beginarrayldS=dxdy=rd varphi cdotdr left. beginarraylx=r cos varphiy=r sin varphi endarray right| tox2 cos2 varphi+y2 sin2 varphi=r2 tox2+y2=r2 endarray
beginarraylI2= int limits 0infty int limits 0inftye− left(x2+y2 right)dxdy= int limits frac pi20 int limits 0inftye−r2rd varphidr= int limits frac pi20d varphi int limits 0inftye−r2rdr= int limits frac pi20d varphi int limits 0inftye−r2 frac12d left(r2 right)== frac12 int limits frac pi20d varphi left( left.−e−r2 right| 0infty right)= frac12 int limits frac pi20d varphi left(−e− infty− left(−e0 right) right)= frac12 int limits frac pi20d varphi= frac12 left( left. varphi right| frac pi20 right)= frac pi4I2= frac pi4 toI= sqrt frac pi4= frac sqrt pi2 endarray
int limits − inftyinftye−x2dx=2 int limits 0inftye−x2dx=2 cdot frac sqrt pi2= sqrt pi
beginarraylg left(t right)= left(1+t right)e−tg′ left(t right)=e−t− left(1+t right)e−t=−te−tg′ left(t right)=0 tot=0 left[ beginarraylt<0 to−te−t>0 tog left(t right)− rmincreasest>0 to−te−t<0 tog left(t right)− rmdecreases endarray right.g left(0 right)= left(1+0 right)e−0=1g left(−1 right)= left(1−1 right)e− left(−1 right)=0g left( infty right)= left(1+ infty right)e− infty=0 endarray
t = \ pm x ^ 2 \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) e ^ {x ^ 2} <1 \\ 0 < \ left ({1 + x ^ 2} \ right) e ^ {- x ^ 2} <1 \\ \ end {array} \ right. \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) <e ^ {- x ^ 2} \\ 0 <e ^ {- x ^ 2} <\ frac {1} {{1 + x ^ 2}} \\ \ end {array} \ right.
\ begin {array} {* {20} c} {\ left \ {\ begin {array} {l} \ left ({1 - x ^ 2} \ right) ^ n <e ^ {- nx ^ 2} \\ 0 <x <1 \\ \ end {array} \ right.} & {\ Left \ {\ begin {array} {l} e ^ {- nx ^ 2} <\ frac {1} {{\ left ({1 + x ^ 2} \ right) ^ n}} \\ x> 1 \\ \ end {array} \ right.} \\ \ end {array}
int limits10 left(1−x2 right)ndx< int limits10e−nx2dx< int limits 0inftye−nx2dx< int limits 0infty frac1 left(1+x2 right)ndx
int limits 0inftye−nx2dx= left[ beginarraylp= sqrtnxp2=nx2 fracdp sqrtn=dx endarray right]= frac1 sqrtn int limits 0inftye−p2dp= frac1 sqrtnI
\ begin {array} {l} \ int \ limits_0 ^ 1 {\ left ({1 - x ^ 2} \ right) ^ n dx} = \ left [{\ begin {array} {* {20} c} \ begin {array} {l} x = \ sin t \\ dx = \ cos tdt \\ 1 - x ^ 2 = 1 - \ sin ^ 2 t = \ cos ^ 2 t \\ \ end {array} & \ begin {array} {l} x = 1 \ to t = \ arcsin 1 = \ frac {\ pi} {2} \\ x = 0 \ to t = \ arcsin 0 = 0 \\ \ end {array} \\ \ end {array}} \ right] = \\ = \ int \ limits_0 ^ {\ frac {\ pi} {2}} {\ cos ^ {2n} t \ cdot \ cos tdt} = \ int \ limits_0 ^ { \ frac {\ pi} {2}} {\ cos ^ {2n + 1} tdt} \\ \ end {array}
\ begin {array} {l} \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cos tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cdot d \ left ({\ sin t} \ right)} = \\ = \ left [{\ begin {array} {* { 20} c} {u = \ cos ^ {n - 1} t} & {du = - \ left ({n - 1} \ right) \ cos ^ {n - 2} t \ sin tdt} \\ {dv = d \ left ({\ sin t} \ right)} & {v = \ sin t} \\ \ end {array}} \ right] = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ sin ^ 2 tdt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ left ({1 - \ cos ^ 2 t} \ right) dt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} tdt} - \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} \\ \ end {array}
