Euler-Poisson integral. Details on calculation methods





In the article, in detail, down to the smallest detail, three methods of taking the Euler-Poisson integral are considered. In one of the methods, an auxiliary reduction formula is derived. To find some complex integrals, one can use reduction formulas that reduce the degree of the integrand and calculate the corresponding integrals in a finite number of steps.



This integral is taken from the Gaussian function: I= int limits 0inftyex2dx

There is a very interesting mathematical way. To find the original integral, first look for the square of this integral, and then take the root from the result. Why? Yes, because it is much easier and painless to go to the polar coordinates. Therefore, consider the square of the Gaussian integral:

I2= int limits 0inftyex2dx int limits 0inftyey2dy= int limits 0infty int limits 0inftye left(x2+y2 right)dxdy

We see that we get a double integral of some function g left(x,y right)= exp left[ left(x2+y2 right) right] . At the end of this surface integral is the area element in the Cartesian coordinate system dS=dxdy .

Now let's move to the polar coordinate system:





 beginarrayldS=dxdy=rd varphi cdotdr left. beginarraylx=r cos varphiy=r sin varphi endarray right| tox2 cos2 varphi+y2 sin2 varphi=r2 tox2+y2=r2 endarray







Here it should be noted that r can vary from 0 to + ∞, because x varied within the same range. But the angle φ varies from 0 to π / 2, which describe the integration region in the first quarter of the Cartesian coordinate system. Substituting in the source, we get:





 beginarraylI2= int limits 0infty int limits 0inftye left(x2+y2 right)dxdy= int limits frac pi20 int limits 0inftyer2rd varphidr= int limits frac pi20d varphi int limits 0inftyer2rdr= int limits frac pi20d varphi int limits 0inftyer2 frac12d left(r2 right)== frac12 int limits frac pi20d varphi left( left.er2 right| 0infty right)= frac12 int limits frac pi20d varphi left(e infty left(e0 right) right)= frac12 int limits frac pi20d varphi= frac12 left( left. varphi right| frac pi20 right)= frac pi4I2= frac pi4 toI= sqrt frac pi4= frac sqrt pi2 endarray







Due to the symmetry of the integral and the positive range of values ​​of the integrand, we can conclude that





 int limits  inftyinftyex2dx=2 int limits 0inftyex2dx=2 cdot frac sqrt pi2= sqrt pi









Let's find some more solutions? This is interesting! :)



Consider the function g left(t right)= left(1+t right)et

Now let's recall school mathematics and conduct a simple study of a function using derivatives and limits. It’s not that we will consider complex limits here (after all, they don’t pass them at school), we just discuss what will happen to the function if its argument tends to zero or to infinity, thus we will estimate the asymptotic behavior, which is always very important in mathematics. This is like a qualitative assessment of what is happening.





 beginarraylg left(t right)= left(1+t right)etg left(t right)=et left(1+t right)et=tetg left(t right)=0 tot=0 left[ beginarraylt<0 totet>0 tog left(t right) rmincreasest>0 totet<0 tog left(t right) rmdecreases endarray right.g left(0 right)= left(1+0 right)e0=1g left(1 right)= left(11 right)e left(1 right)=0g left( infty right)= left(1+ infty right)e infty=0 endarray







It is bounded above by unity on the interval (-∞; + ∞) and zero on the interval [-1; + ∞).



We make the following change of variables t= pmx2

And we get:





t = \ pm x ^ 2 \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) e ^ {x ^ 2} <1 \\ 0 < \ left ({1 + x ^ 2} \ right) e ^ {- x ^ 2} <1 \\ \ end {array} \ right. \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) <e ^ {- x ^ 2} \\ 0 <e ^ {- x ^ 2} <\ frac {1} {{1 + x ^ 2}} \\ \ end {array} \ right.

t = \ pm x ^ 2 \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) e ^ {x ^ 2} <1 \\ 0 < \ left ({1 + x ^ 2} \ right) e ^ {- x ^ 2} <1 \\ \ end {array} \ right. \ to \ left \ {\ begin {array} {l} 0 <\ left ({1 - x ^ 2} \ right) <e ^ {- x ^ 2} \\ 0 <e ^ {- x ^ 2} <\ frac {1} {{1 + x ^ 2}} \\ \ end {array} \ right.









