èšäºã®æŠèŠ
- åé¡ã®å£°æã
- åé¡ã®æ£åŒãªèª¬æã
- ã¿ã¹ã¯ã®äŸã
- é衚瀺ã®ç·åœ¢äŸåé¢ä¿ãæã€åæããŒã¿ã®ããã€ãã®äŸã
- ä»ã®é ãããäŸåé¢ä¿ãããŒã¿ã«å«ãŸããŠããå¯èœæ§ããããŸãã
- äŸåé¢ä¿æ€çŽ¢ãèªååããŸãã
- èšå·ã®æ°ããããå€ãäžåã£ãŠããŸãã
- èšå·ã®æ°ããããå€ãè¶ ããŠããŸãã
åé¡ã®å£°æ
å€ãã®å Žåãæ©æ¢°åŠç¿ã§ã¯ãããŒã¿ãã¢ããªãªãªã«åéãããç¶æ³ãããããã®å Žåã«ã®ã¿ç¹å®ã®ãµã³ãã«ãæ¢ç¥ã®ã¯ã©ã¹ã«åå²ããå¿ èŠããããŸãã ãã®çµæãæ¢åã®æ©èœã»ãããå¹æçãªåé¡ã«é©ããŠããªãå Žåã«ãç¶æ³ãçºçããããšããããããŸãã å°ãªããšãæåã®è¿äŒŒãšããŠã
ãã®ãããªç¶æ³ã§ã¯ãåã ã«æ©èœã匱ãã¡ãœããã®æ§æãæ§ç¯ããããšããæ©èœéã®é ããé¢ä¿ãæããã«ããããšã§ããŒã¿ãå å®ãããããšããå§ããããšãã§ããŸãã ãããŠãèŠã€ãã£ãäŸåé¢ä¿ã«åºã¥ããŠãæ°ããæ©èœã®ã»ãããæ§ç¯ããŸãããã®äžéšã¯ãåé¡ã®å質ãå€§å¹ ã«åäžãããå¯èœæ§ããããŸãã
åé¡ã®æ£åŒãªèª¬æ
nåã®å®æ°ã§å®çŸ©ãããLåã®ãªããžã§ã¯ããåé¡ããã¿ã¹ã¯ã«çŽé¢ããŠããŸãã ã¯ã©ã¹ã©ãã«ã-1ãš+1ã®å ŽåãåçŽãª2ã¯ã©ã¹ã®ã±ãŒã¹ãèããŸãã ç§ãã¡ã®ç®æšã¯ãç·åœ¢åé¡åšãã€ãŸã-1ãŸãã¯+ 1ãè¿ãé¢æ°ãæ§ç¯ããããšã§ãã ããã«ãç¹åŸŽèšè¿°ã®ã»ããã¯ãç¹å®ã®ç¹åŸŽã»ããã§æž¬å®ãããå察ã¯ã©ã¹ã®ãªããžã§ã¯ãã«å¯ŸããŠãã³ã³ãã¯ãæ§ä»®èª¬ãå®éã«æ©èœãããåé¢è¶ å¹³é¢ãéåžžã«æ§ç¯ããããããªãã®ã§ãéå¹ççã
ã€ãŸãããªããžã§ã¯ãã®ç¹å®ã®ã»ããã«é¢ããåé¡åé¡ãå¹ççã«è§£æ±ºã§ããªããã®ããã«èŠããŸãã
ãããã£ãŠãæ°å€-1ãŸãã¯1ãå«ãå¿çåãšãLè¡ãšnåã§æ§æãããå±æ§å€X1 ... Xnã®å¯Ÿå¿ãããããªãã¯ã¹ããããŸãã
ç§ãã¡ã¯ãåé¡ããããªããžã§ã¯ãã®æ°ããæ©èœãšããŠæ©èœããæé©ãªåé¡åãæ§ç¯ããã®ã«åœ¹ç«ã€å¯èœæ§ã®ãããã®ãããªäŸåé¢ä¿FïŒXiãXjïŒãèŠã€ããã¿ã¹ã¯ãèšå®ããŸããã
ã¿ã¹ã¯ã®äŸ
äŸã䜿çšããŠé¢æ°FïŒXiãXjïŒãèŠã€ããåé¡ãèŠãŠã¿ãŸãããã ãã¡ãããéåžžã«éèŠã§ãã
äŸã¯ã¬ãã©ã³ãŒã³ã«é¢é£ä»ããããŸãã ã¬ãã©ã³ãŒã³ã¯ã誰ããç¥ããªãå Žåãç§ãã¡ã®è¿ãã®ã©ããã«ååšããŸãããã»ãšãã©èª°ãèŠãŸããã§ããã ãããŠã圌ãã¯ã人ã ã®ããã«ãèªåã®ã³ã³ãã¥ãŒã¿ãŒãã€ã³ã¿ãŒãããããœãŒã·ã£ã«ãããã¯ãŒã¯ãæã£ãŠããŸãã ã»ãšãã©ã®å Žåã圌ãã¯éãæ¢ããŠããã°ã«ä¿ç®¡ããããšã«å°å¿µããŠããŸãã ããããæ£çŽãªã¬ãã©ã³ãŒã³ã«å ããŠããã®éèŠãªä»äºããè±åŽããããšããŠãã人ãããŸãã ãããã¯åäœå¶çã¬ãã©ã³ãŒã³ãšåŒã°ããŸãã ãããŠãã¬ãã©ã³ãŒã³ã®éã®éã®å¢å çãæãŸããå€ã«éããããšãã§ããªãã®ã¯ããŸãã«ãããã®ããã§ãïŒ
ã¬ãã©ã³ãŒã³ã®äžçã«ãæ©æ¢°åŠç¿ãããããã圌ãã¯å€§èŠæš¡ãªãœãŒã·ã£ã«ãããã¯ãŒã¯ã§ã®è¡åã«åºã¥ããŠããããèŠã€ããããšãåŠã³ãŸããã ããããåé¡ããããŸãïŒ æ¯å¹Žå€ãã®è¥ããœãŒã·ã£ã«ãããã¯ãŒã¯ãåžå Žãç²åŸããããšããŠããŸãããããã§ãåæã®ããã«ãŠãŒã¶ãŒã«é¢ããååãªããŒã¿ãåéããããšãã§ããŸããïŒ ãããŠã圌ããåéããããŒã¿ã¯ããŸãšããªã¬ãã©ã³ãŒã³ãšåæçãªã¬ãã©ã³ãŒã³ãåºå¥ããã®ã«ååã§ã¯ãããŸããïŒ ãããŠããã§ã¯ãå©çšå¯èœãªæ©èœã®èª¬æã§é ããäŸåé¢ä¿ãæ¢ãå¿ èŠããããããäžèŠããã ãã§ã¯äžååãªããŒã¿ã«åºã¥ããŠãæé©ãªåé¡åšãæ§ç¯ã§ããŸãã
ãã ãããœãŒã·ã£ã«ãããã¯ãŒã¯ã®äŸã¯ããããè€éãããŠè§£æã§ããªããããæ žã¬ãã©ã³ãŒã³ããã»ããµã®äŸã§åæ§ã®åé¡ã解決ããŠã¿ãŸãããã ãããã¯4ã€ã®äž»èŠãªæ©èœã«ãã£ãŠç¹åŸŽä»ããããŸãïŒ
aïŒåå¿åšã®å転é床ïŒçŸäžrpmïŒ
bïŒèšç®èœåïŒå åã®èšç®/ç§ïŒ
cïŒè² è·æã®åå¿åšã®å転é床ïŒçŸäžrpmïŒããã³
dïŒè² è·æã®èšç®èœåïŒå åèšç®/ç§ïŒ
