
éšåçžé¢ãšæ¡ä»¶ä»ãç¬ç«
察æ°ç·åœ¢ã¢ãã«ãšãã«ã³ããããã¯ãŒã¯ãæ±ã£ã以åã®èšäºã®1ã€ã§ ãç·ã®éŽã®ãµã€ãºãšåœŒã®æ°åŠçèœåãšã®é¢ä¿ã«ã€ããŠã®ã³ããã¯äŸãæ€èšãããŸããã çµ±èšãã¹ãã§ã¯ãååãšããŠãéŽã®ãµã€ãºã倧ãã人ã»ã©æ°åŠçãªèœåãé«ãããšã瀺åãããŠããŸãã
å®éã®äŸãèããŠã¿ãŸããã-2005幎ã®èª¿æ»ããšãŒãããã®é¡§å®¢ã®ã¢ãã€ã«ãµãŒãã¹åžå Žã«å¯Ÿããæºè¶³åºŠã®ææšãã ããŒã¿ã¯ãç°å¢Rã®semPLSããã±ãŒãžã§äœ¿çšã§ããŸããå調æ»å€æ°ã¯ã1ã10ã®ã¹ã±ãŒã«ã§è©äŸ¡ãè¡šããŸãããããã®ããŒã¿ã®ãã¡ã3ã€ã®å€æ°ã®ã¿ãèæ ®ããŸãã ãµãŒãã¹æéã®åŠ¥åœæ§ã®è©äŸ¡ïŒå ¬æ£äŸ¡æ ŒïŒ; ã¢ãã€ã«ãªãã¬ãŒã¿ãŒãæäŸãããµãŒãã¹ã®å質ã®è©äŸ¡ïŒå šäœçãªå質ïŒã ãããã®å€æ°ã®èª¿æ»çµæã®æŠèŠã以äžã«ç€ºããŸãã

å€æ°RecommendationãšFair Priceã®éã®é¢é£åºŠãè©äŸ¡ããããã«ãã¹ãã¢ãã³çžé¢ä¿æ°ã䜿çšããŸãã ããªã倧ããããšãããããŸããã

éèšå ã®3ã€ã®å€æ°ãã¹ãŠãæ€èšãããããã®åçžé¢-3çªç®ã®å€æ°ã®åœ±é¿ãèæ ®ã«å ¥ãããã¢ã¯ã€ãºçžé¢ä¿æ°ãèŠã€ãããšãçµæã¯ç°ãªããŸãã

å šäœå質å€æ°ã®åœ±é¿ãèæ ®ãããæšå¥šå€æ°ãšé©æ£äŸ¡æ Œå€æ°ãšã®çžé¢ä¿æ°ã¯éåžžã«å°ããããšãå€æããããšã«æ³šæããŠãã ããã 0.4ã«çãããããã®å€æ°éã®ãã¢çžé¢ã¯ããããã®éã®éšåçžé¢ã®å Žåã0.02ã«æžå°ããŸããã
äžèšã§åŸãããè¡åã¯ãéšåçžé¢ä¿æ°ã«çãããšããžã®éã¿ãæã€æ¬¡ã®ã°ã©ãã決å®ããŸã

ããã...
