ç¥çµå¯å¡æ§
ãŸããå®çŸ©ãæ€èšããŸãã ç¥çµå¯å¡æ§ã¯ãçµéšã®åœ±é¿äžãŸãã¯æå·åŸã«å€åããè³ã®ç¹æ§ã§ãã å€æŽã«ã¯ã ã·ããã¹æ¥ç¶ã®äœæãšæ°ãããã¥ãŒãã³ã®äœæã®äž¡æ¹ãå«ãŸããŸãã æ¯èŒçæè¿ãŸã§ã20äžçŽã®70幎代ãŸã§ãè³ã®äžéšãç¹ã«æ°ç®è³ª ïŒããã¯ããã¹ãŠã®éåèœåãèšèªãæèãªã©ïŒããäžå®ã®æé·æéåŸã«éæ¢ãããŸãŸã§ããã調æŽããã§ããªããšèããããŠããŸãããã¥ãŒãã³éã®æ¥ç¶ã®åŒ·ãã ããããåŸã«ãã詳现ãªç 究ã«ãããè³å šäœã®ç¥çµå¯å¡æ§ã®ååšã確èªãããŸããã çããããªãã芧ã«ãªãããšããå§ãããŸãã
ç§ãã¡ã®è³ã®åãæ¬åœã«æããããã«ãç¥çµççåŠè ã®ããŒã«ã»ãããã»ãªã¿ã®å®éšãèŠãŠã¿ãŸãããã圌ã®ç 究ã¯ç§åŠçã«ããç¥çµå¯å¡æ§ã®èªèã«å€§ããªåœ±é¿ãäžããŸããã ç§åŠè ã®åæ©ã«åœ±é¿ãäžããéèŠãªèŠå ã¯ãç¶èŠªã麻çºãããšããäºå®ã§ããã å åŒã®ç©çåŠè ãšäžç·ã«ã圌ãã¯68æ³ãŸã§ã«ç¶èŠªãç«ã¡äžããããšãã§ããã®ã§ã圌ã¯æ¥µç«¯ãªã¹ããŒãã«åŸäºããããšããã§ããŸããã 圌ãã®æŽå²ã¯ãåŸå¹Žã«ãªã£ãŠã人éã®è³ã¯ãªãããªããŒã·ã§ã³ãå¯èœã§ããããšã瀺ããŠããŸãã ããããããã¯1969幎ã®çµéšã«å®å šã«ç°ãªã話ã§ãã ç®æšã¯æ·±å»ã§ãããèŠèŠé害è ïŒåºçæããïŒã«èŠãæ©äŒãäžããããšã§ãã ãããè¡ãããã«ãæ¯ç§çšæ€ åãåãã次ã®ããã«ååãä»ãããŸãããæ€ åã®é£ã«ãã¬ãã«ã¡ã©ã眮ãããããã¥ã¬ãŒã¿ãŒãæ€ åã«æã£ãŠããŠãã«ã¡ã©ã®ã¹ã±ãŒã«ãšäœçœ®ãå€æŽã§ããããã«ããŸããã 400ã®åºæ¿è£ 眮ãæ€ åã®åŸãã«åãä»ããããã°ãªããã圢æããŸãããã«ã¡ã©ããåä¿¡ããç»åã¯20 x 20ã®ãµã€ãºã«å§çž®ãããŸããã èŠéå€ã¯ãäºãã«12 mmã®è·é¢ã«é 眮ãããŸããã å°ããªåºæ¿è£ 眮ãååºæ¿è£ 眮ã«åãä»ããããåºæ¿è£ 眮ã®å éšã«ãããœã¬ãã€ãã«äŸçµŠãããé»æµã«æ¯äŸããŠæ¯åããŸããã
ãªã·ãã¹ã³ãŒãã䜿çšããŠãèŠéå€ã®æ¯åã«ãã£ãŠäœæãããç»åãèŠèŠåããããšãã§ããŸããã
1幎åŸãããŒã«ã¯èªåã®ã·ã¹ãã ã®ã¢ãã€ã«ããŒãžã§ã³ãéçºããŸããã
1970幎代ã®ã¢ãã€ã«ãã€ã¶ãŒ
ç·ã¯ããŽããã£ã«äŒŒãŠããŸãããããã¯åœŒã§ã¯ãããŸããã
æè¿ã§ã¯ã觊èŠä¿¡å·äŒéã®ä»£ããã«ãããææãªåšå®ã§ãããèšèªããéããçããçµè·¯ã䜿çšããŸãã 圌ããèšäºã§èšãããã«ãæ°æéã¯èšèªã®å容è ã«ãã£ãŠã€ã¡ãŒãžãç¥èŠãå§ããã®ã«ååã§ãã
çŸä»£ã®ãªãã·ã§ã³
圌ã¯éººãé£ã¹ããšæããŸããïŒ ããããããã圌ã¯èã§èŠãŸãã
ãããŠã圌ãããã®ãããªçºèŠãåçåããããšããããšã¯é©ãããšã§ã¯ãããŸãã ïŒ
ãããŠã圌ãããã®ãããªçºèŠãåçåããããšããããšã¯é©ãããšã§ã¯ãããŸãã ïŒ
ããã§ã¯ãã©ã®ããã«æ©èœããŸããïŒ åçŽãªèšèªïŒçç©åŠè ãç¥çµççåŠè ã§ã¯ãªããããŒã¿åæã®èšèªïŒã§è©±ãããšã§ããã¥ãŒãã³ã¯æšèãå¹ççã«æœåºããŠçµè«ãââåŒãåºãããã«èšç·ŽãããŸãã ããªãã¿ã®ä¿¡å·ãä»ã®ä¿¡å·ã«çœ®ãæãããšããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãã»ã³ãµãŒã«è¿ãã¬ã€ã€ãŒïŒç®ãèãè³ãªã©ïŒã§åªããäœã¬ãã«ã®ç¹åŸŽãæœåºããŸãïŒä»¥äžã«ç€ºãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã䜿çšãããšããããã¯ããŸããŸãªã°ã©ããŒã·ã§ã³é·ç§»ãŸãã¯ãã¿ãŒã³ã«ãªããŸãïŒ dãïŒã ããæ·±ãå±€ã¯ãããé«ãã¬ãã«ã®å±æ§ïŒãã€ãŒã«ããŠã£ã³ããŠïŒãæœåºããããšããŸãã ãããŠãããããé³å£°ä¿¡å·ã§è»ã®ãã€ãŒã«ãæ¢ããŠããããããèŠã€ããããªãã§ãããã æ®å¿µãªããããã¥ãŒãã³ãæœåºããå åã確èªããããšã¯ã§ããŸããããèšäºã ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã®èŠèŠåãšç解 ãã®ãããã§ãæ·±ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ãã£ãŠæœåºãããäœã¬ãã«ããã³é«ã¬ãã«ã®ç¹åŸŽãèŠãæ©äŒããããŸãã ãã¡ãããããã¯çç©åŠçãããã¯ãŒã¯ã§ã¯ãªããããããçŸå®ã®ãã¹ãŠãããã§ã¯ãããŸããã å°ãªããšããããã¯èšèªå容äœãèŠãããšãã§ããçç±ã®ããçš®ã®çŽæçãªç解ãæäŸããŸãã
ã¹ãã€ã©ãŒã®å€§ããªç»åã¯ãåç³ã¿èŸŒã¿å±€ã®ããã€ãã®ç¹åŸŽãšããããã掻æ§åããå ã®ç»åã®äžéšã瀺ããŠããŸãã ã芧ã®ããã«ãæ·±ããªãã»ã©ãèšå·ã¯æœè±¡çã§ã¯ãªããªããŸãã
å®å
šã«èšç·Žãããã¢ãã«ã®ç¹åŸŽã®å¯èŠå
ç°è²ã®åæ£æ¹åœ¢ã¯ããã£ã«ã¿ãŒïŒç³ã¿èŸŒã¿ã«äœ¿çšïŒãŸãã¯1ã€ã®ãã¥ãŒãã³ã®éã¿ã®èŠèŠåã«å¯Ÿå¿ããåã«ã©ãŒç»åã¯ã察å¿ãããã¥ãŒãã³ãã¢ã¯ãã£ãã«ããå
ã®ç»åã®éšåã§ãã ããããããããããã«ã1ã€ã®ã¬ã€ã€ãŒå
ã®ãã¥ãŒãã³ã¯ããŒãã°ã«ãŒãã«ã°ã«ãŒãåãããŠããŸãã
ã»ã³ãµãŒã亀æãããšãè³ã¯ãã¹ãŠã®ãã¥ãŒãã³ãå®å šã«åãã¬ãŒãã³ã°ããå¿ èŠã¯ãªããé«ã¬ãã«ã®ç¹åŸŽãæœåºãããã¥ãŒãã³ã®ã¿ãåãã¬ãŒãã³ã°ããã ãã§ååã§ãããæ®ãã¯ãã§ã«é«å質ã®ç¹åŸŽãæœåºã§ãããšæ³å®ã§ããŸãã å®è·µã§ã¯ãã»ãŒåãã§ããããšã瀺ãããŠããŸãã èã®äžã«ãã¬ãŒãã眮ããŠæ°æéæ©ããšãèã®å容äœã§é£ã¹ç©ã®å³ãæããèœåã倱ãããšãªããè³ãæ°ããã·ããã¹çµåãé€å»ããŠæé·ãããããšã¯ã»ãšãã©ãããŸããã
ãããŠã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æŽå²ãã©ã®ããã«å§ãŸã£ãããæãåºããŸãããã 1949幎ãããã«ãããã¯ã è¡åã®çµç¹ãšããæ¬ãåºçããŸããã ææ°ã®åŠç¿ã¢ã«ãŽãªãºã ããããã®ååããããã»ã©é ããªãããšã¯æ³šç®ã«å€ããŸãã
- é£æ¥ãããã¥ãŒãã³ãåæçã«æŽ»æ§åããããšããããã®éã®æ¥ç¶ã匷åãããŸãã
- é£æ¥ãããã¥ãŒãã³ãéåæã«ã¢ã¯ãã£ãåããããšããããã®éã®æ¥ç¶ã匱ãŸããŸã ïŒå®éãããã«ã¯ãã®ã«ãŒã«ããªããè¿œå ãšããŠåŸã§è¿œå ãããŸããïŒã
9幎åŸã ãã©ã³ã¯ããŒãŒã³ãã©ããã¯æåž«ãšäžç·ã«æããæåã®ã¢ãã«ã ããŒã»ãããã³ãäœæããŸãã ã æåã®äººå·¥ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äœæè ã¯ãæ®éçãªè¿äŒŒåšãäœæãããšããç®æšãè¿œæ±ããŸããã§ããã 圌ã¯ç¥çµççåŠè ã§ããã圌ã®ä»äºã¯äººéã®ããã«èšç·Žã§ããããã€ã¹ãäœæããããšã§ããã ãžã£ãŒããªã¹ããããŒã»ãããã³ã«ã€ããŠæžããŠãããã®ãèŠãŠãã ããã ç§èŠãããã¯çŽ æµã§ãïŒ
ãã¥ãŒãšãŒã¯ã¿ã€ã ã1958幎7æ8æ¥
...
...