In the first inequality, we restrict the variation (0.1), and in the second, the interval (0; + ∞), we raise both inequalities to the power n, since inequalities with positive terms can be raised to any positive degree. We get:





\ begin {array} {* {20} c} {\ left \ {\ begin {array} {l} \ left ({1 - x ^ 2} \ right) ^ n <e ^ {- nx ^ 2} \\ 0 <x <1 \\ \ end {array} \ right.} & {\ Left \ {\ begin {array} {l} e ^ {- nx ^ 2} <\ frac {1} {{\ left ({1 + x ^ 2} \ right) ^ n}} \\ x> 1 \\ \ end {array} \ right.} \\ \ end {array}

\ begin {array} {* {20} c} {\ left \ {\ begin {array} {l} \ left ({1 - x ^ 2} \ right) ^ n <e ^ {- nx ^ 2} \\ 0 <x <1 \\ \ end {array} \ right.} & {\ Left \ {\ begin {array} {l} e ^ {- nx ^ 2} <\ frac {1} {{\ left ({1 + x ^ 2} \ right) ^ n}} \\ x> 1 \\ \ end {array} \ right.} \\ \ end {array}







Let us construct graphs for n = 1 to demonstrate the inequalities



Now we try to integrate the inequalities within the limits indicated in the corresponding systems. And immediately combine everything into one inequality:





 int limits10 left(1x2 right)ndx< int limits10enx2dx< int limits 0inftyenx2dx< int limits 0infty frac1 left(1+x2 right)ndx







Again, if you look at the graphs, then this inequality is true.



Given a small replacement, it is easy to see that:





 int limits 0inftyenx2dx= left[ beginarraylp= sqrtnxp2=nx2 fracdp sqrtn=dx endarray right]= frac1 sqrtn int limits 0inftyep2dp= frac1 sqrtnI







Those. in that large inequality in the middle, we have the Euler-Poisson integral, and now we need to find the integrals that stand at the borders of this inequality.



Find the integral from the left border:





\ begin {array} {l} \ int \ limits_0 ^ 1 {\ left ({1 - x ^ 2} \ right) ^ n dx} = \ left [{\ begin {array} {* {20} c} \ begin {array} {l} x = \ sin t \\ dx = \ cos tdt \\ 1 - x ^ 2 = 1 - \ sin ^ 2 t = \ cos ^ 2 t \\ \ end {array} & \ begin {array} {l} x = 1 \ to t = \ arcsin 1 = \ frac {\ pi} {2} \\ x = 0 \ to t = \ arcsin 0 = 0 \\ \ end {array} \\ \ end {array}} \ right] = \\ = \ int \ limits_0 ^ {\ frac {\ pi} {2}} {\ cos ^ {2n} t \ cdot \ cos tdt} = \ int \ limits_0 ^ { \ frac {\ pi} {2}} {\ cos ^ {2n + 1} tdt} \\ \ end {array}

\ begin {array} {l} \ int \ limits_0 ^ 1 {\ left ({1 - x ^ 2} \ right) ^ n dx} = \ left [{\ begin {array} {* {20} c} \ begin {array} {l} x = \ sin t \\ dx = \ cos tdt \\ 1 - x ^ 2 = 1 - \ sin ^ 2 t = \ cos ^ 2 t \\ \ end {array} & \ begin {array} {l} x = 1 \ to t = \ arcsin 1 = \ frac {\ pi} {2} \\ x = 0 \ to t = \ arcsin 0 = 0 \\ \ end {array} \\ \ end {array}} \ right] = \\ = \ int \ limits_0 ^ {\ frac {\ pi} {2}} {\ cos ^ {2n} t \ cdot \ cos tdt} = \ int \ limits_0 ^ { \ frac {\ pi} {2}} {\ cos ^ {2n + 1} tdt} \\ \ end {array}







In order to calculate and evaluate it, let's first find a general integral. Now I will show you how to derive the reduction formula (in mathematics, such formulas mean lowering the degree) for a given integral.





\ begin {array} {l} \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cos tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cdot d \ left ({\ sin t} \ right)} = \\ = \ left [{\ begin {array} {* { 20} c} {u = \ cos ^ {n - 1} t} & {du = - \ left ({n - 1} \ right) \ cos ^ {n - 2} t \ sin tdt} \\ {dv = d \ left ({\ sin t} \ right)} & {v = \ sin t} \\ \ end {array}} \ right] = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ sin ^ 2 tdt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ left ({1 - \ cos ^ 2 t} \ right) dt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} tdt} - \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} \\ \ end {array}

\ begin {array} {l} \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cos tdt} = \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 1} t \ cdot d \ left ({\ sin t} \ right)} = \\ = \ left [{\ begin {array} {* { 20} c} {u = \ cos ^ {n - 1} t} & {du = - \ left ({n - 1} \ right) \ cos ^ {n - 2} t \ sin tdt} \\ {dv = d \ left ({\ sin t} \ right)} & {v = \ sin t} \\ \ end {array}} \ right] = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ sin ^ 2 tdt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} t \ left ({1 - \ cos ^ 2 t} \ right) dt} = \\ = \ left. {\ cos ^ {n - 1} t \ sin t} \ right | _ \ alpha ^ \ beta + \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ {n - 2} tdt} - \ left ({n - 1} \ right) \ int \ limits_ \ alpha ^ \ beta {\ cos ^ n tdt} \\ \ end {array}