ããããã©ã³ãã å€æ°éã®ãŒãïŒãŸãã¯ãŒãã«è¿ãïŒåçžé¢ä¿æ°ã¯ãäžè¬çãªå Žåããããã®ã©ã³ãã å€æ°ãæ¡ä»¶ä»ãã§ç¬ç«ããŠããããšã瀺ããŠããŸããã ããã«ããããããããã®ããããã£ã¯å€æ¬¡å ã®æ£èŠååžç¢ºçå€æ°ã«å¯ŸããŠæå¹ã§ãã ã€ãŸããååžããã®2ã€ã®1次å 確çå€æ°



äžèšã®ã¢ãã€ã«ãããã€ããŒã®ãµãŒãã¹ã®æšå®å€ã«é¢ãã調æ»ããŒã¿ã¯ã3次å ã®æ£èŠååžç¢ºçå€æ°ã®ãµã³ãã«ãšã¯èŠãªãããŸããã åçžé¢ä¿æ°ãèæ ®ããŠããã®ãããªããŒã¿ã®ã°ã©ãã£ã«ã«ã¢ãã«ãæ§ç¯ããããšã¯å¯èœã§ããïŒ çãã¯ã€ãšã¹ã§ãã ãããã®ç®çã«ã¯ãã¬ãŠã¹ã³ãã¥ã©ã«ããã¢ããªã³ã°ãé©ããŠããŸãã
ã³ãã¥ã©ã«ã€ããŠå°ã
ã¬ãŠã¹åã³ãã¥ã©ã«ã€ããŠè©±ãåã«ãäžè¬çãªæ§é ã«ã€ããŠå°ã説æããŸãã ããã€ãã®å€æ°ïŒã©ã³ãã å€æ°ïŒã®éå芳枬å€ã®ã»ããããããšããŸãã ãããã®åã©ã³ãã å€æ°ã®ååžé¢æ°ã¯ãããããäžæ¬¡å ã®åšèŸºååžã§ãããå€æ°éã®é¢ä¿ã«ã€ããŠã¯äœãèšåããŠããŸããã ãã®æ å ±ã¯ãã©ã³ãã å€æ°ã®å ±åååžã«ãã£ãŠæ±ºå®ãããŸãã
ã³ãã¥ã©ã¯ãã©ã³ãã å€æ°ã®çµåååžãšãã®åšèŸºååžããªã³ã¯ããé¢æ°ã§ãïŒä»¥éã1次å åšèŸºååžã®ã¿ãæ瀺ãããŸãïŒã ãã·ã¢èªã®æ£ç¢ºãªå®çŸ©ã¯[1]ã«ãããŸãã ã³ãã¥ã©ã®é åã¯äœã§ããïŒ [1]ãåŒçšããŸãïŒãCopulaé¢æ°ã¯ãã©ã³ãã ãã¯ãã«ã®ååžã®èšè¿°ããã³ã³ããŒãã³ãã®éšåååžãšäŸåé¢ä¿ã®æ§é ã®2ã€ã®éšåã«åå²ããããšãå¯èœã«ããŸããã
ã³ãã¥ã©ã®åšèŸºååžã®äžéšãé¢æ£çã§ããå Žåããã®ãããªã³ãã¥ã©ã®è©äŸ¡ã«ã¯ç¹å®ã®å°é£ããããŸãã ãã®ç¶æ³ã®çç±ã¯ã kåã®åšèŸºç¢ºçå€æ°ã®å€ã®é åãšã³ãã¥ã©ã®å®çŸ©ã®é åïŒãã€ããŒãã¥ãŒãïŒã®éã«1察1ã®å¯Ÿå¿ããªãããšã§ãã

ã¬ãŠã¹åã³ãã¥ã©
ã¬ãŠã¹ã³ãã¥ã©ã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã

ã©ãã§