ããŒã»ãããã³ã§ã¯ãããã®åŠç¿ã«ãŒã«ãå®è£ ãããŸããã ã芧ã®ãšãããã«ãŒã«ã®ã·ããã¹å¯å¡æ§ã¯ãã§ã«ããçšåºŠèæ ®ãããŠããŸãã ãããŠãååãšããŠã ãªã³ã©ã€ã³åŠç¿ã¯ããçšåºŠã®å¯å¡æ§ãäžããŸã-ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ç¶ç¶çãªããŒã¿ã¹ããªãŒã ã§çµ¶ããåèšç·Žã§ããããã«é¢é£ããäºæž¬ã¯ãããŒã¿ã®å€åãåžžã«èæ ®ããŠãæéãšãšãã«å€åããŸãã ããããæèŠçœ®æãç¥çµæ°çãªã©ãç¥çµå¯å¡æ§ã®ä»ã®åŽé¢ã«é¢ããæšå¥šäºé ã¯ãããŸããã ããããããã¯é©ãã¹ãããšã§ã¯ãããŸãããç¥çµå¯å¡æ§ãæ¡çšããããŸã§ãããã20幎以äžãæ®ããŸãã ANNã®ãã®åŸã®æŽå²ãèãããšãç§åŠè ãã¡ã¯ç¥çµå¯å¡æ§ãã·ãã¥ã¬ãŒãããããšã¯ã§ããŸããã§ããããåé¡ã¯åçã®çè«ã®åç¶ã«ã€ããŠã§ããã 2000幎代ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ¬¡ã®ã«ãããµã³ã¹ã®åŸãä»ã®ç§åŠè ã¯ã ãã³ãã³ ã ã«ã¯ã³ ã ãã³ãžãª ã ã·ã¥ããã ãã¥ãŒããŒãªã©ã®äººã ã®ãããã§ãæ©æ¢°åŠç¿ã«å æ¬çã«ã¢ãããŒããã転移åŠç¿ã®æŠå¿µã«å°éããæ©äŒãåŸãŸããã
転移åŠç¿
転移åŠç¿ã®ç®æšãå®çŸ©ããŸãã åãååã® 2009幎ã®åºçç©ã®èè ã¯ã3ã€ã®äž»ãªç®æšãç¹å®ããŠããŸãã
- ããé«ãéå§-ã¢ãã«ã®åæãã©ã¡ãŒã¿ãŒãŸãã¯ãã®ä»ã®äºåæ å ±ã®ãã培åºçãªéžæã«ãããåæå埩ã§æ¢ã«ãã¬ãŒãã³ã°ã®å質ãåäžãããŸãã
- ããé«ãåŸé -åŠç¿ã¢ã«ãŽãªãºã ã®åæã®å é;
- ããé«ã挞è¿ç·-éæå¯èœãªäžéå質ã®æ¹åã
ãªãŒããšã³ã³ãŒããŒãŸãã¯éå®çãªãã«ããã³ãã·ã³ã䜿çšãã詳现ãªãããã¯ãŒã¯äºåãã¬ãŒãã³ã°ã«ç²ŸéããŠããå Žåãããã«æ¬¡ã®ããã«æãã§ãããããããã§ãç§ã¯ãã§ã«è»¢ç§»åŠç¿ãå®è·µããŠããããå°ãªããšãããããè¡ãæ¹æ³ãç¥ã£ãŠããŸããã ããããããã§ã¯ãããŸããã èè ã¯ãæšæºçãªæ©æ¢°åŠç¿ãšè»¢ç§»åŠç¿ã®éã«æ確ãªç·ãåŒããŸãã æšæºçãªã¢ãããŒãã§ã¯ãç®æšãšããŒã¿ã»ããã®ã¿ããããã¿ã¹ã¯ã¯ä»»æã®æ¹æ³ã§ãã®ç®æšãéæããããšã§ãã åé¡ã®è§£æ±ºçã®äžéšãšããŠãæ·±ããããã¯ãŒã¯ãæ§ç¯ãã貪欲ãªã¢ã«ãŽãªãºã ã§äºåã«èšç·Žããããã«æ°ååãæ§ç¯ããäœããã®æ¹æ³ã§ãããã®ã¢ã³ãµã³ãã«ãäœæã§ããŸãã ããããããã¯ãã¹ãŠåäžã®åé¡ã解決ãããã¬ãŒã ã¯ãŒã¯å ã«ããããã®ãããªåé¡ã®è§£æ±ºã«è²»ããããæéã¯ãåã¢ãã«ã®ãã¬ãŒãã³ã°ãšãã®äºåãã¬ãŒãã³ã°ã«è²»ããããåèšæéã«å¹æµããŸãã
ããã§ã2ã€ã®ã¿ã¹ã¯ããããããããç°ãªã人ã ããããã解決ãããšæ³åããŠãã ããã ãã®ãã¡ã®1ã€ã¯ãä»ã®ã¢ãã«ïŒãœãŒã¹ã¿ã¹ã¯ïŒã®ã¢ãã«ã®äžéšã䜿çšããŠããŒãããã¢ãã«ãäœæããã®ã«ãããæéãççž®ãããã®ã¢ãã«ïŒã¿ãŒã²ããã¿ã¹ã¯ïŒã®ããã©ãŒãã³ã¹ãåäžãããŸãã ããåé¡ããå¥ã®åé¡ã«ç¥èã転éããããã»ã¹ã¯ã転éåŠç¿ã§ãã ãããŠãããããç§ãã¡ã®è³ã¯ãŸãã«ãããããŸãã äžèšã®äŸã®ããã«ãå®éã®ã¿ã¹ã¯ã¯èã®å容äœã§å³ãæããç®ã§èŠãããšã§ãã èšèªå容äœã§èŠèŠæ å ±ãç¥èŠãããšãã課é¡ãçããŸãã ãããŠãæ°ãããã¥ãŒãã³ãæé·ãããããå€ãéã¿ã倱ããããããåã³èšç·Žããããã代ããã«ãè³ã¯çµæãéæããããã«æ¢åã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ããããã«èª¿æŽããŸãã
転éåŠç¿ã®ãã1ã€ã®æ©èœã¯ãå€ãã¢ãã«ãé·ãé解決ãããŠãããããå€ãã¢ãã«ããæ°ããã¢ãã«ã«ã®ã¿æ å ±ã転éã§ããããšã§ãã æšæºçãªã¢ãããŒãã§ã¯ãåé¡ã®è§£æ±ºã«é¢äžããããŸããŸãªã¢ãã«ãäºãã«æ å ±ã亀æã§ããŸãã
ãã®æçš¿ã¯ãæåž«ãšã®æå°ã®ã¿ã¹ã¯ã«é¢é£ãã転移åŠç¿ã®éšåã«ã®ã¿é©çšãããŸãããèå³ã®ããæ¹ã«ã¯åæ¬ãèªãããšããå§ãããŸãã ãããããããšãã°åŒ·ååŠç¿ããã€ãžã¢ã³ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã§ã転éåŠç¿ããã¥ãŒã©ã«ãããã¯ãŒã¯ãããæ©ã䜿çšããå§ããããšãåŠç¿ããŸãã
ãããã£ãŠãæåž«ã«ããåŠç¿ã¯ã©ãã«ä»ãã®äŸã«ããåŠç¿ã§ãããäŸã«ããåŠç¿ããã»ã¹ã¯èªå°åŠç¿ïŒç¹å®ããäžè¬ãžã®ç§»è¡ïŒãšåŒã°ããããšããããèœåã®äžè¬åã¯èªå°ãã€ã¢ã¹ãšåŒã°ããŸãã ãããã£ãŠã2çªç®ã®åå転éåŠç¿- èªå°è»¢é ã ãããŠãåž°çŽçåŠç¿ã§ç¥èã移転ããã¿ã¹ã¯ã¯ãå€ãã¢ãã«ã®åŠç¿ããã»ã¹ã§èç©ãããç¥èãæ°ããã¢ãã«ã®äžè¬åèœåã«åœ±é¿ãäžããããšã§ãããšèšããŸãïŒå¥ã®åé¡ã解決ããå Žåã§ãïŒã
