çãã¬ãã¥ãŒ
åºæããã£ãã·ã§ã³ãçµè«ããããã¹ããæœåºããæ ç»ã®ãã£ã©ã¯ã¿ãŒã®èªåã»ã°ã¡ã³ããŒã·ã§ã³ã®ã¢ã«ãŽãªãºã ãéçºããŠããŸãã åœç€Ÿã®ã¢ã«ãŽãªãºã ã¯ããããªã®æšæºããã¹ãæåã䜿çšããŠãã»ã°ã¡ã³ããŒã·ã§ã³ã®å質ãæ¹åãããã®çµæãèªèå¹çãåäžãããŸãã ãã®çµæããã¬ãŒã ããåã ã®ãã£ã©ã¯ã¿ãŒãã§ããŸããã OCRãœãããŠã§ã¢ã䜿çšããŠåæã§ããŸãã åŸç¶ã®ãã¹ãŠã®ãã¬ãŒã ã®åãã·ã³ãã«ã®ããã€ãã®ã€ã³ã¹ã¿ã³ã¹ã®èªèçµæã¯ãèªèã®å質ãæ¹åããæçµçµæãèšç®ããããã«çµåãããŸãã ãã¬ãããé²ç»ãããããªã¯ãªããã䜿çšããäžé£ã®å®éšã§ã¢ã«ãŽãªãºã ããã¹ãããè¯å¥œãªã»ã°ã¡ã³ããŒã·ã§ã³çµæãéæããŸããã
ãšã³ããªãŒ
ãã«ãã¡ãã£ã¢ã®æ代ã«ãããŠããããªã¯æ å ±ãéä¿¡ããããã®ãŸããŸãéèŠãã€äžè¬çãªæ¹æ³ã«ãªãã€ã€ãããŸãã ãã ããçŸåšã®ãããªããŒã¿ã®ã»ãšãã©ã¯æ§é åãããŠããŸãããã€ãŸãããã¯ã»ã«ãšããŠã®ã¿ä¿åããã³è¡šç€ºãããŸãã ãããªã®ã³ã³ãã³ãã«é¢ããè¿œå æ å ±ã¯ãããŸããïŒãªãªãŒã¹å¹Žããã£ã¹ããç£ç£ãè¡£è£ ãæ®åœ±å Žæãã·ãŒã³å ã®äŒæ©ã®äœçœ®ãçš®é¡ãªã©ãæªåŠçã®ãããªã䜿çšããå©äŸ¿æ§ã¯å¶éãããŠãããå¹ççã§çç£çãªæ€çŽ¢ãé€å€ããŠããŸãã çŸåšãã€ã³ã¿ãŒãããã«ã¯äœåãã®MPEGãããªããããŸãã ååãç°¡åãªèª¬æ以å€ã«ããããã®æ ç»ã®å 容ãæ§é ã«é¢ããæ å ±ãèŠã€ããããšã¯ãã£ãã«äžå¯èœã§ãããããããšãã°ç¹å®ã®ç®ã«èŠããã·ãŒã³ã®æ€çŽ¢ã¯é倧ãªäœæ¥ã§ãã ç§ãã¡ã¯çãçŸåšãããåç»ã³ã³ãã³ãã«é¢ãããã詳现ãªæ å ±ãåãåããããšæã£ãŠããŸãã
éåžžããã®æ å ±ã¯æåã§èšè¿°ããå¿ èŠããããŸããããããªã®æå泚éã¯éåžžã«é«äŸ¡ã§æéãããããŸãã ãããã£ãŠãã³ã³ãã³ãã«åºã¥ãæ å ±ã®æ€çŽ¢ãšè¡šç€ºã§ã¯ãã€ã³ããã¯ã¹äœæã®ããã®èªåãããªåæããŒã«ãå¿ èŠã«ãªããŸã[2] [15] [16] [17] ãããªã«é¢ããéèŠãªæ å ±æºã®1ã€ã¯ããããªã«å«ãŸããããã¹ãã§ãã ãã£ã©ã¯ã¿ã®èªåã»ã°ã¡ã³ããŒã·ã§ã³ãšãããªã§ã®èªèã®ããã®ã¢ã«ãŽãªãºã ãéçºããŸããã ãããã®ã¢ã«ãŽãªãºã ã¯ãåºæããã£ãã·ã§ã³ãããã³çµè«ããããã¹ããèªåçãã€ç¢ºå®ã«æœåºããŸãã ã¢ã«ãŽãªãºã ã¯ããããªã¿ã€ãã«ãžã§ãã¬ãŒã¿ãŒãŸãã¯åæ§ã®ããã€ã¹ããã³/ãŸãã¯æ¹æ³ã«ãã£ãŠäœæããããããªã®ããã¹ãã®å žåçãªç¹æ§ãæ瀺çã«äœ¿çšããŠãã»ã°ã¡ã³ããŒã·ã§ã³ã®å質ãæ¹åããçµæãšããŠèªèå¹çãæ¹åããŸãã