 beginarrayl int limits alpha beta cosntdt= left. cosn1t sint right| alpha beta+ left(n1 right) int limits alpha beta cosn2tdt left(n1 right) int limits alpha beta cosntdt int limits alpha beta cosntdt+ left(n1 right) int limits alpha beta cosntdt= left. cosn1t sint right| alpha beta+ left(n1 right) int limits alpha beta cosn2tdtn int limits alpha beta cosntdt= left. cosn1t sint right| alpha beta+ left(n1 right) int limits alpha beta cosn2tdt int limits alpha beta cosntdt= frac1n left. cosn1t sint right| alpha beta+ fracn1n int limits alpha beta cosn2tdt endarray







Now, if using the reduction formula we consider the same integral, but with our limits from 0 to π / 2, then we can make some simplifications:





 beginarrayl int limits frac pi20 cosntdt= frac1n left. cosn1t sint right| frac pi20+ fracn1n int limits frac pi20 cosn2tdt= left[ frac1n left. cosn1t sint right| frac pi20=0 right]== fracn1n int limits frac pi20 cosn2tdt= fracn1n left( frac1n2 left. cosn3t sint right| frac pi20+ fracn3n2 int limits frac pi20 cosn4tdt right)== fracn1n left( fracn3n2 int limits frac pi20 cosn4tdt right)= fracn1n left( fracn3n2 left( fracn5n4 int limits frac pi20 cosn6tdt right) right)== fracn1n left( fracn3n2 left( fracn5n4 left( fracn7n6 int limits frac pi20 cosn8tdt right) right) right)=... endarray







As we see, you can lower it to infinity (depends on n). However, there is one subtlety. The formula changes depending on whether n is an even number or not.

For this, we consider two cases.





 beginarrayln=10: int limits frac pi20 cos10tdt= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 int limits frac pi20 cos2tdt= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 int limits frac pi20 left( frac12+ frac12 cos2t right)dt== frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 left. left( frac12t+ frac12 sin2t right) right| frac pi20= frac9 cdot7 cdot5 cdot310 cdot8 cdot6 cdot4 cdot frac pi4= frac9 cdot7 cdot5 cdot3 cdot110 cdot8 cdot6 cdot4 cdot2 cdot frac pi2== frac left(n1 right)!!n!! cdot frac pi2 endarray









 beginarrayln=9: int limits frac pi20 cos9tdt= frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3 int limits frac pi20 costdt= frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3left. left( sint right) right| frac pi20== frac8 cdot6 cdot4 cdot29 cdot7 cdot5 cdot3 cdot1= frac left(n1 right)!!n!! endarray







Where is n !! - double factorial. The double factorial of n is denoted by n !! and is defined as the product of all natural numbers in the interval [1, n] having the same parity as n



Due to the fact that 2n + 1 is an odd number for any value of n, we obtain for the left boundary of our inequality:





 int limits frac pi20 cos2n+1tdt= frac left(2n right)!! left(2n+1 right)!!







Find the integral from the right border:

(here we use the same reduction formula that was proved earlier)





 beginarrayl int limits 0infty frac1 left(1+x2 right)ndx= left[ beginarraylx= tant to beginarray20cx=0 tot=0x= infty tot= frac pi2 endarraydx= fracdt cos2t frac11+x2= frac11+ tan2t= cos2t endarray right]== int limits frac pi20 cos2n2tdt= left[ left(2n2 right) rmevenright]= frac left(2n3 right)!! left(2n2 right)!! cdot frac pi2 endarray







After we have estimated the left and right sides of the inequality, we make some transformations to evaluate the limits of the left and right sides of the inequality, provided that n tends to ∞:





 beginarrayl frac left(2n right)!! left(2n+1 right)!!< frac1 sqrtn cdotI< frac left(2n3 right)!! left(2n2 right)!! cdot frac pi2 sqrtn cdot frac left(2n right)!! left(2n+1 right)!!<I< sqrtn cdot frac left(2n3 right)!! left(2n2 right)!! cdot frac pi2 endarray







Square both sides of the inequality:





n cdot frac left( left(2n right)!! right)2 left( left(2n+1 right)!! right)2<I2<n cdot frac left( left(2n3 right)!! right)2 left( left(2n2 right)!! right)2 cdot frac pi24







Now let's do a little digression. In 1655, John Wallis (an English mathematician, one of the forerunners of mathematical analysis.) Proposed a formula for determining the number π. J. Wallis came to her, calculating the area of ​​a circle. This product converges extremely slowly; therefore, the Wallis formula is of little use for practical calculation of the number π. But it’s great for evaluating our expression :)





 pi= mathop lim limitsn to infty frac1n left[ frac left(2n right)!! left(2n1 right)!! right]2