èšäº[3]ã§ã¯ãé£ç¶ããã³é¢æ£ã®åšèŸºç¢ºçå€æ°ã®äž¡æ¹ãæã€ã¬ãŠã¹ã³ãã¥ã©ã®ããã€ãã®äŸã詳现ã«æ€èšãããŸããã äžè¬ã«ãã¬ãŠã¹ã³ãã¥ã©ã¯ããã«ã³ããããã¯ãŒã¯çšã®ããŒã«ã®ã³ã³ããã¹ãã®ã¿ã§äœ¿çšãããã¹ãã§ã¯ãããŸããã ããããŒãšã¹ãã¹ã®ç 究ãããããããã«ããããã¯è³Œè²·æŽ»åã®ã¢ãã«ãæ§ç¯ããã¡ãã£ã¢ã§ã®åºåãã£ã³ããŒã³ã®ååžååžãšã©ã³ãã å€æ°ã®å ±åååžã®ããã®ä»ã®å€ãã®ã¢ãã«ãèŠã€ããæ¹æ³ã§ããããŸãã Rã³ãŒãã䜿çšãããããã®äŸã®1ã€ã®åæã¯ã以äžã®ãã¿ãã¬ã®äžã«ãããŸãã
é衚瀺ã®ããã¹ã
èšäº[3]ããã®ç°¡åãªäŸãèããŠã¿ãŸããã-éå»4åã®ã¹ãŒããŒããŒã±ãããžã®èšªåã«ãããåµãšããŒã³ã³ã®è³Œå
¥é »åºŠã«é¢ãã調æ»ã å
¥åããŒã¿ãã¢ãã«åããã¬ãŠã¹ã³ãã¥ã©ã®ãã©ã¡ãŒã¿ãŒãæšå®ããæ¹æ³ã¯ã以äžã®ã³ãŒãã«èšèŒãããŠããŸããããã®èšäºã§ææ¡ãããŠããæ¹æ³ãšã¯ç°ãªããŸãã ããã§ã¯ã次ã®ã»ã¯ã·ã§ã³ã§èª¬æããHoffã©ã³ã¯æ³ã䜿çšããŸãã ã¿ã¹ã¯ã¯ãåµãšããŒã³ã³ã®è³Œå
¥æ°ã®å
±åååžã«é¢ããå
¥åããŒã¿ã«åŸã£ãŠããã®å
±åååžãã¢ãã«åããé¢æ°-ã¬ãŠã¹ã³ãã¥ã©ãæ§ç¯ããããšã§ãã
åµãšããŒã³ã³ã®è³Œå ¥æ°ã®éã«ååã«å€§ããªæ£ã®çžé¢ä¿æ°ãåŸãããŸãã å ã®æ°å€ãšã¬ãŠã¹ã³ãã¥ã©ãã¢ãã«åããŠåŸãããçµæãæ¯èŒããŸã
äžã®å³ã®å·ŠåŽã®è¡šã¯ã顧客調æ»ã®çµæãå«ãå ¥åããŒã¿ã§ãã å³åŽã®è¡šã¯ãå ¥åããŒã¿ãã¬ãŠã¹ã³ãã¥ã©ã§ã¢ãã«åããçµæã瀺ããŠããŸãã ããšãã°ã調æ»å¯Ÿè±¡ã®548人ã®åçè ã®ãã¡ã16人ïŒ2.9ïŒ ïŒãããŒã³ã³ã1åè³Œå ¥ããåµã2åè³Œå ¥ããŸããã ãã®ã¢ãã«ã§ã¯ããã®ãããªé¡§å®¢ã®æ°ã15.18ïŒ2.8ïŒ ïŒãšæšå®ããŠããŸãã
ã¢ã¶ã€ã¯ããŒãã«ãã£ãŒã
require(MM) # to load the example data data(danaher) # define data sample corresponding to the contingency table df.danaher<-data.frame( bacon=rep(0:4,rowSums(danaher)), eggs=unlist(apply( danaher, 1, function(x) rep(0:4, x) )) ) # fit the gaussian copula require(sbgcop) fit <- sbgcop.mcmc(df.danaher, nsamp = 5000, odens = 1, seed = 1, verb = F) # estimate the correlation matrix burn.in <- 500 Sigma <- apply(fit$C.psamp[,,-c(1:burn.in)], c(1,2), median) # find the fitted results n <- nrow(danaher) N <- sum(danaher) eggs.cum.sum <- cumsum( colSums(danaher)/N ) bacon.cum.sum <- cumsum( rowSums(danaher)/N ) eggs.norm.limits <- qnorm( c(0, eggs.cum.sum) ) bacon.norm.limits <- qnorm( c(0, bacon.cum.sum) ) lower.limits <- as.matrix( expand.grid(head(eggs.norm.limits, n), head(bacon.norm.limits, n)) ) upper.limits <- as.matrix( expand.grid(tail(eggs.norm.limits, n), tail(bacon.norm.limits, n)) ) require(mvtnorm) # to the distribution function of the multivariate normal distribution fitted.results <- sapply(1:n^2, function(i) pmvnorm(lower.limits[i,], upper.limits[i,], corr = Sigma)*N) fitted.results <- matrix(fitted.results, nrow = 5, byrow = T) dimnames(fitted.results) <- list(bacon = as.character(0:4), eggs = as.character(0:4)) # Estimated correlation matrix of the gaussian copula Sigma # Input data danaher # Fitted results fitted.results # Mosaic plots of the input data and fitted results par(mfrow = c(1,2)) mosaicplot(t(danaher), main = "Input data", color = "royalblue") mosaicplot(t(fitted.results), main = "Fitted results", color = "royalblue")
çµæïŒ

åµãšããŒã³ã³ã®è³Œå ¥æ°ã®éã«ååã«å€§ããªæ£ã®çžé¢ä¿æ°ãåŸãããŸãã å ã®æ°å€ãšã¬ãŠã¹ã³ãã¥ã©ãã¢ãã«åããŠåŸãããçµæãæ¯èŒããŸã

äžã®å³ã®å·ŠåŽã®è¡šã¯ã顧客調æ»ã®çµæãå«ãå ¥åããŒã¿ã§ãã å³åŽã®è¡šã¯ãå ¥åããŒã¿ãã¬ãŠã¹ã³ãã¥ã©ã§ã¢ãã«åããçµæã瀺ããŠããŸãã ããšãã°ã調æ»å¯Ÿè±¡ã®548人ã®åçè ã®ãã¡ã16人ïŒ2.9ïŒ ïŒãããŒã³ã³ã1åè³Œå ¥ããåµã2åè³Œå ¥ããŸããã ãã®ã¢ãã«ã§ã¯ããã®ãããªé¡§å®¢ã®æ°ã15.18ïŒ2.8ïŒ ïŒãšæšå®ããŠããŸãã