æ žåŠçæ¥è ã¯ã2ã€ã®äž»èŠäŒæ¥ïŒ0ãš1ââïŒãBlack ZeroããšãThe FirstãïŒïŒã«ãã£ãŠçç£ãããŠããŸãã åæã«ãBlack Zeroã®äŸ¡æ Œã¯åé¡ã§ããããªãœãŒã¹ã5åäœããªã£ãŠããŸãïŒ ãã ããäž»ãªç¶æ ã æ žåŠçæ¥è ã®ãµãã©ã€ã€ãŒã¯ãåžžã«é¡§å®¢ã欺ããThe Firstãã·ã³ã«ãéãæ¯æã代ããã«ãå®äŸ¡ã§ä¿¡é Œæ§ã®äœãBlack Zeroãã·ã³ãäŸçµŠããããšããŠããŸãã åæã«ãååçã®é転ãã©ã¡ãŒã¿ã®å€åã¯éåžžã«å€§ãããããã»ãšãã©ã®æž¬å®ã®äž»ãªç¹æ§ã«å¿ããŠåºå¥ããããšã¯ã§ããŸããã è¡š1ã¯ãåäŒæ¥ã«å¯ŸããŠã©ã³ãã ã«éžæããã50å°ã®ãã·ã³ã®ç¹æ§ã瀺ããŠããŸãã
è¡š1
æ¯èŒã®äŸ¿å®äžãã¯ã©ã¹1ãšã¯ã©ã¹0ã®ãªããžã§ã¯ãã¯åçŽæ¹åã§ã¯ãªããçžäºã«é¢é£ããåŽã«é 眮ãããŸãã äžèšã®äŸã§ã¯ãäžè¬çã«ãèšç®èœåã®ãã©ã¡ãŒã¿ãŒã¯ååçã®é床ã«äŸåããç°ãªãã¡ãŒã«ãŒã®æ©æ¢°ã§ã¯å€å°ç°ãªãããšãããããŸãïŒBlack Zeroæ©æ¢°ã§ã¯ãéåžžã®æ¡ä»¶äžã§ã¯ãé¡äŒŒã®ååçé床ã§ã®èšç®æ°ã¯æåã®æ©æ¢°ã«æ¯ã¹ãŠå€ããªããŸãããè² è·ã®äžã§ã ãã¡ãããããã¯ãThe Firstãã·ã³ãè² è·ãªãã§ãã©ãºãç¯çŽã¢ãŒãã«å ¥ããããã©ãŒãã³ã¹ããããã«äœäžããããã§ãã ããããè² è·ãããããšã圌ãã¯æããã«ç«¶åä»ç€Ÿã®å ãè¡ããŸãã
ãã®äŸåé¢ä¿ãèŠããã®ã¯ãããŒã¿ãç¹å¥ã«éžæãããŠããããã§ãã å®éã«ã¯ããã®çºæã®äŸã®ããã«çŸããåé¡ã§ããªãæ°åã®æ¬¡å ãšæ°åïŒæ°çŸã§ã¯ãªãã«ããŠãïŒã®æšèã®äžã§ããã®ãããªç®ã§äŸåé¢ä¿ãèŠãã®ã¯éåžžäžå¯èœã§ãã ãããŠãåæ©èœã®ããžãã¹å šäœã®ç¹ç°æ§ããŸã å®å šã«æ確ã§ãªãå Žåãç®ã§ãã®ãããªãã¿ãŒã³ãèŠã€ããããšããããšã¯ãå°ãªããšãããã©ãŒãã³ã¹ã®äœã掻åã§ãã
ãããã£ãŠãã¢ã«ãŽãªãºã ãåŠç¿ããèªååã®ãã©ãã€ã ã®ãã¬ãŒã ã¯ãŒã¯å ã§ç§»åããŠãæ倧ã®å±æ§éã®äŸåé¢ä¿ãèŠã€ããããã»ã¹ãããã¥ãŒãã³ãã¡ã¯ã¿ãŒãé€å€ããããšæããŸãã é衚瀺ã®äŸåé¢ä¿ã®ããã€ãã®ãªãã·ã§ã³ãèŠãŠãããããæ€åºããããã»ã¹ãæŽçããæåã®æ¹æ³ãèããŠã¿ãŸãããã
é衚瀺ã®ç·åœ¢äŸåé¢ä¿ãæã€åæããŒã¿ã®ããã€ãã®äŸ
äŸåé¢ä¿ã®ããªã¢ã³ã1ãXj= K * Xi + CãK = 1
äŸåé¢ä¿ã®æåã®ããªã¢ã³ãã¯ããªããžã§ã¯ãã®jçªç®ã®ç¬Šå·ã¯içªç®ã®ç¬Šå·ãããã³å®æ°ã§è¡šãããèªç±é ã«ç·åœ¢ã«äŸåããŸãã
çãäŸã§ã¯ãæ¯äŸä¿æ°ã¯1ã«çãããªããããèªç±é ã®å¯äžã確èªããæ¹ãé©åã§ãã
ã¯ã©ã¹0ã§ã¯b = a-1ãd = c-1.1ãšããã¯ã©ã¹1ã§ã¯ãã®éã§ãïŒb = a-1.1ãd = c-1ïŒ
ãã®å Žåããã¡ãããå€ãæã€æ°ããåã
ïŒd-bïŒ
ãããã0ããã³1ã¯ã©ã¹ã®ãªããžã§ã¯ãã®å€ãæäŸããŸã
ïŒc-1.1ïŒ-ïŒa-1ïŒ= c-a-0.1
ãããŠ
ïŒc-1ïŒ-ïŒa-1.1ïŒ= c-a + 0.1
ããã«å¿ããŠã ãããŠãããã¯ãåAãšåCã®ããŒã¿ã®åäžæ§ãèãããšïŒãããŠãããã¿ã¹ã¯ã®æ¡ä»¶ã®1ã€ã§ãïŒããªããžã§ã¯ããåé¢ããããã®åªããããŒã«ãæäŸããŸãã ãããŠãå°ãªããšãããã®æ°ããåãæçµçãªåé¡ã«ç©æ¥µçã«è²¢ç®ããŠããããšãæåŸ ã§ããŸãã
ãã®ãããªèšç®ã®çµæã¯ãçºæãããããŒã¿ã§è¡š2ã«èŠãããšãã§ããŸãã
è¡š2
åæ§ã®ç¶æ³ã¯ãäžèŠéåžžã«åŒãç· ãŸã£ãŠããããã«èŠããŸãããå®éã«ã¯äººçã§èµ·ãããŸãã äŸãšããŠã¯ãäžå®ã®å¯äœçšã䌎ãäžé£ã®èŠå¶ãããã¢ã¯ã·ã§ã³ãå®è¡ããããã«ç¹å®ã®æ¡ä»¶ãå®è£ ããå¿ èŠããããŸãã ãã®äŸã®æ žããã»ããµãŒã®å Žåãäžå®ã®èšç®èœåã®äœäžã¯ãè² è·ã®ããã£ãç¶æ ã§ä»äºãããããã«åºå®ããã»ã¹ãéå§ããå¿ èŠæ§ã«é¢é£ããŠããå¯èœæ§ããããŸãã 人çã§ã¯ãè¿œå ã®çºé»æ©ã®ç«ã¡äžããè³æºã®äºåãžã®åºå®é åãç«åçºé»æã®å çæ©é¢ãŸãã¯ç£æ¥çšçºé»æ©ãå§åããããã®ãšãã«ã®ãŒãªã©ã
ãã ããå®éã®åé¡ã§ãã®ç¹å®ã®é¢æ°FïŒdãbïŒãéžæããããšã¯ç¢ºãã«æããã§ã¯ãããŸããã ãããã£ãŠããŸããFïŒXiãXjïŒã®ç°ãªãéžæãã©ã®ãããªçµæãããããããèããŠã¿ãŸãããã
F(Xi, Xj) = Xi/Xj
ã¿ã¹ã¯ã®å±æ§ã®èŠ³ç¹ããèšãã°ãããã§ã¯ãããšãã°è² è·æã®èšç®èœåã®äœäžïŒB / DïŒã枬å®ããããšãã§ããŸãã ããã«ããã®ãããªå£åã¯å®æ°ã«äŸåãããå®å šã«çžå¯Ÿçãªå€ã§ãããšããä»®å®ã«åºã¥ããŠããŸãã
