå¶åŸ¡ããŸããã
åãåŸãå Žæ ã ã©ãããããã䜿çšããŠããå Žåãå€æ°ã®ä»®èª¬ã®ãã¹ãããã«ãã¬ãã«ã®ã¹ã¿ããã³ã°ããã³ãã¬ãŒãã³ã°ã¢ãã«ã®æ§ç¯ã«ã¯æéãããããããå¯èœæ§ããããŸãã ãããã£ãŠãå€ãã®åå è ã¯ãå€æ°ã®ã³ã¢ãšRAMãåããã³ã³ãã¥ãŒãã£ã³ã°ãµãŒããŒã䜿çšããŸãã ç§ã¯éåžžã AWSãµãŒããŒã䜿çšããŠãããããŒã ã¡ã³ãã¯ãçµå±ã®ãšãããä»äºäžã«ãã·ã³ã䜿çšãããŠããªãéã競äºã®ããã«ãã·ã³ã䜿çšããŠããŸãã
äž»å¬äŒç€Ÿãšã®ã³ãã¥ãã±ãŒã·ã§ã³ ã 競æäŒã§æåããããã©ãŒãã³ã¹ã®åŸãäŒç€Ÿãšã®ã³ãã¥ãã±ãŒã·ã§ã³ã¯å ±åé»è©±äŒè°ã®åœ¢ã§è¡ãããŸãã åå è ã¯èªåã®æ±ºå®ã«ã€ããŠè©±ãã質åã«çããŸãã BNPã§ã¯ã人ã ã¯ãã«ãã¬ãã«ã®ã¹ã¿ããã³ã°ã«é©ãããšã¯ãããŸããã§ãããããã¡ãããå±æ§ã®æ§ç¯ãããŒã ã§ã®äœæ¥ãçµæã®æ€èšŒã«èå³ããããŸãã-èªåã®ã·ã¹ãã ãæ¹åããã®ã«åœ¹ç«ã€ãã¹ãŠã®ãã®ã
ããŒã¿ã»ããã埩å·åããå¿ èŠããããŸããïŒ åªåããŒã ã¯ãããŒã¿ã«1ã€ã®ç¹åŸŽãããããšã«æ°ä»ããŸããã äžéšã®æ©èœã«ã¯å€ããããŸãããããã§ãªããã®ããããŸãã ã€ãŸããäžéšã®ç¹æ§ã¯ç¹å®ã®äººã ã«äŸåããŠããŸããã§ããã ããã«ã360ã®äžæã®å€ãååŸãããŸããã ç¹å®ã®ã¿ã€ã ã¹ã¿ã³ãã«ã€ããŠè©±ããŠãããšä»®å®ããã®ã¯è«ççã§ãã ãã®ãããª2ã€ã®ç¬Šå·ã®å·®ãåããããã«åŸã£ãŠãµã³ãã«å šäœããœãŒããããšãæåã®ãŒããããé »ç¹ã«ã次ã«1ãããå€ããªãããšãå€æããŸããã ãããåè ãå©çšãããã®ã§ãã
ç§ãã¡ã®ããŒã ã¯3äœã«ãªããŸããã åèšã§ãã»ãŒ3,000ã®ããŒã ãåå ããŸããã
åºåã«ããŽãªèªèã¿ã¹ã¯
DataRingãžã®ãªã³ã¯ ã
ããã¯å¥ã®Avitoã³ã³ãã¹ãã§ãã ããã¯ããã€ãã®æ®µéãçµãŠãæåã®æ®µéïŒ ã€ãã§ã« ã3çªç®ã®æ®µéãšããŠãïŒã¯Arthur Kuzin N01Z3ãåã¡ãŸããã
åé¡ã®å£°æ ã åºåã®åçãããã«ããŽãªã決å®ããå¿ èŠããããŸãã ååºåã¯1ã5åã®ç»åã«å¯Ÿå¿ããŠããŸããã ã¡ããªãã¯ã¯ãéå±€ã®ããŸããŸãªã¬ãã«ã§ã®ã«ããŽãªã®äžèŽãèæ ®ããŸãã-äžè¬çãªãã®ããããçããã®ãŸã§ïŒæåŸã®ã¬ãã«ã«ã¯194åã®ã«ããŽãªãå«ãŸããŸãïŒã åèšã§ããã¬ãŒãã³ã°ã»ããã«ã¯ã»ãŒ100äžã®ç»åããããããã¯ImageNetã®ãµã€ãºã«è¿ããã®ã§ãã