Now we transform our inequality so that we can see where to substitute the Wallis formula:





 beginarrayl fracn2 left(2n+1 right)2 cdot frac1n cdot frac left( left(2n right)!! right)2 left( left(2n1 right)!! right)2<I2< frac1 frac1n cdot frac left( left(2n2 right)!! right)2 left( left(2n3 right)!! right)2 cdot frac pi24 mathop lim limitsn to infty left[ fracn2 left(2n+1 right)2 right] cdot mathop lim limitsn to infty left[ frac1n cdot frac left( left(2n right)!! right)2 left( left(2n1 right)!! right)2 right]<I2< frac1 mathop lim limitsn to infty left[ frac1n cdot frac left( left(2n2 right)!! right)2 left( left(2n3 right)!! right)2 right] cdot frac pi24 frac14 cdot pi<I2< frac1 pi cdot frac pi24 to frac pi4<I2< frac pi4I2= frac pi4 toI= frac sqrt pi2 endarray







It follows from the Wallis formula that both the left and right expressions tend to π / 4 as n → ∞

Due to the fact that the function exp [-x²] is even, we safely assume that





 int limits  inftyinftyex2dx=2 int limits 0inftyex2dx=2 cdot frac sqrt pi2= sqrt pi







For the first time, the one-dimensional Gaussian integral was calculated in 1729 by Euler, then Poisson found a simple way to calculate it. In this regard, he received the name of the Euler – Poisson integral.



Let's try to calculate the Gaussian integral. It can be written in different forms. After all, nothing changes the name of the variable by which the integration is taking place.





 beginarraylI= int limits 0inftyex2dxI= int limits  inftyinftyex2dx= int limits  inftyinftyey2dy= int limits  inftyinftyez2dz endarray







You can go from three-dimensional Cartesian to spherical coordinates and consider the cube of the Gaussian integral.





\ left \ {\ begin {array} {l} x = r \ sin \ theta \ cos \ varphi \\ y = r \ sin \ theta \ sin \ varphi \\ z = r \ cos \ theta \\ \ end {array} \ right. \ to x ^ 2 + y ^ 2 + z ^ 2 = r ^ 2







The Jacobian of this transformation can be calculated as follows:





\ begin {array} {l} J = \ left | {\ begin {array} {* {20} c} {\ frac {{\ partial x}} {{\ partial r}}} & {\ frac {{\ partial x}} {{\ partial \ theta}} } & {\ frac {{\ partial x}} {{\ partial \ varphi}}} \\ {\ frac {{\ partial y}} {{\ partial r}}} & {\ frac {{\ partial y }} {{\ partial \ theta}}} & {\ frac {{\ partial y}} {{\ partial \ varphi}}} \\ {\ frac {{\ partial z}} {{\ partial r}} } & {\ frac {{\ partial z}} {{\ partial \ theta}}} & {\ frac {{\ partial z}} {{\ partial \ varphi}}} \\ \ end {array}} \ right | = \ left | {\ begin {array} {* {20} c} {\ sin \ theta \ cos \ varphi} & {r \ cos \ theta \ cos \ varphi} & {- r \ sin \ theta \ sin \ varphi} \\ {\ sin \ theta \ sin \ varphi} & {r \ cos \ theta \ sin \ varphi} & {r \ sin \ theta \ cos \ varphi} \\ {r \ cos \ theta} & {- r \ sin \ theta} & 0 \\ \ end {array}} \ right | = \\ = r ^ 2 \ sin \ theta \\ \ end {array}











 beginarraylI3= int limits  inftyinfty int limits  inftyinfty int limits  inftyinftyex2y2z2dxdydz= int limits2 pi0 int limits 0pi int limits 0inftyer2Jdrd thetad varphi== int limits2 pi0d varphi int limits 0pi sin thetad theta int limits 0inftyer2r2dr endarray







We calculate the integrals sequentially, starting with the inner one.





 beginarrayl int limits 0inftyer2r2dr= left[ beginarraylu=r todu=drdv=rer2dr tov= intrer2dr= frac12 inter2dr2= frac12er2 endarray right]== left. left( frac12rer2 right) right| 0infty+ frac12 int limits 0inftyer2dr= frac12 int limits 0inftyer2dr= frac12 cdot fracI2= fracI4 int limits 0pi sin thetad theta= left. left( cos theta right) right| 0pi= left( cos pi right) left( cos0 right)=1+1=2 int limits2 pi0d varphi= left. varphi right|2 pi0=2 pi endarray







Then as a result we get:





 beginarraylI3=2 pi cdot2 cdot fracI4 toI3= piI toI2= pi toI= sqrt piI= int limits  inftyinftyex2dx= sqrt pi endarray







The Euler-Poisson integral is often used in probability theory.



I hope that for someone the article will be useful and help to understand some mathematical techniques :)



All Articles