ã¢ã¶ã€ã¯ããŒãã«ãã£ãŒã

ã¬ãŠã¹åã³ãã¥ã©ã®ã°ã©ãã£ãã¯ã¢ãã«ã®ãã©ã¡ãŒã¿ãŒã®æšå®
GCGMãã©ã¡ãŒã¿ãæšå®ããåé¡ã¯ãæ¡ä»¶ä»ãã§2ã€ã®éšåã«åããããšãã§ããŸã-ã¬ãŠã¹ã³ãã¥ã©ã®çžé¢è¡åãæ€çŽ¢ããããããã¹ããŒã¹è¡åãååŸããŠã°ã©ã衚瀺ããŸãã以åãšåæ§ã«ããã®æ¹æ³ã¯èª¿æ»ããŒã¿ã«é©çšããããšèããŸãã ãã®ãããªããŒã¿ã®ç¹åŸŽã®1ã€ã¯ãéã¿ã®äœ¿çšã§ãã ãããã£ãŠãäžè¬çãªã±ãŒã¹ã§ã¯ãã¢ãã«ãã©ã¡ãŒã¿ãŒãæšå®ãããšãã«ãµã³ãã«ã®éã¿ãèæ ®ããå¿ èŠããããŸãã
ã¬ãŠã¹ã³ãã¥ã©ã®çžé¢è¡åã®æšå®
é¢æ£ïŒãŸãã¯é¢æ£ããã³é£ç¶ïŒåšèŸºååžããã€ã¬ãŠã¹ã³ãã¥ã©ãè©äŸ¡ããã«ã¯ãããã€ãã®æ¹æ³ããããŸãã ãããã®1ã€ã¯[4]ã§Hoffã«ãã£ãŠææ¡ãããsbgcopã©ã€ãã©ãªRã§å®è£ ãããŸããã ãã®ã¢ã«ãŽãªãºã ã¯ãã©ã³ã¯åšèŸºã®çµéšçååžé¢æ°ã決å®ãããšãã«ãµã³ãã«ã®éã¿ãèæ ®ããŠãéã¿ä»ãããŒã¿ã«é©åãããããšãã§ããŸãã
ã¬ãŠã¹ã³ãã¥ã©ã®ã°ã©ãã£ã«ã«ã¢ãã«ã®ã¹ããŒã¹è¡åã®ååŸ
éžæã®äœå°ããããŸãã ã¬ãŠã¹ã³ãã¥ã©ã®çžé¢è¡åãåŸããããšãèšäº[5]ã«åºã¥ããå€å žçãªã°ã©ãœã©ã€ãã©ãªã¢ã«ãŽãªãºã ã䜿çšã§ããŸãã å¥ã®ã¢ãããŒãã[6]ã§ææ¡ãããèè ã«ãã£ãŠRã©ã€ãã©ãªBDgraphã§å®è£ ãããŸããã ãã®æ¹æ³ã«ã¯ãã¢ã«ãŽãªãºã ã®å埩ã®åã¹ãããã§ã®ã¬ãŠã¹ã³ãã¥ã©ã®çžé¢è¡åãšã°ã©ãã£ãã¯ã¢ãã«ã®ã¹ããŒã¹è¡åã®äž¡æ¹ã®è¡åã®å ±åè©äŸ¡ãå«ãŸããŸãã
sbgcopïŒv.0.975ïŒããã³BDgraphïŒv.2.27ïŒã©ã€ãã©ãªã«é¢ããã³ã¡ã³ã
æåã®ã©ã€ãã©ãªã¯å®å šã«Rã§èšè¿°ãããŠããããã¹ããããforã«ãŒããããã€ãå«ãŸããŠããŸãã ã€ãŸããèšç®ã¯éå¹ççã«ç·šæãããŸãã ãŸããåãæšãŠãããæ£èŠååžããã®ãµã³ããªã³ã°ã¯ãæ°å€çã«äžå®å®ã«ãªããŸãïŒéå€ææ³ã䜿çšïŒã ç¹å®ã®æ¡ä»¶äžã§ã¯ããµã³ããªã³ã°ãããå€Infã®ä»£ããã«ãå®éã®ã¢ããªã±ãŒã·ã§ã³ã§ã¯éåžžã«å¯èœæ§ãé«ãã§ãã
2çªç®ã®ã©ã€ãã©ãªã®ã»ãšãã©ã¯C ++ã§èšè¿°ãããŠãããç¹ã«ãsbgcopããã®forã«ãŒãããã¹ãŠè»¢éãããŠããŸãã ç·åœ¢ä»£æ°ã¯Fortranã䜿çšããŠèšè¿°ãããŠããŸãã åãæšãŠãããæ£èŠååžããã®ãµã³ããªã³ã°ã®åé¡ãããã®ããã±ãŒãžã«é¢é£ããŠããŸãã