èšäºã®æ®ãã®éšåã¯æ¬¡ã®ããã«æ§æãããŠããŸãã ã»ã¯ã·ã§ã³2ã§ã¯ããããªã®ããã¹ãã»ã°ã¡ã³ããŒã·ã§ã³ãšããã¹ãèªèã«é¢ããåæ§ã®äœæ¥ã«ã€ããŠèª¬æããŸãã 次ã«ããã£ã«ã ã«è¡šç€ºãããæåãšããã¹ãã®æ©èœã«ã€ããŠèª¬æããŸããã»ã¯ã·ã§ã³4ã§ã¯ãã»ã¯ã·ã§ã³3ã§æå®ãããæåã®ç¹æ§ã«åºã¥ããŠãåè£é åãã»ã°ã¡ã³ãåããç¹æ§ããŒã¹ã®ã¢ãããŒãã瀺ããŸããã»ã¯ã·ã§ã³5ã§ã¯ãèªèã¢ã«ãŽãªãºã ã«ã€ããŠèª¬æããŸãã 以äžã¯ãã»ã¯ã·ã§ã³6ã®ã¢ã«ãŽãªãºã ã®å®è£ ã«é¢ããæ å ±ã§ããã»ã¯ã·ã§ã³7ã§ã¯ãçµéšçãªçµæããã¢ã«ãŽãªãºã ãè¯å¥œãªã»ã°ã¡ã³ããŒã·ã§ã³çµæã«ã€ãªãã蚌æ ãšããŠæ瀺ããŸãã æåŸã«ãäœæ¥ã®æŠèŠãšå°æ¥ã®äœæ¥ã®èŠéãã瀺ããŠäœæ¥ãçµäºããŸãã
é¢é£äœå
çŸåšãããã¹ãèªèã«é¢ããæ¢åã®äœæ¥ã¯ãäž»ã«å°å·ããã³åçš¿ã®å åŠæåèªèã«çŠç¹ãåœãŠãŠããŸãããªãã£ã¹ãªãŒãã¡ãŒã·ã§ã³ã·ã¹ãã ãåžå Žåãã®ææžèªã¿åãããã€ã¹ã«å¯Ÿãã倧ããªéèŠãããããã§ãã ãããã®ã·ã¹ãã ã¯é«åºŠãªæç床ã«éããŠããŸã[6]ã ãŸããããã¹ãèªèäœåã¯ãç£æ¥çšã¢ããªã±ãŒã·ã§ã³ã§èŠã€ããããšãã§ããŸãã ãããã®äœåã®ã»ãšãã©ã¯ãéåžžã«çãç¯å²ã«çŠç¹ãåœãŠãŠããŸãã äŸã¯ãèªåè»ã®ãã³ããŒãã¬ãŒãã®èªåèªèã§ã[13]ã ææ¡ãããã·ã¹ãã ã¯ãèæ¯ãã»ãšãã©ã¢ãã¯ãã§ããããã®äœçœ®ãå¶éãããŠããã·ã³ãã«/æ°åã«å¯ŸããŠã®ã¿æ©èœããŸãã ããã«ããããªã«è¡šç€ºãããããã¹ãå ã®æåã®èªèã«é¢ããå°ããªäœåãå ¬éãããŸããã
Michael A. SmithãšTakeo Canadaã¯[12]ã§ãããã¹ãæ å ±ãå«ããããªãã¬ãŒã ããé åãæœåºããããšã«çŠç¹ãåœãŠãæ¹æ³ãç°¡åã«èª¬æããŠããŸãã ãã ããæšæºã®å åŠåŒæåèªèãœãããŠã§ã¢çšã«æ€åºãããããã¹ããæºåããŸããã ç¹ã«ããã£ã©ã¯ã¿ãŒã®ã¢ãŠãã©ã€ã³ãå®çŸ©ããããåã ã®ãã£ã©ã¯ã¿ãŒãã»ã°ã¡ã³ãåããããšã¯ããŸããã ããã¹ããå«ãããããããããã®ãŸãŸä¿åããŸãã 人ã ã¯èªåã§ããããå解ããªããã°ãªããŸããã 圌ãã¯ããã¹ãããã°ã«ãŒãåãããéããšããžã®æ°Žå¹³é·æ¹åœ¢æ§é ã[12]ãšããŠç¹åŸŽã¥ãããã®æ©èœã䜿çšããŠããã¹ãã»ã°ã¡ã³ããèå¥ããŸãã å 填段éã®ã¢ãããŒãã§ããã®é¢æ°ã䜿çšããŸãã 圌ãã®ã¢ãããŒããšã¯ç°ãªãããã®é¢æ°ã¯ãåè£é åã®ã»ã°ã¡ã³ãåã®ããã»ã¹ã§å°ããªåœ¹å²ããæãããŸããã ãŸããç°ãªãæ¡ä»¶äžã§è€æ°ã®ã€ã³ã¹ã¿ã³ã¹ã䜿çšããŠãã»ã°ã¡ã³ããŒã·ã§ã³ãšèªèã®å¹çãé«ããŸãã