ç¥èã®äŒéã¯ãæ£ååãšèŠãªãããšãã§ããŸããããã«ãããæ€çŽ¢ç©ºéã¯ã蚱容å¯èœãªè¯å¥œãªä»®èª¬ã®ç¹å®ã®ã»ããã«å¶éãããŸãã
ç·Žç¿ãã
ãã®æç¹ã§ãç¥èã®ç§»è»¢ã®ããã«äžèŠç®ç«ããªãã¢ãããŒããå¹ã蟌ãŸããããšãé¡ã£ãŠããŸãã çµå±ã®ãšãããããã¯åã«ç¥èã®äŒéã§ã¯ãªããç¥çµå¯å¡æ§ã¯ãšãŠã€ããªãé«ãããã®æ¹æ³ã®æè¯ã®ååã¯ã³ããŒã¢ã³ãããŒã¹ãã§ãããšèšãããšãã§ããŸãã ããããããªãã¯ãã ã®ãã©ã°ããã£ã¹ãã§ãã ãã¡ããããããè¯ãã§ãããå°ãªããšã3çªç®ã®ã»ã¯ã·ã§ã³ã¯å¥œãã§ãããã æåã®ã»ã¯ã·ã§ã³ã§èª¬æãããã®ãšåæ§ã®ããšãã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ç¹°ãè¿ããŠã¿ãŸãããã
ãŸããåé¡ãå®åŒåããŸãã éåžžã«å€§ããªç»åã®ã»ããããããšããŸãããã é¡äŒŒç»åã®æ€çŽ¢ãæŽçããå¿ èŠããããŸãã ããã§2ã€ã®åé¡ãçºçããŸãã 第äžã«ãç»åéã®é¡äŒŒæ§ã®å°ºåºŠã¯æããã§ã¯ãªããn * m次å ãã¯ãã«ãããŠãŒã¯ãªããè·é¢ãåãã ãã§ã¯ãçµæã¯ããŸãæºè¶³ã®ãããã®ã§ã¯ãããŸããã 第äºã«ãå質尺床ããã£ããšããŠããããŒã¿ããŒã¹ã®ãã«ã¹ãã£ã³ãé¿ããããšã¯ã§ãããããŒã¿ããŒã¹ã«ã¯äœååãã®ç»åãå«ãŸããŠããå¯èœæ§ããããŸãã
ãã®åé¡ã解決ããããã«ãã»ãã³ãã£ãã¯ããã·ã¥ã䜿çšã§ããŸãããã®ãããªæ¹æ³ã®1ã€ã¯SalakhudinovaãšHintonã®èšäºSemantic Hashingã§èª¬æãããŠããŸãã 圌ãã®ã¢ã€ãã¢ã¯ãå ã®ããŒã¿ãã¯ãã«ãå°ããªæ¬¡å ã®ãã€ããªãã¯ãã«ã§ãšã³ã³ãŒããããŠããããšã§ãïŒãã®å Žåãããã¯ç»åã§ãããå ã®èšäºã§ã¯åèªã®ãã€ããªãã¯ãã«ã§ã ïŒã ãã®ãšã³ã³ãŒãã䜿çšãããšã ããã³ã°è·é¢ã䜿çšããŠãã³ãŒãé·ããç·åœ¢æéã§é¡äŒŒã®ç»åãæ€çŽ¢ã§ããŸãã å±æ§ã®æ°ãã空éå ã®æå³ãšå 容ïŒããã¹ããé³æ¥œãªã©ïŒãè¿ãç»åã¯äºãã«è¿ãã«é 眮ãããããããã®ãããªãšã³ã³ãŒãã¯ã»ãã³ãã£ãã¯ãšåŒã°ããŸãã ãã®ã¢ã€ãã¢ãå®è£ ããããã«ã圌ãã¯æ·±ãä¿¡é Œãããã¯ãŒã¯ã䜿çšããŸããã ãã®åŠç¿ã¢ã«ãŽãªãºã 㯠ã2006幎ã«ãã³ãã³ãšäŒç€Ÿã«ãã£ãŠéçºãããŸããã
- å ¥åãããã¯ãŒã¯ã¯äžè¬ã«å®æ°å€ïŒgaussian-bernoulli rbmïŒãåããããããé·ããã€ããªãã¯ãã«ã«ãšã³ã³ãŒãããŸãã次ã®åã¬ã€ã€ãŒã¯ãã€ããªã³ãŒãïŒberboulli-bernoulli rbmïŒã®é·ããåæžããããšããŸãã
- ãã®ãããªãããã¯ãŒã¯ã¯ããã®ç¬èªã®éå®ãã«ããã³ãã·ã³ã«ãã£ãŠäžããäžã«é çªã«äºåã«ãã¬ãŒãã³ã°ããã次ã®åãããã¯ãŒã¯ã¯åã®ãããã¯ãŒã¯ã®åºåãå ¥åããŒã¿ãšããŠäœ¿çšããŸãã
- 次ã«ããããã¯ãŒã¯ã¯éã®é åºã§å±éãããå ¥åã§ãããã«ãã€ãºã®å€ããã¯ãã«ãåãåããã£ãŒããªãŒããšã³ã³ãŒããŒãšããŠãã¬ãŒãã³ã°ãããå ã®ãã€ãºã®ãªãã€ã¡ãŒãžã埩å ããããšããŸãã ãã®ã¹ãããã¯ãã¡ã€ã³ã¿ãŒãã³ã°ãšåŒã°ããŸãã
- çµå±ã®ãšããããªãŒããšã³ã³ãŒããŒã®äžå€®ã«ãããã€ããªã€ã¡ãŒãžã¯ãå ¥åã€ã¡ãŒãžããã®ç®çã®ãã€ããªããã·ã¥ã«ãªããŸãã
ããã¯çŽ æŽãããã¢ãã«ã®ããã«æããŸãããååãšããŠããã³ãã³ã®ãããã§åé¡ã¯è§£æ±ºããããšå€æããŸããã ç§ã¯NVIDIA Tesla K20ã§äºåãã¬ãŒãã³ã°ãéå§ããæ°æ¥åŸ ã¡ãŸãããããã¹ãŠããã³ãã³ãè¿°ã¹ãŠããã»ã©ãã©è²ã§ã¯ãªãããšãå€æããŸããã åçã倧ããããã¬ãŠã¹ã»ãã«ããŒãªrbmã䜿çšããèšäºããã¢ãœã³ã»ãã«ããŒãªrbmã䜿çšããŠããããããããŒã¿ã®ç¹ç°æ§ã®ããããäžè¬çã«ã¯ããŸãæããªãã£ãããã§ãã ããããã©ããããããç§ã¯ããåŸ ããªãã£ãã ãããŠã Maxim Milakovã®ã¢ããã€ã¹ãæãåºããŸãããç³ã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšããããšãšã圌ã®ãã¬ãŒã³ããŒã·ã§ã³ã®1ã€ããåŠãã çšèªè»¢éã§ãã ãã¡ãããåçã®å¯žæ³ãå§çž®ããŠè²ãå®éåããããšãããã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®å€å žçãªå åãŸã§ããããŠããããèŠèŠçãªåèªã®ããã°ã«çµåããããšãŸã§ãä»ã®ãªãã·ã§ã³ããããŸããã ãããããã£ãã深局åŠç¿ã®éã«å ¥ããšãããããªãã«ããã®ã¯ããã»ã©ç°¡åã§ã¯ãªããåŠç¿ã®çŽæã移ãããŒãã¹ïŒç¹ã«æéã®ç¯çŽïŒã¯ç§ã欺ããŸããã