GCGMã®äŸ
ã¬ãŠã¹ã³ãã¥ã©ã«åºã¥ãã°ã©ãã£ãã¯ã¢ãã«ã¯ãããŒã±ãã£ã³ã°ã瀟äŒåŠãçç©åŠããã®ä»å€ãã®ããŸããŸãªããŒã¿ã§äœ¿çšã§ããŸãã ããã§ã¯ã2012幎ã®æ¬§å·ç€ŸäŒèª¿æ»-ESSã©ãŠã³ã6欧å·ç€ŸäŒèª¿æ»ã©ãŠã³ã6ããŒã¿ïŒããŒã¿ãã¡ã€ã«ãšãã£ã·ã§ã³2.2ïŒã®ããŒã¿ãåç §ããŸãããããã¯èªç±ã«å©çšã§ããŸãïŒ ãªã³ã¯ ïŒã ãããã®ããŒã¿ããããã·ã¢ããã®åçè ã®ã¿ãéžæããŸãã ãã®èª¿æ»ã®ãæ¿æ²»ããããã¯ã§ã¯ã以äžã®5ã€ã®è©äŸ¡çå€æããããŸããŸãªæ¿æ²»å£äœããã³æš©åæ©é¢ã«å¯Ÿããä¿¡é ŒåºŠã«ã€ããŠæ瀺ãããŠããŸãã

ã¹ã±ãŒã«ã®ç¯å²ã¯ã0 =ãŸã£ããä¿¡é ŒãããŠããªãç¶æ ãã10 =å®å šãªä¿¡é Œç¶æ ãŸã§ã§ãã
ãã®å€ã®ã»ããã次ã®4ã€ã®å€æ°ã§è£å®ããŸãã
- 4ã€ã®ã«ããŽãªïŒ1-ãŸã£ããé¢å¿ããªãã...ã4-éåžžã«é¢å¿ãããïŒãæã€ãæ¿æ²»ã«ã©ãã ãé¢å¿ãããããã
- ãæåŸã®ç·éžæã§æ祚ããŸãããïŒã2ã€ã®ã«ããŽãªïŒ1-ã¯ãã2-ãããïŒã§ã2011幎ã®ãã·ã¢é£éŠäžé¢éžæã§ã®æ祚ã«é¢ãã質åã
- ãæ§å¥ãïŒ1-ç·æ§ã2-女æ§ïŒ
- 11ã®ã«ããŽãªã®ãæè²ãïŒ1-ãã©ã€ããªãªãã...ã11-Ph.D.ïŒã
èæ ®ããããã¹ãŠã®è³ªåãžã®åçã«æ¬ æå€ããªã23æ³ä»¥äžã®åçè ãéžæããŸãã ãã®ã¢ãã«ã§ã¯ãç 究ãžã®åçè ã®äœé-èšèšäœéã䜿çšããŸãã
ã¢ãã«ã°ã©ããäœæããã«ã¯ãããã«äœ¿çšã§ãããœãªã¥ãŒã·ã§ã³ããããŸããåãååã®ã©ã€ãã©ãªã®qgraphé¢æ°ã¯ãéšåçžé¢è¡åã«ãã£ãŠæ±ºå®ãããã°ã©ãã£ãã¯ã¢ãã«ã®ã€ã¡ãŒãžãäœæããŸãã Rããã±ãŒãžvisNetworkïŒvis.jsã©ã€ãã©ãªJSã䜿çšïŒãšshinyã䜿çšããŠãããæè»ã§èŠèŠçãªãœãªã¥ãŒã·ã§ã³ãå®çŸã§ããŸãã æåã®ããã±ãŒãžã¯ã¢ãã«ã®ã°ã©ããäœæãã2çªç®ã®ããã±ãŒãžã¯ãã®å Žã§ã¢ãã«ã®çãã調æŽããæ©èœãè£å®ããŸãã
ç»åã¯ã¯ãªãã¯å¯èœã§ãããªã³ã¯ãã¯ãªãã¯ãããšãã¢ãã«ã°ã©ããå«ãhtmlãã¡ã€ã«ã衚瀺ãããŸãã