ã·ãŒã³ç»åã§ã®ããã¹ãèªèã«å¯Ÿããå¥ã®èå³æ·±ãã¢ãããŒãã¯ã倧谷yaãå¡©æ倫ãèµ€æŸèã«ãã£ãŠäœ¿çšãããŠããŸãã ã·ãŒã³ç»åã®ã·ã³ãã«ã¯ãããŸããŸãªãã€ãºæåã®åœ±é¿ãåããå ŽåããããŸãã ã·ãŒã³ç»åã®ããã¹ãã¯3次å 空éã«ååšãããããå転ãåŸæãéšåçã«é衚瀺ããã³/ãŸãã¯æããªããå¶åŸ¡ãããªãç §æäžã«çœ®ãããå¯èœæ§ããããŸã[7]ã ããã¹ããã£ã©ã¯ã¿ãŒã®å€ãã®å¯èœãªèªç±åºŠãèæ ®ããŠãOhya et alãã¯ãæ€åºã容æã«ããããã«ãããããã»ãŒåçŽãåè²ãéé£çµã«å¶éããŸããã ããã«ãããOkhya et alãã®ã¢ãããŒãã¯ããããªã¹ããªãŒã ã§ã¯ãªãéæ¢ç»åã«çŠç¹ãåœãŠãŠããããããããªã«è¡šç€ºãããããã¹ãã®å žåçãªç¹æ§ã䜿çšããªããšããäºå®ã«ãããããããç§ãã¡ã®ç®çã«é©ããŠããŸãã ããã«ãã·ãŒã³ããã¹ãã§ã¯ãªãããããªã¿ã€ãã«ãžã§ãã¬ãŒã¿ãŒã«ãã£ãŠäœæãããããã¹ãã«æ³šç®ããŸãã
ãã£ãã·ã§ã³ããã³éå§ããã¹ããšçµäºããã¹ãã®æåã®æ©èœ
ãããªã®ããã¹ãã¯ããŸããŸãªç®çã«äœ¿çšãããŸããæŸéã®éå§æããã³/ãŸãã¯çµäºæã«ã圌ã¯ãã®ååãç£ç£ã俳åªããããã¥ãŒãµãŒãªã©ã«ã€ããŠèŠèŽè ã«ç¥ãããŸãã ãããŒããã£ã¹ãããã¹ãã¯ãçŸåšåãäžããããŠããäž»é¡ã«é¢ããéèŠãªæ å ±ãæäŸããŸãã ããšãã°ãã¹ããŒããããŒããã£ã¹ãã®ããã¹ãã¯ãã°ãã°çµæãå ±åããŸããããã¥ãŒã¹ãªãªãŒã¹ãããã¥ã¡ã³ã¿ãªãŒã§ã¯ãã¹ããŒã«ãŒã®ååãšå Žæãããã³/ãŸãã¯ãããã¯ã«é¢ããéèŠãªæ å ±ãåãäžããããŸããã åºåã®ããã¹ãã¯ãã¹ããŒã¬ã³ã補åãŸãã¯äŒç€Ÿã®ååãäŒããŸãã ãããã®ããã¹ãè¡šçŸã«ã¯ãæ確ã«æ瀺ãããŠãããšããå ±éç¹ããããŸãã ãããã¯ã¡ããã©ãã®ããã«è¡šç€ºãããŸãã-ãããã¯ãã¬ãŒã ã«éããããèªãŸããããã«äœæãããŸãã
ããã«ãããã¹ãã¯ãã®äžéšãšããŠã·ãŒã³ã«è¡šç€ºããããšãã§ããŸããããšãã°ãã·ã§ããã³ã°ã»ã³ã¿ãŒã®ãããªã§ã¯ãå€ãã®åºåããããªã«è¡šç€ºãããŸãã ãããªå ã®ãã®ãããªããã¹ãã¯ãæ€åºãŸãã¯èªèãå°é£ã§ãããä»»æã®è§åºŠã§ãæªã¿ããããä»»æã®å ã®äžã§ããŸã£ãããŸãã¯æ³¢ç¶ã®è¡šé¢ã«ãããŸãïŒããšãã°ãTã·ã£ãã®ããã¹ãïŒã