çµæãšããŠäœãèµ·ãããèŠãŠã¿ãŸãããã
è¡š3
è¡š3ã«èŠãããããã«ãé¢ä¿ïŒA / BïŒãšïŒC / DïŒã¯æçã§ã¯ãããŸããã ãããã®å察ã®ã¯ã©ã¹ã®ãªããžã§ã¯ãã¯ãŸã éåžžã«æ··åãããŠããŸãã ããããB / Dæ¯ã¯ããµã³ãã«ãç·åœ¢åé¢å¯èœã«ããããšãæåŸ ãããŸãã ïŒB-DïŒã®å Žåãšåãã§ãã ãã ããå°ãå ãèŠãŠããã®å±æ§ã«ãããã®ç·åœ¢åé¢å¯èœæ§ã®çç±ã¯ãå·®åé¢æ°ã®å ŽåãšãŸã å€å°ç°ãªããšèšããŸãã ããã¯ã次ã®äŸã§æ確ã«ããããŸãã
ãããŸã§ã®éããã®ãã¥ã¢ã³ã¹ãäžããŠããã®äŸåé¢ä¿ã®ããªãšãŒã·ã§ã³ã§äœãééã£ãŠããã®ãèããŠã¿ãŸãããã ã¢ã«ãŽãªãºã ã®å Žå-ã»ãšãã©ãããŸããã ããããäž¡æ¹ã®ã¯ã©ã¹ã®èŠèŠçãªãµã€ã³ã¯éåžžã«è¿ãããã«æãããããããŸããã ãã¡ããããã®äŸã§ã¯ããã¹ãŠã®å€ããŠãããã®ããŸããŸãªåŽé¢ã«çŸããåæ£ãããŠããŸããã人çã§ã¯ãã®æ確ããååšããªãå ŽåããããŸãã ãã®è¡šé¢çãªåé¡ã解決ããã«ã¯ïŒ 1ã€ã®ç°¡åãªãªãã·ã§ã³ã¯ãåæ¯ã®å€ã«å¯Ÿããååã®å¢åãèšç®ããããšã§ãã ããã¯ã©ãããæå³ã§ããïŒ
æ¯çïŒX / YïŒãèšç®ãããšããYãXã®å€ã«äœååãŸããããšãã質åã«å¯ŸããçããåŸãããŸãã ãã ãããXãååŸããããã«Yã®å€ã«ããã€ã®Y-sãè¿œå ããå¿ èŠããããããšãã質åã解決ããæ¹ãæå©ãªå ŽåããããŸãã 2çªç®ã®ã±ãŒã¹ã§ã¯ãæé·ãæ¢ããŠããŸãã æé·ã¯æ£ãšè² ã«ãªããåçŽãªåŒïŒX / Y-1ïŒã§è¡šãããŸãã 1ã€ã®ãã€ãã¹ããããŸã-枬å®åäœãšããŠ1ã€ã®Yã䜿çšããããã§ãã
åã³è¡š3ïŒæãå³åŽã®2ã€ã®åïŒãèŠãŠãç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã®å¢å ãç°ãªãå åã§ããããšãæ確ã«ç¢ºèªã§ããããšã«æ³šç®ããŠãã ããã ãããã£ãŠãç°ãªãã¯ã©ã¹ã®DããBã®å€æ¹åã®æé·ã«ã€ããŠè©±ãããšãã§ããŸãã ãããŠããã®å ŽåãïŒB / DïŒæ©èœããµã³ãã«ãç·åœ¢åé¢å¯èœã«ãããšããäºå®ã§å®éã«éèŠãªåœ¹å²ãæããã®ã¯ããŸãã«ãã®å Žåã§ãã çµè«ïŒåé¢æ°ïŒïŒB-DïŒããã³ïŒB / DïŒïŒãŸãã¯B / D-1ïŒã¯ããµã³ãã«ããããã«ç°ãªãæ¹æ³ã§ç·åœ¢åé¢å¯èœã«ããŸããã€ãŸããç¹å®ã®å±æ§ãã¢ã«å¯ŸããŠçç£æ§ãé«ãã®ã¯ãã®ãã¡ã®1ã€ã ãã§ããå ŽåããããŸãã ããããããã«ã€ããŠã¯åŸã§è©³ãã説æããŸãã 次ã«ã3çªç®ã®é¢æ°ã«ç§»ããŸããã-æåã®äŸã®æåŸã®é¢æ°ã§ãã
ïŒA / BïŒ/ïŒC / DïŒ-ç·åœ¢é¢ä¿æ¯
ãŸãã¯
ïŒA / B-1ïŒ/ïŒC / D-1ïŒ-æé·ç
ç·åœ¢é¢ä¿ãŸãã¯å¢åé¢ä¿ãæ€èšããåæ©ã¯äœã§ããïŒ æ©åšã®2ã€ã®ç°ãªãã¡ãŒã«ãŒã®äŸã§ã¯ããã®ãããªèšç®ã«ã¯æ¬¡ã®æå³ããããŸãããè² è·ãæ¥ç¶ãããŠããå Žåãçç£æ§ã®é床äŸåæ§ã¯ã©ãã ãå€åããããã
ãŸããããã¯æ£åœãªè³ªåã§ãã ããŸããŸãªã¡ãŒã«ãŒã«ã€ããŠè©±ããŠããããšãèãããšãè² è·ã®å¢å ã«äŒŽãæ©åšã®ããŸããŸãªåäœãäºæ³ãããŸãã 人çã®ç¶æ³ã§ã¯ãFïŒXiãXjïŒãšFïŒXiiãXjjïŒã®2ã€ã®é¢ä¿ãããããããããå®éã«ã¯æªç¥ã®ãã©ã¡ãŒã¿ãŒã»ããã®é¢æ°ã§ãããšããäºå®ã«ã€ããŠè©±ãããšãã§ããŸãïŒFïŒMïŒãšF 'ïŒMïŒã ãããŠããã®ä»®èª¬ãåœãŠã¯ãŸãå Žåãé¢æ°Fããã³Fã®ãããããç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã«å¯ŸããŠçããçŸããå Žåã§ãããã®æ§æF ''ïŒFãF 'ïŒã¯ç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã«å¯ŸããŠç°ãªãããã«çŸããããšããããšä»®å®ã§ããŸãããããã®ç°ãªãã¯ã©ã¹ã®çŸå®ã¯ãéåMããã®æªç¥ã®ãã©ã¡ãŒã¿ãŒã«å¯ŸããŠèããç°ãªããŸãã
ãã¡ããããã®äŸã§ã¯ãããŒã¿ãé©åã«ã³ã³ãã€ã«ããããããã®2次é¢ä¿ã®ã¬ãã°ãã©ãããæ¥ãããæåã«ç¥ã£ãŠããŸãã 人çã§ã¯ãç§ãã¡ã¯ãããç¥ããããã®ãããªé¢ä¿ãååšãããšããäºå®ã®ã¿ã«äŸåãããããããŸããã ãããã£ãŠã圌女ãèŠã€ããããšããŸãã
è¡š3ïŒäžå€®ã®4ã€ã®åïŒã«æ»ãããããã®é¢æ°ããã¢ïŒA / BïŒãšïŒC / DïŒã§ã©ã®ããã«æ©èœããããèŠãŠã¿ãŸãããã ã©ã¡ãããµã³ãã«ãç·åœ¢åé¢å¯èœã«ããããšãããããŸãã åè¿°ã®ãšããïŒB-DïŒããã³ïŒB / DïŒã