beginarrayl int limits alpha beta cosntdt= left. cosn−1t sint right| alpha beta+ left(n−1 right) int limits alpha beta cosn−2tdt− left(n−1 right) int limits alpha beta cosntdt int limits alpha beta cosntdt+ left(n−1 right) int limits alpha beta cosntdt= left. cosn−1t sint right| alpha beta+ left(n−1 right) int limits alpha beta cosn−2tdtn int limits alpha beta cosntdt= left. cosn−1t sint right| alpha beta+ left(n−1 right) int limits alpha beta cosn−2tdt int limits alpha beta cosntdt= frac1n left. cosn−1t sint right| alpha beta+ fracn−1n int limits alpha beta cosn−2tdt endarray
beginarrayl int limits frac pi20 cosntdt= frac1n left. cosn−1t sint right| frac pi20+ fracn−1n int limits frac pi20 cosn−2tdt= left[ frac1n left. cosn−1t sint right| frac pi20=0 right]== fracn−1n int limits frac pi20 cosn−2tdt= fracn−1n left( frac1n−2 left. cosn−3t sint right| frac pi20+ fracn−3n−2 int limits frac pi20 cosn−4tdt right)== fracn−1n left( fracn−3n−2 int limits frac pi20 cosn−4tdt right)= fracn−1n left( fracn−3n−2 left( fracn−5n−4 int limits frac pi20 cosn−6tdt right) right)== fracn−1n left( fracn−3n−2 left( fracn−5n−4 left( fracn−7n−6 int limits frac pi20 cosn−8tdt right) right) right)=... endarray
beginarrayln=10: int limits frac pi20 cos10tdt= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 int limits frac pi20 cos2tdt= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 int limits frac pi20 left( frac12+ frac12 cos2t right)dt== frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 left. left( frac12t+ frac12 sin2t right) right| frac pi20= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 cdot frac pi4= frac9 cdot7 cdot5 cdot3 cdot110 cdot8 cdot6 cdot4 cdot2 cdot frac pi2== frac left(n−1 right)!!n!! cdot frac pi2 endarray
beginarrayln=9: int limits frac pi20 cos9tdt= frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3 int limits frac pi20 costdt= frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3left. left( sint right) right| frac pi20== frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3 cdot1= frac left(n−1 right)!!n!! endarray
int limits frac pi20 cos2n+1tdt= frac left(2n right)!! left(2n+1 right)!!
beginarrayl int limits 0infty frac1 left(1+x2 right)ndx= left[ beginarraylx= tant to beginarray∗20cx=0 tot=0x= infty tot= frac pi2 endarraydx= fracdt cos2t frac11+x2= frac11+ tan2t= cos2t endarray right]== int limits frac pi20 cos2n−2tdt= left[ left(2n−2 right)− rmevenright]= frac left(2n−3 right)!! left(2n−2 right)!! cdot frac pi2 endarray
beginarrayl frac left(2n right)!! left(2n+1 right)!!< frac1 sqrtn cdotI< frac left(2n−3 right)!! left(2n−2 right)!! cdot frac pi2 sqrtn cdot frac left(2n right)!! left(2n+1 right)!!<I< sqrtn cdot frac left(2n−3 right)!! left(2n−2 right)!! cdot frac pi2 endarray