ãã®èšäºã§ã¯ã·ãŒã³ããã¹ãã䜿çšããŠããŸããããç¹ã«ãããªã¿ã€ãã«ãžã§ãã¬ãŒã¿ãŒã䜿çšããŠããããªã«äººçºçã«è¿œå ãããããã¹ãã®ã¿ã«çŠç¹ãåœãŠãŠããŸãã ãã®çç±ã¯ãã·ãŒã³ã®äžã«ãªãŒããŒã¬ã€ãããããã¹ãã¯ãã·ãŒã³ã«å«ãŸããããã¹ããšæ ¹æ¬çã«ç°ãªããããåæã«2ã€ã®ç°ãªãåé¡ã«å¯ŸåŠããããªãã£ãããã§ãã ãããã£ãŠãå°æ¥ããããã¹ããããã³ãã·ã³ãã«ããšããèšèã¯ãæ©æ¢°ãŸãã¯åæ§ã®ããã€ã¹/æ¹æ³ã«ãã£ãŠäœæããããããªã¿ã€ãã«ã®ã¿ãæããŸãã
åèªãããã¹ããèªèã§ããããã«ãªãåã«ããããã®å€èŠ³ã®ç¹åŸŽãåæããå¿ èŠããããŸãã
ãªã¹ãã«ã¯ä»¥äžãå«ãŸããŸãã
- ãã¬ãŒã³ãã£ã©ã¯ã¿ãŒã éåžžã«å°ããªå²åã ããè²ãæã£ãŠããããããã®ãã©ã¡ãŒã¿ãŒã¯ããŸãéèŠã§ã¯ãããŸããã
- ãã£ã©ã¯ã¿ãŒã¯å€§å€ã§ãã ãã¬ãŒã ããšã«åœ¢ç¶ããµã€ãºãæ¹åãå€æŽããããšã¯ãããŸããã ç¹°ãè¿ããŸããããµã€ãºå€æŽã®æåã®å²åã¯ããã»ã©é«ããªãã®ã§ãç§ãã¡ã«ãšã£ãŠãèå³ããããŸããã
- æåã«ã¯ãµã€ãºå¶éããããŸãã æåã¯ãã¬ãŒã å šäœã»ã©å€§ãããªããç¹å®ã®ãã¯ã»ã«æ°ãããå°ãããªããŸããããããªããšãæåãèªã¿ã«ãããªããŸãã
- ã·ã³ãã«ã¯åããªãããçŽç·çã«åããŸãã éæ¢ãã£ã©ã¯ã¿ãŒã¯ç§»åããããããã®äœçœ®ã¯ããã€ãã®åŸç¶ãã¬ãŒã ã§åºå®ããããŸãŸã§ãã åããã£ã©ã¯ã¿ãŒã¯çµ¶ããåããŠãã[3]ãäžå®ã®åãã®æ¹åãæã£ãŠããŸããååãšããŠããã£ã©ã¯ã¿ãŒã¯æ°Žå¹³ãŸãã¯åçŽã«åããŸãã ããã«ã移åããããã¹ãã®ã»ãšãã©ã¯ãå³ããå·ŠãŸãã¯äžããäžã«ç§»åããŸãã
- ã·ã³ãã«ã¯èæ¯ãšå¯Ÿç §çã§ãã 人工ããã¹ãã¯èªãããšãç®çãšããŠãããããèæ¯ãšåºå¥ã§ããå¿ èŠããããŸãã ããããåŸã§èŠãããã«ããã¬ãä¿¡å·ã®åž¯åå¹ ãçãããããã®é ç®ã¯ãã¹ãŠã®ãã£ã©ã¯ã¿ãŒåè·¯ã«ä¿åãããããã§ã¯ãããŸããã
- åãæåãè€æ°ã®é£ç¶ãããã¬ãŒã ã«è¡šç€ºãããŸãïŒæéæ¯çïŒã
- ã·ã³ãã«ã¯ãéãããè·é¢ã§ã¯ã©ã¹ã¿ãŒïŒè¡ïŒã«è¡šç€ºãããæ°Žå¹³æ¹åã«æŽåïŒç©ºéé¢ä¿ïŒããŸããããã¯ããããåèªãæç« ãæžãèªç¶ãªæ¹æ³ã ããã§ãã ããããããã¯åææ¡ä»¶ã§ã¯ãªããåãªãæ確ãªææšã§ãã 1è¡ã«1æåãã衚瀺ãããªãå ŽåããããŸãã