ãã®äŸã®å¯äžã®éèŠãªéãã¯ãé¢æ°ïŒA / BïŒ/ïŒC / DïŒã®å€ãäºãã«éåžžã«è¿ãããé¢æ°ïŒA / B-1ïŒ/ïŒCã䜿çšãããšãã®ãªããžã§ã¯ãã®åå²ã¹ããªããã®å¹ / D-1ïŒã¯ã¯ããã«åºãã§ãã ãã®ãããªçµæãèŠãŠã次ã®2ã€ã®è³ªåãããããšãã§ããŸãã
- ãã®éãã¯éèŠã§ããïŒ
- äž¡æ¹ã®æ©èœã¯åžžã«åãåé¢åã瀺ããŠããŸããïŒ
æåã®è³ªåãžã®çãïŒã¯ããæ§æã«ã¡ããªãã¯åé¡æ¹æ³ãå«ããããã«äœããã®æ¹æ³ãèšç»ããå Žåã å®éãå¹ ã®åºãåå²ã¹ããªããã§ã¯ãã³ã³ãã¯ããªä»®èª¬ã®æ¹ãããŸãæ©èœããŸãã ããã«ãèŠèŠåã®å質ã«ã€ããŠè©±ãããšãã§ããŸãã ãã¡ããããã®äŸã§ã¯ããã¬ãŒãã³ã°åŸã®ã¡ããªãã¯ã¡ãœããã¯ãïŒA / BïŒ/ïŒC / DïŒå±æ§ã«åºã¥ããŠãµã³ãã«ãæ£ç¢ºã«å ±æããããšã«æ³šæããŠãã ããã ãã ããå®éã«ã¯ãã¡ããªãã¯ã䜿çšããå Žåã®çžäºäŸµå ¥ã¯ã¯ããã«éèŠã§ãã
ãã®äŸã®2çªç®ã®è³ªåã«å¯Ÿããçãã¯ãããããååã«æçœã§ã¯ãããŸããã 次ã®äŸãæ€èšãããŸã§ãå®ã«æµ®ãããŸãŸã«ããŠãããŸãããã
äŸåããªã¢ã³ã2. Xj = K * Xi + CãK = 1ãC-äž¡æ¹ã®ã¯ã©ã¹ã®ã¯ã³ãµã€ã³
ãã®äŸã¯åè ã®ç¹æ®ãªã±ãŒã¹ã§ãããèªç±æ¡ä»¶ã¯ãã¹ãŠã®ãªããžã§ã¯ãã«å¯ŸããŠãŒããã倧ããå€ãŸãã¯ãŒãããå°ããå€ãåããŸãã ãããã©ã®ãããªå¹æãããããããèŠãŠã¿ãŸãããã
äž¡æ¹ã®ã¯ã©ã¹ã§b = a-1ããã ãã¯ã©ã¹0ã§ã¯d = c-1.2ãã¯ã©ã¹1ã§ã¯c-1.3ãšããïŒ
ãã®å Žåããã¡ãããå€ãæã€æ°ããåã
ïŒB-DïŒã¯ããããã0ããã³1ã¯ã©ã¹ã®ãªããžã§ã¯ãã®å€ãæäŸããŸã
ïŒc-1ïŒ-ïŒa-1.2ïŒ= c-a + 0.2
ãããŠ
ïŒc-1ïŒ-ïŒa-1.3ïŒ= c-a + 0.3
ããã«å¿ããŠã ãããŠãããã¯ãåAãšåCã®ããŒã¿ã®åäžæ§ãèãããšïŒãããŠãããã¿ã¹ã¯ã®æ¡ä»¶ã®1ã€ã§ãïŒããªããžã§ã¯ããåé¢ããããã®åªããããŒã«ãæäŸããŸãã ç¹°ãè¿ãã«ãªããŸãããå°ãªããšãããã®æ°ããåãæçµçãªåé¡ã«ç©æ¥µçã«è²¢ç®ããŠããããšãæåŸ ã§ããŸãã
ãã®ãããªèšç®ã®çµæã¯ãçºæãããããŒã¿ã§è¡š4ã«èŠãããšãã§ããŸãã
è¡š4
å·ŠåŽã®8åã¯ãã¯ã©ã¹0ããã³1ã®ç¬Šå·aãbãcãdã®å®éã®å€ã§ããæ®ãã®åã®å€ã¯ãããããŒã®é¢æ°ã«åŸã£ãŠèšç®ãããŸãã 2ã€ã®å³åŽã®åã®å€ïŒB-DïŒã
ããã§ã¯ãäŸ1ã§éžæãç·åœ¢åé¢å¯èœã«ããããšãã§ããæ¢ç¥ã®é¢æ°ã䜿çšããçç±ãèŠãŠã¿ãŸãããã
F(Xi, Xj) = Xi/Xj
è¡š4ãããããããã«ããã®å Žåã®æçãªé¢ä¿ã¯èŠã€ãããŸããã ãŸããããŸããŸãªæ¹æ³ã§èšç®ããå€ã§ããåã®æ¯çïŒB / DïŒã§ããæºè¶³ã®ããçµæã¯åŸãããŸããïŒå³åŽã®5çªç®ãš6çªç®ã®åïŒã ããããåé¡ã¯äœã§ããïŒ ç¡æäŒå¡ã®æå³ãå°ãå€æŽããŸããïŒ ãã®çç±ã¯ãæåã®äŸã§ã¯ãããŸããŸãªã¯ã©ã¹ã®ç¡æã¡ã³ããŒã®èšå·ãç°ãªãããã§ãã ãããŠãããããŸãã«ãµã³ãã«ãç¹æ§äžã§çŽç·çã«åé¢å¯èœã«ãããã®ã§ãïŒB / DïŒã
ïŒA / BïŒ/ïŒC / DïŒ-ç·åœ¢çµåã®æ¯çãŸãã¯
ïŒA / B-1ïŒ/ïŒC / D-1ïŒ-æé·ç
ã¬ãã©ã³ãŒã³ã³ã³ãã¥ãŒã¿ãŒã«é¢ããå å ¥èŠ³ã®ããäŸã§ã¯ããã®èšç®ã¯çã«ããªã£ãŠããããšãæãåºããŠãã ããããè² è·ãããã£ãç¶æ ã§ã®çç£æ§ã®é床ãžã®äŸå床ã¯ã©ããããããã
ç¹å¥ã«èª¿æŽããã³ãœãŒããããããŒã¿ã§ã¯ãè² è·ãããã£ãç¶æ ã§ã®ããã©ãŒãã³ã¹ã®äœäžããThe Firstãã·ã³ã®æ¹ãBlack Zeroãã·ã³ããããããã«é«ãããšãèçŒã§ããããŸãã ïŒãããããªããããããé«äŸ¡ãªã®ã§ããããïŒæããã«ãBlack Zeroã¯ä¿¡é Œæ§ãç¶æããªãããæ žããã»ããµãŒãåŒãåºãããããå€ãæŸãåãããšããŠããŸãããããã£ãŠã圌ãã¯æåã®ããã»ããµãŒãã5åå°ãªããµãŒãã¹ãæäŸããŸãïŒããŒã±ãã£ã³ã°ã®ããã«ãBlack ZeroïŒïŒ
ããŠãç§ãã¡ã®é¢ä¿ã«æ»ããŸãããã ããäžåºŠè¡š4ãèŠããšãéåžžã«èå³æ·±ãããšã1ã€ããããŸãã
å¢åæ¯ïŒA / B-1ïŒ/ïŒC / D-1ïŒã¯ãµã³ãã«ãç·åœ¢åé¢å¯èœã«ããŸãããç·åœ¢é¢ä¿ïŒA / BïŒ/ïŒC / DïŒã®æ¯çã¯ããªã倧ããªç¯å²ã®äžç¢ºå®æ§ãæ®ããŸãïŒ ãšããã§ããäž¡æ¹ã®æ©èœã¯åžžã«åãåé¢èœåã瀺ããŠããŸããïŒããšãã質åã«å¯Ÿããçããããã«ãããŸã