èªèã®å°é£ ã ãã¬ããšè»ãåºå¥ããè»ãšéŽãåºå¥ããæ¹æ³ãåŠã¶å¿ èŠãããããã«æããŸãã ããããããšãã°ããã€ã®ãªã¹ã®ç«ããšããã«ããŽãªãããããä»ã®ç«ããããããããã®äžã«ã¯éåžžã«ãã䌌ãç»åããããŸã-ããã§ãããããäºãã«åºå¥ããããšã¯ã§ããŸãã ã¿ã€ã€ããã€ãŒã«ããã€ãŒã«ã¯ã©ãã§ããïŒ ããã§ã¯ã人éã¯å¯ŸåŠã§ããŸããã ææãããé£ããã¯ããã¹ãŠã®åå è ã®çµæã®ç¹å®ã®å¶éã®åºçŸã®çç±ã§ãã
ãªãœãŒã¹ãšãã¬ãŒã ã¯ãŒã¯ ã 匷åãªã°ã©ãã£ãã¯ã«ãŒããåãã3å°ã®ã³ã³ãã¥ãŒã¿ãŒãèªç±ã«äœ¿çšã§ããŸãããMIPTã®ç 究æãæäŸããããŒã ã³ã³ãã¥ãŒã¿ãŒãšè·å Žã®ã³ã³ãã¥ãŒã¿ãŒã§ãã ãã®ãããè€æ°ã®ãããã¯ãŒã¯ãåæã«ãã¬ãŒãã³ã°ããããšãå¯èœã§ããïŒãããŠå¿ èŠã§ããïŒã MXNetã¯ãæåãªXGBoostãæžããåã人ãã¡ã«ãã£ãŠäœæãããããã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããããã®ã¡ã€ã³ãã¬ãŒã ã¯ãŒã¯ãšããŠéžã°ããŸããã ããã ãã§ããæ°è£œåãä¿¡é Œããæ©äŒãšãªããŸããã MXNetã®å©ç¹ã¯ãæšæºã®æ¡åŒµæ©èœãåããå¹ççãªã€ãã¬ãŒã¿ãŒãããã«å©çšã§ããããšã§ããããã¯ã»ãšãã©ã®ã¿ã¹ã¯ã«ååã§ãã
ãããã¯ãŒã¯ã¢ãŒããã¯ã㣠ã éå»ã®ã³ã³ãã¹ãã®1ã€ã«åå ããçµéšãããInceptionã·ãªãŒãºã®ã¢ãŒããã¯ãã£ãæé«ã®å質ã瀺ããŠããããšãããããŸããã ããã§äœ¿çšããŸããã GoogLeNetã¯ãã¢ãã«ã®ãã¬ãŒãã³ã°ãå éããããã ãããã®æ£èŠåãè¿œå ããŸããã ãŸãã Model Zooã¢ãã«ã®ã¢ãã«ã® Inception-v3ããã³Inception BNã¢ãŒããã¯ãã£ã䜿çšãããŸãããããã«ã¯ãæåŸã«å®å šã«æ¥ç¶ãããã¬ã€ã€ãŒã®åã«ããããã¢ãŠããè¿œå ãããŸããã æè¡çãªåé¡ã«ããã確ççåŸé éäžã䜿çšããŠãããã¯ãŒã¯ããã¬ãŒãã³ã°ããããšã¯ã§ããªãã£ããããAdamã¯ãªããã£ãã€ã¶ãŒãšããŠäœ¿çšãããŸããã
ããŒã¿å¢åŒ· ã ãããã¯ãŒã¯ã®å質ãåäžãããããã«ãããŒã¿ã®å€æ§æ§ãé«ããããã«ãæªãã ç»åããµã³ãã«ã«è¿œå ãããšããæ¡åŒµæ©èœã䜿çšãããŸããã åçã®èª€ã£ãåãåããåå°ãå°ããªè§åºŠã§ã®å転ãã¢ã¹ãã¯ãæ¯ã®å€æŽãã·ãããªã©ã®å€æãå«ãŸããŠããŸããã
åŠç¿ã®æ£ç¢ºããšé床 ã æåã¯ãµã³ãã«ã3ã€ã®éšåã«åå²ããŸããããã¢ãã«ãæ··åããããã®æ€èšŒæé ã®1ã€ãæŸæ£ããŸããã ãããã£ãŠããã®åŸããµã³ãã«ã®2çªç®ã®éšåããã¬ãŒãã³ã°ã»ããã«è¿œå ããããããã¯ãŒã¯ã®å質ãåäžããŸããã ããã«ãGoogLeNetã¯å ã Titan Xã«æ¯ã¹ãŠã¡ã¢ãªãååã®Titan Blackã§ãã¬ãŒãã³ã°ãããŠããããããã®ãããã¯ãŒã¯ã¯å€§ããªããããµã€ãºã§åãã¬ãŒãã³ã°ããã粟床ãåäžããŸããã ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°æéãèŠããšãéãããæéã®æ¡ä»¶äžã§ã¯ãInception-v3ã䜿çšããªãã§ãã ãããä»ã®2ã€ã®ã¢ãŒããã¯ãã£ã§ã¯ããã¬ãŒãã³ã°ãã¯ããã«é«éã«ãªãããã§ãã çç±ã¯ãã©ã¡ãŒã¿ãŒã®æ°ã§ãã Inception BNã¯æãæ©ãåŠç¿ã§ããŸãã