ããã§ãæ£èŠåãããã¹ããŒã·ãã£ã¬ãã«ã¯ãã°ã©ãã£ã«ã«ãªæãçžåé¡ã®ããã«ãã£é¢æ°ã«ãã£ãŠL1ã®åã®ä¿æ°å€ãæ åœããŸãïŒãããã®å€ã¯ãã¢ãã«ã°ã©ãã«ãšããžãå«ãŸããªãæå°ä¿æ°å€ã1ãšæ³å®ãããããã«æ£èŠåãããŸãïŒã 2çªç®ã®å¶åŸ¡ãã©ã¡ãŒã¿ãŒAbsolute Correlation Levelã¯ã絶察å€ã®åçžé¢ä¿æ°ãæå®å€ãããå°ããé ç¹éã®ãšããžãé衚瀺ã«ããŸãã
ã°ã©ããå«ãã°ã©ãã¯ãæ祚ãããé ç¹ïŒ1-æ祚ãããã2-ãããïŒãšæ¿æ²»ã«é¢å¿ã®ããïŒ1-ãŸã£ãããªãã...ã4-ééããªãïŒã®éã®ãšããžã®éã¿ã®å€ã匷調衚瀺ããŸãã -0.34ã«çãããã®å€ã¯ãæ¿æ²»ãžã®é¢å¿ãšéžæã§ã®æ祚æ欲ãšã®éã«ããªã匷ãé¢é£æ§ãããããšã瀺ããŠããŸãã
å¥ã®åçïŒ

ã¢ãã«ã¯äœã瀺ããŠããŸããïŒ
ãã®ã¢ãã«ã®æãéèŠãªéšåã¯ãææš©è ãšæ¿å ã®é ç¹ãçµã¶ãšããžã ãšæããŸãã ã°ã©ãã®2ã€ã®ã³ã³ããŒãã³ãã®ã¿ãæ¥ç¶ããéžæã§æ祚ãã決å®ã¯ãä¿¡é Œã®1ã€ã®å€æ°ã®ã¿ã«çŽæ¥äŸåããŸããæ¿å ãžã®ä¿¡é Œã§ãã ä»ã®ãã¹ãŠã®ä¿¡é Œå€æ°ã¯ãæ祚ãããå€æ°ãšæ¡ä»¶ä»ãã§ç¬ç«ããŠããŸãã ãããã£ãŠãèæ ®ãããå€æ°ã®äžã§ããã®æã¯åžæ°ãšåœå®¶ã®çžäºäœçšã®éèŠãªèŠå ã§ãã
GCGMãæ§ç¯ããããã®å€æ°ã®éžæ
ãã¹ãŠã®å Žåã«ãããŠãã¢ãã«ãæ§ç¯ããããã®äžé£ã®å€æ°ã®ã¢ããªãªãªãªéžæãããããã§ã¯ãããŸããã ç¹å®ã®å€æ°ãå«ãŸããã°ã©ãã«GCGMãäœæããããšãéèŠãªå Žåãåæã®ããã«ã©ã®è¿œå å€æ°ãéžæããå¿ èŠããããŸããïŒ
GCGMã®å ¥åå€æ°ãå€ããããšã2ã€ã®åé¡ãçºçããŸãã ãŸããé¢æ£ããŒã¿ã®ã¬ãŠã¹ã³ãã¥ã©ã®ãã©ã¡ãŒã¿ãŒãèŠã€ããã®ã¯é¢åãªèšç®ããã»ã¹ã§ãã 蚱容æéå ã«å€æ°ã®å€æ°ã®åé¡ã解決ããã©ãããããã®èœåã§ã¯ååã§ã¯ãããŸããã 第äºã«ãã¹ããŒã¹ã§ã¯ããããå€æ°ã®å€æ°ãæã€ã°ã©ããç解ããããšã¯å°é£ã§ãïŒããšãã°ãæ€èšäžã®åé¡ã®ã³ã³ããã¹ãã§å®å šã«èå³ã®ãªãå€æ°ã®åŒ·ãã€ãªããã¯ãå¹²æžãããå¯èœæ§ããããŸãïŒã
ç¹å®ã®å€æ°ã«å¯ŸããŠGCGMã§å€æ°ãéžæããåé¡ã®é©åãªè§£æ±ºçã¯ãçžäºæ å ±ã®æå°ããªãŒïŒChow-LiuããªãŒïŒãæ§ç¯ããããšã§ãã ããã¯ç°¡åãªã¢ã«ãŽãªãºã ã§ããããã®åºçç©ã®èª¬æã¯ç§ã®èšç»ã«ã¯å«ãŸããŠããŸããã 詳现ã¯èšäº[7]ã«èšèŒãããŠããŸãã 倧ãŸãã«èšã£ãŠãChow-LiuããªãŒã®æ§é çç¹æ§ã¯æ¬¡ã®ãšããã§ãããã®ããªãŒã®2ã€ã®ããŒã¯ãè¿ãã»ã©ããããäŸåãããŠããŸãã