ïŒè¡š4ã§ã¯ããããã¯å³åŽã®7çªç®ãã10çªç®ã®åã§ããéè€ããªãå€ã匷調衚瀺ãããŠããŸãïŒ
ããã 3çªç®ã®äŸã«ç§»ããŸãããä»ã®ãšããã¯æ¬¡ã®ããšãèŠããŠãããŠãã ããã
- ç·åœ¢é¢ä¿ãšæé·é¢ä¿ã®é¢ä¿ã®é¢æ°ã¯ãåžžã«åãåå²èœåã瀺ããšã¯éããŸããã
- ãã®äŸã§ã¯ãæé·çé¢æ°ã®åé¢èœåãç·åœ¢é¢ä¿é¢ä¿é¢æ°ã®åé¢èœåãããé«ãå Žåãå·®é¢æ°ã100ïŒ ã®åé¢èœåã瀺ããŸããããå±æ§ã®ãã¢ã®é¢ä¿ã¯æé©ãªåé¡åãæ§ç¯ããã®ã«ããŸãæçã§ã¯ãããŸããã§ããã
äŸåé¢ä¿ã®ããªã¢ã³ã3. Xj = K * Xi + CãKïŒ= 1ãC = 0
å¥ã®ç¹å¥ãªã±ãŒã¹ã§ãããèªç±é ã§ã¯ãªãä¿æ°ãæªç¥ã®äŸåé¢ä¿ã§åœ¹å²ãæãããŸãã
äž¡æ¹ã®ã¯ã©ã¹ã§b = a-1ãšããããã¯ã©ã¹0ã§ã¯d =ïŒc * 0.99ïŒãã¯ã©ã¹1ã§ã¯ïŒc * 0.98ïŒãšãã
èšç®çµæãè¡š5ã«ç€ºããŸããæµConsiderã«æ€èšããŠãã ããã
è¡š5
ãã®äŸã§ã®äŸåæ§ãžã®å¯äžã¯ä¿æ°ã«ãã£ãŠã®ã¿è¡ããããããäºæ³ããã100ïŒ ã®åé¢å¯èœæ§ã¯ãæ¯çé¢æ°FïŒXiãXjïŒ= Xi / Xjã«ãã£ãŠäžããããŸãã ãŸããæé·ã®å察ïŒå³åŽã®3åç®ãš4åç®ïŒãèŠèŠåãæ¹åããŸãã ç·åœ¢é¢ä¿ã®é¢ä¿ããæé·ã®é¢ä¿ãšã¯ç°ãªãçµæã瀺ããŠããŸãã ãŸããããã«æªãããšã«ã
ããããåã®äŸã«ãã£ãå®å®ããæçãªå·®åé¢æ°ïŒ2ã€ã®å³åŽã®åïŒã¯ãä»åã¯ããªãåºãäžç¢ºå®æ§ã®ãŸãŒã³ãæ®ããŠããŸãã ãããŠããããæé·çé¢æ°ã®äžç¢ºå®æ§ã®ãŸãŒã³ãšäžèŽããããšã¯æ³šç®ã«å€ããŸãã èªåãæ¯èŒããŸãïŒå³åŽã®å1ã2ã9ã10ãç°ãªãã¯ã©ã¹ã®äºãã«çŽ ãªå€ã匷調衚瀺ãããŠããŸãïŒã
ä¿æ°ãšèªç±é ã®äž¡æ¹ãå¯äžããå Žåãç¶æ³ã¯ã©ããªããŸããïŒ ç§ãã¡ãåã ã«æ€èšããé¢ä¿ã®ã©ããããµã³ãã«ãç·åœ¢åé¢å¯èœã«ããªãããšãæåŸ ãããŸãã ãã ããç°ãªãèšç®åã®äžç¢ºå®æ§ã®ç¯å²ã«ã¯ããµã³ãã«ãªããžã§ã¯ãã®ç°ãªããµãã»ãããå«ãŸããŸãïŒ ãã¡ãããããã¯ãç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã100ïŒ åé¢ããäžé£ã®èšç®ããããã£ãŒãã£ã«åé¢è¶ å¹³é¢ãæ§ç¯ããå¯èœæ§ãæãé«ãããšãæå³ããŸãã
è¡š6ã®ããŒã¿ã®äŸãèŠãŠã¿ãŸãããããã®é¢æ°ãŸãã¯ãã®é¢æ°ã¯ããããã®ããŒã¿ãäœæãããšãã«èšå®ããäŸåé¢ä¿ã§ã©ã®ããã«ããèªèº«ã瀺ãããã瀺ããŸãã
ã¯ã©ã¹0ã®å ŽåïŒ
B = A - 1
D = 0,95*B - 0,55
ã¯ã©ã¹1ã®å ŽåïŒ
B = A - 1,1
D = 0,965*B - 0,5
è¡š6
BãšDã®é¢æ°ã®èšç®å€ã«ã€ããŠã¯ãåçŽãªæ¯çãç·åœ¢é¢ä¿ã®æ¯çãæé·ãããã³æé·ã«å¯Ÿããéæ°ãéåžžã«é¡äŒŒããçµæãäžããããšãããããŸãã ãã®å Žåãåã®äŸïŒè¡š5ïŒã§æãåºãããã«ãåçŽãªé¢ä¿ã¯ãµã³ãã«ãç·åœ¢åé¢å¯èœã«ããŸããããç·åœ¢é¢ä¿ã®é¢ä¿ã¯éåžžã«åºãäžç¢ºå®æ§ã®ãŸãŒã³ãæ®ããŸããïŒããã¯ãå ã®äŸã®ç¶æ³ã«å¯Ÿããç·åœ¢é¢ä¿ã®é¢ä¿é¢æ°ã®äœ¿çšã®åé·æ§ã«ãããã®ã§ãïŒ ã
ãŸããåã®äŸãšã¯å¯Ÿç §çã«ãæé·ã®æ¯çã¯ç·åœ¢é¢ä¿ã®æ¯çããããµã³ãã«ãæªåãããããšãããããŸãã ãããŠãå·®åé¢æ°ã¯ã²ã€ã³ã®æ¯ãããããã«æªãããã©ãŒãã³ã¹ãäžããŸããïŒéå»ã®ãã¹ãŠã®äŸã§ããããã®æå¹æ§ã¯åãã ã£ãããšãæãåºããŸãïŒã ããã¯å€ããèšããŸãã
ãŸã ãæé·çã¯åçŽãªéããšåãããã©ãŒãã³ã¹ã瀺ãå¿ èŠã¯ãããŸããã
第äºã« ãç°ãªãé¢æ°ã¯ãé ããé ããäŸåé¢ä¿ã®çã®æ§è³ªã«å¿ããŠãç°ãªãå¹ ã®äžç¢ºå®æ§ã®ãŸãŒã³ãæ®ãããšãã§ããŸãã
第äžã« ãç®çã®é ããäŸåé¢ä¿ã®çã®æ§è³ªã«å¿ããŠãç°ãªãé¢æ°ã¯ç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã®åé¢ã®æè¯ã®çµæãäžããããšãã§ããŸãã
ä»ã®é ãããé¢ä¿ãååšããå¯èœæ§ãããããããã®æ€çŽ¢ãããé©åã«æŽçããæ¹æ³ã«é²ãåã«ãäŸååDãæã€åæããŒã¿ã®å¥ã®äŸãæããŸãããä»åã¯ãçã®é¢æ°DïŒaãbãc ïŒ è¡š7ãèŠãŠãããäžåºŠäžèšã®3ã€ã®çµè«ãæ£ããããšã確èªããŠãã ããã
è¡š7