äºæž¬ãã ã
èªåè»ãã©ã³ããšã®ç«¶äºã§ã®ãŠãŒãžã³ã®ããã«ãã¢ãŒãµãŒã¯äœç©ã®äºæž¬ã䜿çšããŸãã-10ã®ã»ã¯ã·ã§ã³ã§ã¯ãªã24ã§ãã»ã¯ã·ã§ã³ã¯ã³ãŒããŒããã®åå°ãäžå¿ãäžå¿éšã®å転ãããã«10ã®ã©ã³ãã ãªãã®ã§ããã
åæ代ã®åŸã«ãããã¯ãŒã¯ã®ç¶æ ãä¿åãããšãæçµçãªãããã¯ãŒã¯ã ãã§ãªããããŸããŸãªã¢ãã«ãäœæãããŸãã 競äºã®çµãããŸã§ã®æ®ãã®æéãèãããšã11ã¢ãã«æ代ã®äºæž¬ã䜿çšã§ããŸãããããã¯ãŒã¯ã䜿çšããäºæž¬ã®æ§ç¯ãéåžžã«é·ãç¶ãããã§ãã ãããã®äºæž¬ã¯ãã¹ãŠã次ã®ã¹ããŒã ã«åŸã£ãŠå¹³ååãããŸããããŸããäœç©ã°ã«ãŒãå ã®ç®è¡å¹³åã䜿çšãã次ã«æ€èšŒã»ããã§éžæãããéã¿ä»ãã®å¹Ÿäœå¹³åã䜿çšããŸããã , . .
. , . , . , . , , .
vs. fine-tuning . , , . .
Black Box Challenge, , «». , «» . «», . â reinforcement learning.
5vision. .
. «», . , , , . . 36 . . â .
. , 35 36- . -: , . , : . , , 100 , . « » . - , 36- . , , 36- , â , . , .
Q-learning . . q-learning. Q, . Q , «» . «» , , . . , . . q-learning ( , ). , , , , q-learning .
black box . , n-step q-learning, , n . , â , - . , q- , « 3». , .
. : ( ) , , q- â . , q- . â replay memory ( , ) , , â .
. ( ) . . ( Q-) . , -: Ì , . , .
. , . , ( , ), , dueling- ( ) . - â , , .
. 5vision , «».
, ?
. â , ( ) â 60-80 . : , - . , , . , , , .
, : , . , . , , YouTube- . , -, , . , â .
以äžã§ãã , , , - , , â , data scientist. devops, , , . â , - .
, :
- ããªããåå¿è ã§ã¯ãªããçæéã§äž»èŠãªãããã¯ãããã³ãã³ã°ããããå Žåã¯ãCourseraã®Yandexã³ãŒã¹ãIntroduction to Machine Learningããåè¬ããŠãã ããã
- äž»é¡ãç 究ããã人ã¯ãåŸã ã«ãæ©æ¢°åŠç¿ãšããŒã¿åæãã«ç¹åããã§ãããã
- ãªãŒãã³ããŒã¿ãµã€ãšã³ã¹ã³ãã¥ããã£ïŒïŒmltrainings_beginnersãïŒmltrainings_liveãã£ãã«ïŒã