2014 ImageNetã³ã³ãã¹ãã§åªåããåé ã§èšåããVGGã°ã«ãŒãã¯ã éå¶å©ç®çã®äœ¿çšã®ããã«ç¡æã§ã¢ã¯ã»ã¹ã§ããããã«ãã¬ãŒãã³ã°æžã¿ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ãã¬ã€ã¢ãŠãããŠããããšãå€æããããã調æ»ç®çã§ããŠã³ããŒãããŸããã
äžè¬ã«ã ImageNetã¯ç«¶äºçžæã§ããã ãã§ãªãã100äžãè¶ ããå®éã®ç»åãå«ãç»åããŒã¿ããŒã¹ã§ããããŸãã åç»åã¯ã1000ã®ã¯ã©ã¹ã®ããããã«å²ãåœãŠãããŸãã ã»ããã¯ã¯ã©ã¹ããšã«ãã©ã³ã¹ãåããŠããŸããã€ãŸããã¯ã©ã¹ããšã«1000ãè¶ ããç»åããããŸãã ãªãã¯ã¹ãã©ãŒãã®ç·ãã¡ã¯ãLocalization and Classificationã®ããããŒããç²åŸããŸããã ç»åã«ã¯è€æ°ã®ãªããžã§ã¯ããååšããå¯èœæ§ããããããè©äŸ¡ã¯ãã¢ãã«ããŒãžã§ã³ã«å¿ããŠäžäœ5ã€ã®æãå¯èœæ§ã®é«ãããªã¢ã³ãã«æ£è§£ããããã©ããã«åºã¥ããŠããŸãã äžã®ç»åã§ã¯ãimagenetã®åçã«ããã¢ãã«ã®1ã€ã®äŸãèŠãããšãã§ããŸãã ãã«ã¡ã·ã¢ã³ã®é¢çœãééãã«æ³šæããŠãã ãããæ®å¿µãªãããã¢ãã«ã¯ãã§ãªãŒãèŠã€ããããŸããã§ããã
ããŒã¿ã»ããããã®ããã«å€åããããããããã¯ãŒã¯å ã®ã©ããã«å¹æçãªç¹åŸŽæœåºæ©èœãšãç»åãã©ã®ã¯ã©ã¹ã«å±ãããã決å®ããåé¡æ©èœããããšä»®å®ããã®ã¯è«ççã§ãã ãã®éåžžã«æœåºåšãååŸããåé¡åšããåé¢ããããã䜿çšããŠãæå³ããã·ã¥ã«é¢ããèšäºããæ·±ãèªåãšã³ã³ãŒããŒããã¬ãŒãã³ã°ããããšæããŸãã
VGGãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ã Caffe圢åŒã§ãã¬ãŒãã³ã°ããã³ä¿åãããŸãã ãã£ãŒãã©ãŒãã³ã°çšã®éåžžã«ã¯ãŒã«ãªã©ã€ãã©ãªã§ãããæãéèŠãªããš-ç¿åŸã容æãªãããããç解ããããšããå§ãããŸãã caffeã䜿çšããŠVGGãããã¯ââãŒã¯ããã¬ããã³ã°ããåã«ããããã¯ãŒã¯èªäœãäžgããããšããå§ãããŸãã 詳现ãèå³æ·±ãå Žåã¯ãå ã®èšäº- 倧èŠæš¡ç»åèªèçšã®éåžžã«æ·±ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ ïŒååã¯æ¢ã«ãããã¯ãŒã¯ã®æ·±ããæ瀺ããŠããŸãïŒããå§ãããŸãã ãŸããç³ã¿èŸŒã¿ãããã¯ãŒã¯ã«ãŸã£ãã粟éããŠããªã人ã¯ãå ã«é²ãåã«å°ãªããšããã·ã¢èªçãŠã£ãããã£ã¢ãèªãå¿ èŠããããŸãã5ã10å以äžãããããšã¯ãããŸããïŒãŸãã¯Habréã®èª¬æããããŸã ïŒã
ãã®ãããèšäºãšã³ã³ãã¹ãã®ããã«ãèè ã¯ããã€ãã®ã¢ãã«ãèšç·ŽããŸããã
圌ãã®ããŒãžã§ã圌ãã¯ãªãã·ã§ã³DãšEãæçš¿ããŸãããå®éšã®ããã«ãæåã®16å±€ãç³ã¿èŸŒã¿ã§ãæåŸã®3å±€ãå®å šã«æ¥ç¶ãããEã®19å±€ããŒãžã§ã³ãåããŸãã æåŸã®3ã€ã®ã¬ã€ã€ãŒã¯ç»åã®ãµã€ãºã«ææã§ãããããå®éšã§ã¯ãããèããã«ãé«ã¬ãã«ã®ãµã€ã³ãåé€ããããšãèæ ®ããŠãããããæšãŠãŠæåã®16ã®ã¬ã€ã€ãŒãæ®ããŸããã
caffeã©ã€ãã©ãªã¯ãGoogle Protocol Buffersã䜿çšããŠã¢ãã«ãèšè¿°ããŸãããããã¯ãŒã¯ã®å®å šãªèšè¿°ã¯æ¬¡ã®ãšããã§ãã
19å±€ã¢ãã«
name: "VGG_ILSVRC_19_layers" input: "data" input_dim: 10 input_dim: 3 input_dim: 224 input_dim: 224 layers { bottom: "data" top: "conv1_1" name: "conv1_1" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 } } layers { bottom: "conv1_1" top: "conv1_1" name: "relu1_1" type: RELU } layers { bottom: "conv1_1" top: "conv1_2" name: "conv1_2" type: CONVOLUTION convolution_param { num_output: 64 pad: 1 kernel_size: 3 } } layers { bottom: "conv1_2" top: "conv1_2" name: "relu1_2" type: RELU } layers { bottom: "conv1_2" top: "pool1" name: "pool1" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool1" top: "conv2_1" name: "conv2_1" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 } } layers { bottom: "conv2_1" top: "conv2_1" name: "relu2_1" type: RELU } layers { bottom: "conv2_1" top: "conv2_2" name: "conv2_2" type: CONVOLUTION convolution_param { num_output: 128 pad: 1 kernel_size: 3 } } layers { bottom: "conv2_2" top: "conv2_2" name: "relu2_2" type: RELU } layers { bottom: "conv2_2" top: "pool2" name: "pool2" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool2" top: "conv3_1" name: "conv3_1" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_1" top: "conv3_1" name: "relu3_1" type: RELU } layers { bottom: "conv3_1" top: "conv3_2" name: "conv3_2" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_2" top: "conv3_2" name: "relu3_2" type: RELU } layers { bottom: "conv3_2" top: "conv3_3" name: "conv3_3" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_3" top: "conv3_3" name: "relu3_3" type: RELU } layers { bottom: "conv3_3" top: "conv3_4" name: "conv3_4" type: CONVOLUTION convolution_param { num_output: 256 pad: 1 kernel_size: 3 } } layers { bottom: "conv3_4" top: "conv3_4" name: "relu3_4" type: RELU } layers { bottom: "conv3_4" top: "pool3" name: "pool3" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool3" top: "conv4_1" name: "conv4_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_1" top: "conv4_1" name: "relu4_1" type: RELU } layers { bottom: "conv4_1" top: "conv4_2" name: "conv4_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_2" top: "conv4_2" name: "relu4_2" type: RELU } layers { bottom: "conv4_2" top: "conv4_3" name: "conv4_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_3" top: "conv4_3" name: "relu4_3" type: RELU } layers { bottom: "conv4_3" top: "conv4_4" name: "conv4_4" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv4_4" top: "conv4_4" name: "relu4_4" type: RELU } layers { bottom: "conv4_4" top: "pool4" name: "pool4" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool4" top: "conv5_1" name: "conv5_1" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_1" top: "conv5_1" name: "relu5_1" type: RELU } layers { bottom: "conv5_1" top: "conv5_2" name: "conv5_2" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_2" top: "conv5_2" name: "relu5_2" type: RELU } layers { bottom: "conv5_2" top: "conv5_3" name: "conv5_3" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_3" top: "conv5_3" name: "relu5_3" type: RELU } layers { bottom: "conv5_3" top: "conv5_4" name: "conv5_4" type: CONVOLUTION convolution_param { num_output: 512 pad: 1 kernel_size: 3 } } layers { bottom: "conv5_4" top: "conv5_4" name: "relu5_4" type: RELU } layers { bottom: "conv5_4" top: "pool5" name: "pool5" type: POOLING pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layers { bottom: "pool5" top: "fc6" name: "fc6" type: INNER_PRODUCT inner_product_param { num_output: 4096 } } layers { bottom: "fc6" top: "fc6" name: "relu6" type: RELU } layers { bottom: "fc6" top: "fc6" name: "drop6" type: DROPOUT dropout_param { dropout_ratio: 0.5 } } layers { bottom: "fc6" top: "fc7" name: "fc7" type: INNER_PRODUCT inner_product_param { num_output: 4096 } } layers { bottom: "fc7" top: "fc7" name: "relu7" type: RELU } layers { bottom: "fc7" top: "fc7" name: "drop7" type: DROPOUT dropout_param { dropout_ratio: 0.5 } } layers { bottom: "fc7" top: "fc8" name: "fc8" type: INNER_PRODUCT inner_product_param { num_output: 1000 } } layers { bottom: "fc8" top: "prob" name: "prob" type: SOFTMAX }
èšè¿°ããããã¬ãããŒã·ã§ã³ãäœæããã«ã¯ã fc6 ïŒå®å šæ¥ç¶å±€ïŒããå§ãŸãã¢ãã«èšè¿°ã®ãã¹ãŠã®å±€ãåé€ããã ãã§ååã§ãã ãã ãããããã¯ãŒã¯åºåã¯äžããç¡å¶éã«ãªãããšã«æ³šæããŠãã ããã ã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ã¯ã ä¿®æ£ãããç·åœ¢åäœã§ãã
ãã®ãããªåé¡ã¯ããããã¯ãŒã¯åºåããã·ã°ã¢ã€ããååŸããããšã§ç°¡åã«è§£æ±ºã§ããŸãã å€ãã®ãã¥ãŒãã³ã0ãŸãã¯å€§ããªæ°ã«ãªãããšãæåŸ ã§ããŸãã 次ã«ãã·ã°ã¢ã€ããååŸããåŸãå€ãã®åäœãš0.5ãååŸããŸãïŒ0ããã®ã·ã°ã¢ã€ãã¯0.5ã§ãïŒã åŸãããå€ã0ãã1ã®ç¯å²ã§æ£èŠåãããšããã¥ãŒãã³ã®æŽ»æ§åã®ç¢ºçãšããŠè§£éã§ãããããã®ã»ãšãã©ãã¹ãŠããŒããŸãã¯1ã®é åã«ãªããŸãã ãã¥ãŒãã³ã®æŽ»æ§åã®ç¢ºçã¯ãç»åã«ãµã€ã³ãååšãã確çãšããŠè§£éãããŸãïŒããšãã°ã人éã®ç®ãããã«ãããŸãïŒã
ç§ã®å Žåããã®ãããªãããã¯ãŒã¯ã®å žåçãªçãã¯æ¬¡ã®ãšããã§ãã
æåŸã®ç³ã¿èŸŒã¿å±€ããã®æ£èŠåãããã·ã°ã¢ã€ã
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.994934
0.0
0.0
0.999047
0.829219
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.997255
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
0.0
0.999382
0.0
0.0
0.0
0.0
0.988762
0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.847886
0.0
0.0
0.0
0.0
0.957379
0.0
0.0
0.0
0.0
0.0
1.0
0.999998
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.999999
0.0
0.54814
0.739735
0.0
0.0
0.0
0.912179
0.0
0.0
0.78984
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.681776
0.0
0.0
0.991501
0.0
0.999999
0.999152
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.999996
1.0
0.0
1.0
1.0
0.0
0.880588
0.0
0.0
0.0
0.0
0.0
0.0
0.836756
0.995515
0.0
0.999354
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.999897
0.0
0.953126
0.0
0.0
0.999857
0.0
0.0
0.937695
0.999983
1.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.994934
0.0
0.0
0.999047
0.829219
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.997255
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
0.0
0.999382
0.0
0.0
0.0
0.0
0.988762
0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.847886
0.0
0.0
0.0
0.0
0.957379
0.0
0.0
0.0
0.0
0.0
1.0
0.999998
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.999999
0.0