ããŒã¿ã«ã¯ãä»ã«ã©ã®ãããªäŸåé¢ä¿ãå«ãŸããŠããå¯èœæ§ããããŸããïŒ
äžèšã®äŸã§ã¯ããã£ãŒãã£éã®ããªãåå§çãªç·åœ¢é¢ä¿ã䜿çšããŸããã ããããäŸåé¢ä¿ãç·åœ¢é¢æ°ã§ã¯ãªããä»ã®ããè€éãªãã®ã§è¡šçŸãããããã«ã§ããŸããïŒ
ãªãã ã ããšãã°ãç·è²ã®åŸ®çç©ã®ã³ãããŒã®ç¹æ®åªäœã§ã»ã³ãµãŒã«ãã£ãŠåéãããããŒã¿ãæ³åããŠãã ããã éèŠãªè£œåMã®æ¿åºŠãšãç §ælxãå«ãç°å¢ã®å€ãã®å®¢èŠ³çãªç©çãã©ã¡ãŒã¿ãŒãåºå®ãããŠãããšä»®å®ãããšãäŸåæ§MïŒlxïŒããããšä»®å®ã§ããŸãã ãããããã®ãããªé¢ä¿ã¯ç·åœ¢ã§ããïŒ ç §æã现èã®ç¹æ®çã«ç·åœ¢ã«åœ±é¿ããèµèã®æ¿åºŠãã³ãããŒã®æ°ã«ç·åœ¢ã«äŸåãããšä»®å®ãããšãäŸåæ§ã¯äºæ¬¡é¢æ°ã«ãªãã¯ãã§ãã ãã®çç±ã¯ãå现èçæ®ã®æ¹æ³ã§ãã ããªãã¡ã现èåè£ã ããã§ã¯ãå现èã®åè£é床ã®ïŒé床ããã®ïŒäºæ¬¡é¢æ°çãªå¢å ããæétã®åŸã®æ°ã«åœ±é¿ããããšã蚌æããå¿ èŠã¯ãªããšæããŸãã ãããã£ãŠãããšãã°ãæ¯çïŒâM / lxïŒã®èšç®ãè©Šã¿ãããšãã§ããŸããããã¯ãé²å æã®ç·è²çŽ°èã®ç¹æ®çã®æãŸããç·åœ¢äŸåæ§ã®è¿äŒŒå€ãšèŠãªãããŸãã ãããŠã2çš®é¡ã®ç·è²ãã¯ããªã¢ã®ç §æé床ãåçé床ã«ã©ã®çšåºŠåœ±é¿ããããå®éã«ç°ãªãå Žåããã®æ°ããæ©èœã¯ç¢ºãã«æçµåé¡ã¢ã«ãŽãªãºã ã®å質ã«åœ¹ç«ã€è²¢ç®ãããããšãã§ããŸãã
ãã¡ãããäŸåé¢ä¿ã¯éåžžã«ç°ãªãå¯èœæ§ããããåºç€ã¯1ã€ãŸãã¯å¥ã®èšå·ã«åã蟌ãŸããæå³ã«ãããŸãã ãã ãããµã³ãã«ãªããžã§ã¯ããèšè¿°ããæ©èœã®ã»ãã³ãã£ãã¯ããŒãããè±åŽãã代ããã«é衚瀺ã®äŸåé¢ä¿ãæ€çŽ¢ããããã»ã¹ãèªååããæ¹æ³ã«ã€ããŠèããŠã¿ãŸãããã
äŸåæ§æ€çŽ¢ã®èªåå
ãã®ãããç¹æ§èšè¿°ã«é衚瀺ã®äŸåé¢ä¿ããããã©ãããå€æããŸãã ç¹åŸŽã®ãã¢ãéžæããããã®è€éãªã¢ã«ãŽãªãºã ãæ¢ãããç¹åŸŽã»ããNïŒ{X1 ... Xn}å šäœã®æ¥ç¶ã®ååšã«é¢ãã仮説ãåçŽã«ãã¹ãããããšã«ãããšä»®å®ããŸãã èšå·ã®ãã¢ããå§ããåãã¢ã«ã€ããŠç¹å®ã®å€ãèšç®ããŸãããã®ãã¢ã«ãã»ããMããç¹å®ã®é¢æ°ãé©çšããçµæïŒ{F1ïŒXiãXjïŒ... FmïŒXiãXjïŒ}ã ããã«ãåé¡ã®ããã€ãã®è©³çŽ°ãèæ ®ããŠãã»ããã®æ©èœããã§ã«éžæãããŠãããšèããŠããŸãã
ã»ããMããmåã®é¢æ°ãé©çšãããã¢ã®æ°ã¯ãnÃ2ã®çµã¿åããã®æ°ãã€ãŸã次ã®ããã«ãªããŸãã
n! / (2! * (n - 2)!) = n * (n - 1) / 2 = (n² - n) / 2 = œ n² - œ n
挞è¿çãªè€éãOïŒn²ïŒãæ±ã£ãŠããããšãããããŸãã
ãããŠããããã2ã€ã®çµè«ãç¶ããŸãïŒ
- ãã®ãããªç¶²çŸ çãªæ€çŽ¢ã¯ãäºåã«èšç®ãããç¹å®ã®ãããå€ãè¶ ããªãç¹åŸŽã®æ°ãæã€ãµã³ãã«ã«å¯ŸããŠã®ã¿èš±å¯ãããŸãã
- ãã©ã€ããªããŒã¿ã«åºã¥ããŠæ¢ã«èšç®ãããåãïŒæé·ã®æ¯çãšããŠïŒé¢äžãã2次äŸåé¢ä¿ã®èšç®ã¯ããã®ãããªãã§ãã¯ã®ãã¢ãéžæããå³å¯ãªã¢ã«ãŽãªãºã ãããå Žåã«ã®ã¿èš±å¯ãããŸãã ããã§ãªãå Žåãå®å šééã¢ã«ãŽãªãºã ã®è€é床ã¯OïŒnâŽïŒã«ãªããŸãã äžè¬çãªã±ãŒã¹ã§ã¯ãäºæ¬¡äŸåæ§ã¯äœããã®åœ¢ã§ããŒã¹ã«ãªã£ãŠããŸããã匱ãå ŽåããããŸãããéåžžã«æçãªäžæ¬¡äŸåæ§ã§ãã
ãããã£ãŠãäžèšãã次ã®2ã€ã®ã±ãŒã¹ãèããããŸãã
- 笊å·ã®æ°ã¯ãããå€ãããå°ãªããããåãã¢ã®ä»®èª¬ããã¹ãããäœè£ããããŸãã
- 笊å·ã®æ°ããããå€ãè¶ ããŠããããã仮説ãå®å šã«ãã¹ããããã¢ãéžæããããã®æŠç¥ãå¿ èŠã§ãã
æåã«æåã®ã±ãŒã¹ãæ€èšããŸãã
å åã®æ°ããããå€ããå°ãªã
å³å¯ã«èšãã°ãããèªäœã§äœããã®äŸåé¢ä¿ãèå¥ããããšã¯ããã»ã©éèŠã§ã¯ãªããç°ãªãã¯ã©ã¹ã®ãªããžã§ã¯ãã«å¯Ÿããç°ãªãåäœãèå¥ããããšãéèŠã§ãããããã£ãŠãäŸåé¢ä¿ã®ååšã確èªããç¬éãçç¥ãã代ããã«æ°ããåã®æçšæ§ãããã«ç¢ºèªã§ããŸãããããè¡ãã«ã¯ã移åå¶åŸ¡ã§å¯Ÿè±¡ã®å質ã¡ããªãã¯ã®å¹³åå€ã枬å®ããããšã«ããããã®åã«æ¢ç¥ã®é«éåé¡åã®ãããããé©çšããã ãã§ååã§ãããããŠãé¢å¿ã®ããå質ã¡ããªãã¯ã®ã€ã³ãžã±ãŒã¿ãèšå®ãããããå€ãè¶ ããŠããå Žåãæ°ããåãæ®ãããå質ãå¿ èŠãªã¬ãã«ã«éããŠããªãå Žåã¯åé€ããŸãã