ãããã£ãŠãããªãŒå ã§ã¿ãŒã²ããå€æ°ãèŠã€ããååŸã決å®ãããã®ããªãŒã®ãã¹ãŠã®é©åãªé ç¹ãéžæããŸãã 以äžã®äŸã¯ãã¿ãŒã²ããå€æ°ããã·ã¢ã§ã¯ãæ¿å ã¯ææš©è ã«çã«ç°ãªãããã°ã©ã ãæäŸããŸããã«å¯ŸããŠã0ãã10ãŸã§ã®å¿çã¹ã±ãŒã«ã§æ§ç¯ãããŠããŸãããµã³ãã«ããªãŒã¯NetworkD3ã©ã€ãã©ãªRã䜿çšããŠæ§ç¯ãããŸããïŒäžé£ã®d3.jsãã£ãŒããäœæããŸãïŒã
ç»åã¯ã¯ãªãã¯å¯èœã§ããªã³ã¯ã¯htmlãã¡ã€ã«ã«ã€ãªãããŸãã
ãŸãšã
å€æ°ã®äºåéžæã®ããã®ã¢ã«ãŽãªãºã ã«ãã£ãŠè£å®ãããGCGMã¡ãœããã䜿çšãããšãããŒã¿å ã®äŸåé¢ä¿ã®æ§é ãè¿ éãç°¡åãã€ææ矩ã«åæãããããã®éèŠãªé¢ä¿ã匷調ã§ããŸãã
æåŠ
[1] D. FantazziniïŒ2011ïŒã³ãã¥ã©é¢æ°ã䜿çšããå€æ¬¡å ååžã®ã¢ããªã³ã°ã IãApplied Econometricsã2ïŒ22ïŒã98-134ã
[2] C. Genest and J.NeÅ¡lehováïŒ2007ïŒã«ãŠã³ãããŒã¿ã®ã³ãã¥ã©ã®å ¥éãASTIN Bulletinã37ïŒ2ïŒãppã 475-515ã
[3] PJ Danaher and MS SmithïŒ2011ïŒã³ãã¥ã©ã䜿çšããå€å€éååžã®ã¢ããªã³ã°ïŒApplications in MarketingãMarketing Science 30ïŒ1ïŒãppã 4-21ã
[4] PD HoffïŒ2007ïŒã»ããã©ã¡ããªãã¯ã³ãã¥ã©æšå®ã®ã©ã³ã¯å°€åºŠã®æ¡åŒµãAnnã é©çš çµ±èšã1ãppã 265-283ã
[5] J.ããªãŒããã³ãTããã€ã¹ãã£ãããã³R.ãã£ãã·ã©ãŒãïŒ2008ïŒæãçžã«ããã¹ããŒã¹éå ±åæ£æšå®ãBiostatisticsã9ïŒ3ïŒãppã 432â441
[6] A. Mohammadi and EC WitïŒ2015ïŒã¹ããŒã¹ã¬ãŠã¹ã°ã©ãã£ã«ã«ã¢ãã«ã§ã®ãã€ãžã¢ã³æ§é åŠç¿ããã€ãžã¢ã³ã¢ãã«ã 10ïŒ1ïŒãppã 109-138ã
[7] D.ãšãã¯ãŒãºãGCG de Abreuããã³R. LabouriauïŒ2010ïŒã æå°éã®AICãŸãã¯BICãã©ã¬ã¹ãã䜿çšããé«æ¬¡å ã®æ··åã°ã©ãã£ã«ã«ã¢ãã«ã®éžæã BMC Bioinformaticsã11ïŒ18ã
UPDïŒã¬ãŠã¹ã°ã©ãã£ã«ã«ã¢ãã«ã¯åé¡ã®ããŒã¿ãè¡šçŸããã®ã«é©ããŠããªããã€ãŸããéšåçžé¢ãšæ¡ä»¶ä»ãç¬ç«æ§ãã®æ®µèœã®æåŸã®æ®µèœã§ãããšèšã£ãŠããå°ããªããã¹ããæ¬ èœããŠããŸããã