n cdot frac left( left(2n right)!! right)2 left( left(2n+1 right)!! right)2<I2<n cdot frac left( left(2n−3 right)!! right)2 left( left(2n−2 right)!! right)2 cdot frac pi24
pi= mathop lim limitsn to infty frac1n left[ frac left(2n right)!! left(2n−1 right)!! right]2
beginarrayl fracn2 left(2n+1 right)2 cdot frac1n cdot frac left( left(2n right)!! right)2 left( left(2n−1 right)!! right)2<I2< frac1 frac1n cdot frac left( left(2n−2 right)!! right)2 left( left(2n−3 right)!! right)2 cdot frac pi24 mathop lim limitsn to infty left[ fracn2 left(2n+1 right)2 right] cdot mathop lim limitsn to infty left[ frac1n cdot frac left( left(2n right)!! right)2 left( left(2n−1 right)!! right)2 right]<I2< frac1 mathop lim limitsn to infty left[ frac1n cdot frac left( left(2n−2 right)!! right)2 left( left(2n−3 right)!! right)2 right] cdot frac pi24 frac14 cdot pi<I2< frac1 pi cdot frac pi24 to frac pi4<I2< frac pi4I2= frac pi4 toI= frac sqrt pi2 endarray
int limits − inftyinftye−x2dx=2 int limits 0inftye−x2dx=2 cdot frac sqrt pi2= sqrt pi
beginarraylI= int limits 0inftye−x2dxI= int limits − inftyinftye−x2dx= int limits − inftyinftye−y2dy= int limits − inftyinftye−z2dz endarray
\ left \ {\ begin {array} {l} x = r \ sin \ theta \ cos \ varphi \\ y = r \ sin \ theta \ sin \ varphi \\ z = r \ cos \ theta \\ \ end {array} \ right. \ to x ^ 2 + y ^ 2 + z ^ 2 = r ^ 2
\ begin {array} {l} J = \ left | {\ begin {array} {* {20} c} {\ frac {{\ partial x}} {{\ partial r}}} & {\ frac {{\ partial x}} {{\ partial \ theta}} } & {\ frac {{\ partial x}} {{\ partial \ varphi}}} \\ {\ frac {{\ partial y}} {{\ partial r}}} & {\ frac {{\ partial y }} {{\ partial \ theta}}} & {\ frac {{\ partial y}} {{\ partial \ varphi}}} \\ {\ frac {{\ partial z}} {{\ partial r}} } & {\ frac {{\ partial z}} {{\ partial \ theta}}} & {\ frac {{\ partial z}} {{\ partial \ varphi}}} \\ \ end {array}} \ right | = \ left | {\ begin {array} {* {20} c} {\ sin \ theta \ cos \ varphi} & {r \ cos \ theta \ cos \ varphi} & {- r \ sin \ theta \ sin \ varphi} \\ {\ sin \ theta \ sin \ varphi} & {r \ cos \ theta \ sin \ varphi} & {r \ sin \ theta \ cos \ varphi} \\ {r \ cos \ theta} & {- r \ sin \ theta} & 0 \\ \ end {array}} \ right | = \\ = r ^ 2 \ sin \ theta \\ \ end {array}
beginarraylI3= int limits − inftyinfty int limits − inftyinfty int limits − inftyinftye−x2−y2−z2dxdydz= int limits2 pi0 int limits 0pi int limits 0inftye−r2Jdrd thetad varphi== int limits2 pi0d varphi int limits 0pi sin thetad theta int limits 0inftye−r2r2dr endarray
beginarrayl int limits 0inftye−r2r2dr= left[ beginarraylu=r todu=drdv=re−r2dr tov= intre−r2dr= frac12 inte−r2dr2=− frac12e−r2 endarray right]== left. left(− frac12re−r2 right) right| 0infty+ frac12 int limits 0inftye−r2dr= frac12 int limits 0inftye−r2dr= frac12 cdot fracI2= fracI4 int limits 0pi sin thetad theta= left. left(− cos theta right) right| 0pi= left(− cos pi right)− left(− cos0 right)=1+1=2 int limits2 pi0d varphi= left. varphi right|2 pi0=2 pi endarray
beginarraylI3=2 pi cdot2 cdot fracI4 toI3= piI toI2= pi toI= sqrt piI= int limits − inftyinftye−x2dx= sqrt pi endarray