ãã¡ãããèªè ã¯æ¬¡ã®ããã«èãããããããŸãããå ã®å±æ§ã«åºã¥ããŠæ°ããåãèšç®ãããæçµçãªåé¡ã¢ã«ãŽãªãºã ã«ãã§ã«é«ãæçšæ§ãããå Žåã¯ã©ãã§ãããããå®éããã®å Žåãæ¢åã®æšèã«åºã¥ããŠè¿œå ã®æšèãäœæããã ãã§ããããšãããããŸãïŒçŽç²ãªå€éå ±ç·æ§ïŒããããŸãã«ã掟çãã£ãŒãã£ã®åé¡å質ã¡ããªãã¯ã®ãããå€ãèšå®ããŠããããšã§ããæ°åã®èšå·ã®é¢æ°ãèšç®ããŠããããïŒ1ã€ã§ã¯ãããŸããïŒïŒãå ¥åã§äž¡æ¹ã®åãéåžžã«æçã§ãã£ããšããŠããçµæã¯åãªããã€ãºã«ãªããŸãã
ããã¯ãåç¹æ§ã®å€ãç¹å®ã®å¹³åå€ãšåå·®ãæã€ç¬ç«ããå€ã§ããåæããŒã¿ã®äŸã«ãã£ãŠç°¡åã«æ€èšŒã§ããŸããããã«ãç°ãªãã¯ã©ã¹ã®å¹³åã«ã¯å·®ããããåã¯ã©ã¹ã®ãªããžã§ã¯ãã®ååžã¯æ£åžžã§ãïŒããšãã°ãnumpy.random.normalã䜿çšïŒããããã£ãŠãç§ãã¡ã¯ã¢ããªãªãªã«äºãã«ç¬ç«ããŠç¹æ§å€ãçæãããããäŸåé¢ä¿ãèŠã€ããè©Šã¿ã¯ãã€ãºã®ã¿ã«ã€ãªããã掟çããç¹æ§ã¯æºè¶³ã®ããåé¡å質ãäžããŸããã
ãããã£ãŠãäžèšã®äŸã¯ã掟çæ©èœãæçã§ããããšãå€æããå Žåãé¢ä¿ã®ååšãå€æã§ãããšããäºå®ã«è³æããŠããŸãã
掟çãã£ãŒãã£ã®ãããå€ã¯ãããŸããŸãªæ¹æ³ã§éžæã§ããŸããæããã«åçŽãªãµã³ãã«å šäœã«å¯ŸããŠäžåºŠã«ããŸãã¯åãã¢ã«å¯ŸããŠåå¥ã«ã 2çªç®ã®ã±ãŒã¹ã§ã¯ãå ¥åã«éä¿¡ãããååã®å¯Ÿè±¡ãšãªãå質ã¡ããªãã¯ã®ã€ã³ãžã±ãŒã¿ãŒã«å¿ããŠãå ¥åãããå€ã®å€ãå€æŽã§ããŸãã
ãã ãããããå€ãéžæããããã®2çªç®ã®ãªãã·ã§ã³ã®æãããªããžãã¯ã«ãããããããéåžžã«äžå¿«ãªèœãšãç©ŽããããŸããèŠç¹ã¯ã芪åã®1ã€ã§å質ã¡ããªãã¯ããããå€ãšããŠéžæããããšã¯å®å šã«æ£ãããšã¯éããªãããšã§ãããã®çç±ã¯ãå質å€ããããã«äœã掟çå±æ§ãå®éã«æ°ããäŸåé¢ä¿ã®è¿äŒŒã«ãªãããšãããããã®çµæã芪ãšã¯ç°ãªããªããžã§ã¯ãã®ã»ããã§èª€ã£ãŠããå¯èœæ§ãããããã§ãããããŠããã¯ãåæã®ããã®å€ãã®æ©èœã«å«ãŸããããšã§ãåé¡ã®æçµçãªå質ãæ ¹æ¬çã«åäžããããšãæå³ããŸãïŒ
ãã¹ãŠã®æŽŸçãã£ãŒãã£ã®å ±éå ¥åãããå€ã®éžæã«é¢ããŠã¯ãç§ã®æèŠã§ã¯ãé¢å¿ã®ããå質ã¡ããªãã¯ã®å€ã«åºã¥ããŠãããå€ãéžæãããšéåžžã«äŸ¿å©ã§ãïŒåå¥ã«é©çšããå ŽåïŒïŒããããã£ãŠãäŸã®ç²ŸåºŠã®ããã«ç²ŸåºŠãååŸããå Žåãå ã®å[0.52ã0.53ã0.53ã0.54ã0.55ã0.57ã0.59ã0.61ã0.63]ã®å€ã«å¯ŸããŠã掟çããŒã¿ã®æé©ãªãããå€ã¯0ã®é åã«ããå¯èœæ§ããããŸãã6ïŒå®è·µã瀺ãããã«ïŒãäœããã®æ¹æ³ã§ãããã¯ããã»ã©éèŠã§ã¯ãããŸããããªããªãããã©ã¡ãŒã¿ãŒã¯åŠç¿å¯èœã§ããããã®ãã¬ãŒãã³ã°ã¯ã¢ã«ãŽãªãºã ã®è€éããç·åœ¢çã«ã®ã¿å¢å ãããããã§ããäœããã®æ¹æ³ã§ãã®ãã©ã¡ãŒã¿ãåŠç¿ããå Žåãåæãã£ãŒãã£ã®ç²ŸåºŠã®å¯åºŠååžããéå§ã§ããŸãïŒç²ŸåºŠã¯ããã®äŸãããããã ãã§ãïŒïŒã
ååãšããŠããã¹ãŠãã·ã³ãã«ã§ãããããã£ãŠã2çªç®ã®ã±ãŒã¹ã«ç§»ããŸãã
æšèã®æ°ããããå€ãè¶ ããŠããŸã
ãã®æ¡ä»¶ã¯ãå掟çå±æ§ã®ãŠãŒãã£ãªãã£ãå®å šã«æž¬å®ããäœè£ããªãããšãæå³ããŸãããŸãã¯ããã«ïŒèšå·ã®åãã¢ã«å¯ŸããŠå°é¢æ°ãçæããäœè£ã¯ãããŸãããããã¯ç解ã§ããŸãïŒç§ãã¡ãåã®å åãæã£ãŠãããšæ³åããŠãã ããããã®å Žåãçµã¿åããã®æ°ã¯çãããªã
999 * 1000 / 2 = 499 500
ãããã«ãã¹ããããé¢æ°ã®æ°ãä¹ç®ãããŸãïŒ
ãããŠããµãŒããŒãåã ã®å±æ§ã«åŸã£ãŠéžæãããã¢ã«ãŽãªãºã ã«ãã£ãŠæ¯ç§100ååé¡å質ãèšç®ã§ããå Žåã§ããå±æ§ãçæããã¢ã«ãŽãªãºã ãéžæããæ©èœã®1ã€ã ãã§æ©èœãããŸã§ãã»ãŒ1æéååŸ ã¡ãŸã-ä»äºã¯å°ãªããšãå¥åŠã§ããäžæ¹ãå€ãã®èªç±æéãçæããŸãã=ïŒ
ããã§ã¯ãçŸã«æ»ããŸãããããã®åé¡ã¯ã©ã®ããã«è§£æ±ºã§ããŸããïŒ
åé¡ã®æçšæ§ã«åºã¥ããŠåæç¹æ§ã®æ°ãæžããè©Šã¿ã¯ãæè¯ã®ã¢ã€ãã¢ã§ã¯ãªããããããŸããããªããªããèšäºã®æåã®éšåã®åæããŒã¿ã®äŸã§ã¯ãçæ³çãªæ¡ä»¶äžã§ã¯ãããããã®èŠªãçŽç²ãªåœ¢åŒã®å®å šã«äžé©åãªæŽŸçå±æ§ãæ確ã«ç€ºãããããã§ããµã³ãã«ãç·åœ¢åé¢å¯èœã«ããããšãã§ããŸãã