0.54814
0.739735
0.0
0.0
0.0
0.912179
0.0
0.0
0.78984
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.681776
0.0
0.0
0.991501
0.0
0.999999
0.999152
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.999996
1.0
0.0
1.0
1.0
0.0
0.880588
0.0
0.0
0.0
0.0
0.0
0.0
0.836756
0.995515
0.0
0.999354
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.999897
0.0
0.953126
0.0
0.0
0.999857
0.0
0.0
0.937695
0.999983
1.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
ã«ãã§ã§ã¯ããã®åé¡ã¯æ¬¡ã®ããã«è§£æ±ºãããŠããŸãã
layers { bottom: "pool5" top: "sigmoid1" name: "sigmoid1" type: SIGMOID }
Caffeã¯Pythonã©ãããŒãå®è£ ãã次ã®ã³ãŒãã¯ãããã¯ãŒã¯ãåæåããŠæ£èŠåããŸãã
caffe.set_mode_gpu() net = caffe.Classifier('deploy.prototxt', 'VGG_ILSVRC_19_layers.caffemodel', channel_swap=(2,1,0), raw_scale=255, image_dims=(options.width, options.height)) #.................. out = net.forward_all(**{net.inputs[0]: caffe_in}) out = out['sigmoid1'].reshape(out['sigmoid1'].shape[0], np.prod(out['sigmoid1'].shape[1:])) out = (out - 0.5)/0.5
ãããã£ãŠãçŸæç¹ã§ã¯ãé«æ¬¡å ã®ãã¯ãã«ïŒç§ã®å Žåã¯4608ïŒãå«ãç»åã®ãã€ããªïŒãŸãã¯ã»ãŒïŒè¡šçŸãæã«ããŠããŸãããããã®è¡šçŸãå§çž®ããããã«ãDeep Befief Networkããã¬ãŒãã³ã°ããå¿ èŠããããŸãã çµæã®ã¢ãã«ã¯ããã«æ·±ããããã¯ãŒã¯ã«ãªããŸããã DBNãæ°æ¥éåŠç¿ããã®ãåŸ ããã«ãæ€çŽ¢å®éšãè¡ã£ãŠã¿ãŸããããã©ã³ãã ãªç»åãéžæããããã³ã°è·é¢ã«é¢ããŠæãè¿ãç»åãããã€ãæ€çŽ¢ããŸãã ããã¯ãã¹ãŠãçã®ç¹åŸŽãé«æ¬¡å ã®ãã¯ãã«ã笊å·ã®éã¿ä»ããªãã§ããããšã«æ³šæããŠãã ããã
説æïŒæåã®åçã¯ãªã¯ãšã¹ãã®åçãããŒã¿ããŒã¹ããã®ã©ã³ãã ãªç»åã§ãã æ®ãã¯åœŒå¥³ã«æãè¿ãã
ãã¿ãã¬ã®ä»ã®äŸ
çµè«ãšåèæç®
éçãªã¬ã€ã€ãŒã転éããã ãã§ãªããç¬èªã®æ¹æ³ã§ãããããã¬ãŒãã³ã°ããäŸãç°¡åã«æãã€ãããšãã§ãããšæããŸãã å¥ã®ãããã¯ãŒã¯ã䜿çšããŠãããã¯ãŒã¯ã®äžéšãåæåããŠãããã¯ã©ã¹ã§åãã¬ãŒãã³ã°ã§ãããšããŸãããã
ãããŠãæåã®éšåã§èª¬æããå®éšã«è¿ããã®ãè©ŠããŠã¿ããšïŒ ãé¡ãïŒç³ã¿èŸŒã¿ã®æ·±ã信念ãããã¯ãŒã¯ã䜿çšããŠãªãŒãã£ãªä¿¡å·ããç¹åŸŽãæœåºãããµã³ãã«èšäºã§ãã èšç·Žãããç³ã¿èŸŒã¿ã䜿çšããŠcDBNã®éã¿ãåæåããªãã®ã¯ãªãã§ããïŒ ãªããã®ãããªã¹ãã¯ããã°ã©ã ã¯ç»åã§ã¯ãªãããªãäœã¬ãã«ã®æ©èœãåäœããªãã®ãïŒ
èªç¶èšèªåŠçãè©Šãã転移åŠç¿ãè©ŠããŠã¿ããå Žåã¯ãLeCuneã®é©åãªèšäºãã芧ãã ãã ã ãã¡ãããããã¹ããç»åãšããŠè¡šç€ºãããŸãã
äžè¬çã«ã転移åŠç¿ã¯çŽ æŽãããããšã§ããã ã«ãã§ã¯ãã£ãŒãã©ãŒãã³ã°ã®ããã®ã¯ãŒã«ãªã©ã€ãã©ãªã§ãã
ããã¹ãã«ã¯å€ãã®ãªã³ã¯ããããŸãããããã§ãããã®ããã€ãã瀺ããŸãã
- èã®ããžã§ã³
- ç¬åŠåŠç¿ïŒã©ãã«ãªãããŒã¿ããã®è»¢ç§»åŠç¿
- 転移åŠç¿
- 倧èŠæš¡èŠèŠèªèãã£ã¬ã³ãž2014ïŒILSVRC2014ïŒ
- ç®ã®é»æ°
- ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã®èŠèŠåãšç解
- ã¹ã¿ãã¯åãã€ãºé€å»ãªãŒããšã³ã³ãŒããŒïŒããŒã«ã«ãã€ãºé€å»åºæºã䜿çšãããã£ãŒããããã¯ãŒã¯ã§ã®æçšãªè¡šçŸã®åŠç¿
- ã»ãã³ãã£ãã¯ããã·ã³ã°
- èŠèŠå¹ŸäœåŠã°ã«ãŒã
- 倧èŠæš¡ãªèŠèŠèªèã®ããã®éåžžã«æ·±ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒã¢ãã«ïŒ
- ã«ãã§
- 倧èŠæš¡ãªèŠèŠèªèã®ããã®éåžžã«æ·±ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒèšäºïŒ
- 倧èŠæš¡èŠèŠèªèã®ç»åè¡šçŸïŒA. VGGã®VedaldiïŒ