ããã§ã¯ã©ãããïŒã©ãããã掟ççãªç¹åŸŽãèšç®ããå¿ èŠããããŸãããããã€ãã®å¶éããããŸãã
ãŸãããœãŒã¹ãã£ãŒãã£ã®æ°ã®ãããå€ãã©ãã ãè¶ ããŠãããã«å¿ããŠããœãŒã¹ãµã³ãã«ãªããžã§ã¯ãã®äžéšã®ã¿ã«å¯ŸããŠããããçæããŠã掟çãã£ãŒãã£ã®æçšæ§ãè©äŸ¡ã§ããŸãããµããµã³ãã«ã®ãµã€ãºãã©ã®ããã«ããããšãã質åã«ã¯å ¥ããŸãããæ°åŠçãªçµ±èšã¯ãã®è³ªåã«ããçããŸãã
次ã«ãå掟çå±æ§ã®æçšæ§ã®è©äŸ¡ã¯ãåãæšãŠãããæ©èœã«ãã£ãŠå®è¡ãããå¿ èŠããããŸããç¹°ãè¿ããŸããããããå€ã®è¶ éã®çšåºŠã«å¿ããŠãæåã®ãããå€ã®æ°ãã€ãŸãããã®åã«ãããšãã°ãå°åºãããç¹åŸŽã®å質ãè©äŸ¡ããããã«åãæšãŠãããåŠç¿æ©èœãåããkåã®æè¿åã®æ¹æ³ã䜿çšããå Žåãåºå®ãã©ã¡ãŒã¿ãŒã䜿çšããŠäœ¿çšã§ããŸãããŸãã¯ãçµæã®ãã£ãŒãã£ã»ãããéã¿ä»ãããããã«ãããã©ã«ãã®ãã©ã¡ãŒã¿ãŒã䜿çšããŠãµããŒããã¯ã¿ãŒã¡ãœãããå®è¡ããç¹å®ã®éã¿ãäžåãåãç Žæ£ããŸãããŸãã¯ããã極端ãªå ŽåïŒåææ©èœã®æ°ïŒã«ã¯ãåçŽãªRosenbaum Qæ€å®ãªã©ã®çµ±èšåºæºã®1ã€ãåçŽã«é©çšã§ããŸããæ®å¿µãªããããã®çš®ã®åºæºãé©çšããŠãæ©èœãéžæããããšã¯ã§ããŸãããã確çå¯åºŠååžã«äº€äºã®ããŒã¯ãããããç°ãªãæ¹åã«åçŽã«ãã€ã¢ã¹ãããäžå€®å€ããããŸãã
ããšãã°ãã¯ã©ã¹1ãšã¯ã©ã¹-1ã®çµæã®å±æ§ã®å€ãããããçããããŸãããŸãã¯ïŒãã€ã¢ã¹ãããæ段ã®å ŽåïŒïŒæããã«ãã©ã¡ãã®å Žåã§ããRosenbaumåºæºã¯ãµã³ãã«ããŸã£ããå€ãããªããšèŠãªããŸãããã¡ããããã®å ŽåãPearsonåºæºã¯å®å šã«æ©èœããŸããããã¯ãå€æ°ã®ç¬ç«ããééã«åå²ããåééã®å€ã®æ°ãåå¥ã«ã«ãŠã³ãããå¿ èŠãããããã§ãããã ããåæã«ãPearsonåºæºã®å®è¡ã«ã¯ããå€ãã®æéãå¿ èŠã«ãªããŸããããã¯ãæåã«å€§ãŸããªè¿äŒŒã§æé©åããããšããŠãããã©ã¡ãŒã¿ãŒã§ãã第äžã«ã掟çãã£ãŒãã£ã®æçšæ§ãè©äŸ¡ããå質ã®äœäžã蚱容ãããšããäºå®ã«ããããšã³ããªã®ãããå€ããããã«äœããªããŸãã
[9,9,9,9,9,8,8,8,8,8,8,8,8,7,7,7,7,6,6,5,4,3,2,2,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
[9,8,8,7,7,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,3,3,3,3,3,2,2,1,0]
[1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6] VS [1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,5,5,6]
ãããã£ãŠãæ¯èŒçå°ãªãè¡æ¶²ã§ãç§ãã¡ã¯å°è±¡çãªæ°ã®æãæ å ±äŸ¡å€ã®ãªãå åãåãé€ããŸããããããæ®ãã®ãã®ïŒåã³ããã®æ°ã«å¿ããŠïŒã«ã¯ãæ©èœã®æçšæ§ã®ããè¯ãè©äŸ¡ã®æ¹æ³ãé©çšã§ããŸãã
èŠçŽãããšãæ®ãã®ããè¯ãè©äŸ¡ã®ããã«ãæãæ å ±äŸ¡å€ã®ãªãå åã®æåã®è¿ éãªæ絶ã®ããã®è©äŸ¡ã®è³ªã®äœäžã«ã€ããŠè©±ããŠããã
ãŸããããã¯ãããããå®äºããæéã§ããäžèšã®ãã¹ãŠãç°¡åã«èŠçŽãããšã次ã®ç¹ã«æ³šæãã䟡å€ããããŸãã
çµè«
- å€ãã®å Žåãåé¡åé¡ã®ããŒã¿ã®ç¹æ§èšè¿°ã®é ããäŸåé¢ä¿FïŒXiãXjïŒãèŠã€ããããšãã§ããŸããããã¯ãç¬ç«ããèšå·ãšããŠæ©èœããåé¡ã®å質ãåäžãããããšãã§ããŸãã
- , .
- , .
- k*(n² â n) / 2, k â , n â .
- .
- ãœãŒã¹ãã£ãŒãã£ã®æ°ãç¹å®ã®ãããå€ãè¶ ããå Žåã掟çãã£ãŒãã£ã®æ€èšŒã¯2ã€ã®æ®µéã§å®è¡ããå¿ èŠããããŸããæãæçãªæŽŸçãã£ãŒãã£ã®è¿ éãªæåŠãšãæ®ãã®ãã£ãŒãã£ã®ãã®åŸã®ããè¯ãåæã§ããä»®ã«ãèšå·ã®éåM 'ããèšå·FïŒXiãXjïŒã®å°é¢æ°ãèšç®ããããšãã§ããŸããããã«ãããäž»æåæ³ãå ã®èšå·ã®éåMã«é©çšã§ããŸããããã®å Žåã®ãã¹ãŠã®é ããäŸåé¢ä¿ãæ瀺ã§ãããã©ããã«ã€ããŠçåãçããŸãã
ãŸããããã¯ãã¹ãŠãã®æéã§ãããããŠãã¯ããã¬ãã©ã³ãŒã³ã芪effectivelyã®äžã§åäœå¶æŽŸãããå¹æçã«èŠã€ããã®ã確ãã«å©ããããšãã§ããŸãïŒ