- æå/å¢çåè·¯ã®å質ã¯ãææ°ã®ãã¬ãæè¡ãšããžã¿ã«ã³ã³ããŒã¿ãŒããŒãã«ããäœäžããŠããŸãã å€ãã®å Žåãã·ã³ãã«ã¯ãç¹ã«å·ŠåŽã§èæ¯ãšæ··åãããŸãã æ®éã®æåã¯ãããã®ããã«èŠããªããªããŸããã è²ã¯éåžžã«æ¿ã£ãŠããŠãããšãã°åšå²ã®èæ¯ã®è²ãšæ··ããããšã§ãææ空éãšæéã§ãããã«å€åããŸãã éæ¢ããã¹ãã§ãæ°ãã¯ã»ã«ç§»åããããšããããŸãã ãããã¯å žåçãªå€ãã¢ããã°ãã¬ããšãããªé²ç»ã§ãã
ã»ã°ã¡ã³ããŒã·ã§ã³ãšããã¹ãèªèã®ïŒäººå·¥çãªïŒæ¹æ³ã¯ããããã®èŠ³å¯ãããæ©èœã«åºã¥ããŠããå¿ èŠããããŸãã 次ã«ããããã®äœ¿çšã«ã€ããŠèª¬æããŸãã
åè£æåé åã®åé¢
çè«çã«ã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ãã¹ã¯ããããªã«è¡šç€ºãããããã¹ãã«å±ãããã¹ãŠã®ãã¯ã»ã«ãæœåºããŸãã ãã ããããã¯ã©ãã®æåãç¥ã£ãŠããªãéãå®è¡ã§ããŸããã ãããã£ãŠãã»ã°ã¡ã³ããŒã·ã§ã³ã¹ãããã®æçµç®æšã¯ããããªã®åãã¬ãŒã ã®ãã¯ã»ã«ã2ã€ã®ã¯ã©ã¹ã«åå²ããããšã§ãã
- ããã¹ããå«ãé å
- ããã¹ããå«ãŸãªãé åã
ããã¹ããå«ãŸãªãé åã¯èªèããã»ã¹ã«è²¢ç®ã§ããªãããç Žæ£ãããããã¹ããå«ãå¯èœæ§ã®ããé åã¯ä¿æãããŸãã ãããã¯ïŒå®å šã§ã¯ãªãïŒã·ã³ãã«é åã®ã¹ãŒããŒã»ããã§ãããããããããåè£é åãšåŒã³ãŸãã ãããã¯è©äŸ¡ã®ããã«èªè段éã«è»¢éãããŸãã
ããã§ã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ããã»ã¹ã«ã€ããŠèª¬æããŸãã 3ã€ã®éšåã«åå²ã§ããŸããåéšåã¯ãããã¹ããå«ãŸãªãä»ã®é åã«ãã£ãŠåã®éšåã®æåã®ãªãé åã®ã»ãããå¢ãããåè£é åãæžãããŠãèšå·ã®ããé åã«ãŸããŸãè¿ã¥ããŸãã ãŸããåãã¬ãŒã ãä»ã®ãã¬ãŒã ãšã¯ç¬ç«ããŠåŠçããŸãã 次ã«ãé£ç¶ãããã¬ãŒã ã§åãããã¹ãã®è€æ°ã®ã€ã³ã¹ã¿ã³ã¹ã掻çšããããšããŸãã æåŸã«ãåãã¬ãŒã ã®æ®ãã®é åã®ã³ã³ãã©ã¹ããåæããŠãåè£é åã®æ°ãããã«æžãããæçµçãªåè£é åãæ§ç¯ããŸãã åããŒãã§ã¯ãã»ã¯ã·ã§ã³3ã§èª¬æãããŠããããã«ãã·ã³ãã«é¢æ°ã䜿çšããŸãã
åäžãã¬ãŒã ã®åè£é åã®æåã»ã°ã¡ã³ããŒã·ã§ã³
äžè²
å ã®ãã¬ãŒã ããå§ããŸãããïŒå³1ïŒã åè²ã®æåãæ³å®ãããŠãããããåŠçã®æåã®æ®µéã§ãã¬ãŒã ãã°ã¬ãŒã¹ã±ãŒã«ã®åäžãªã»ã°ã¡ã³ãã«åå²ããŸãã Horowitz and Pavlidis [4]ã«ãã£ãŠææ¡ããããSeparation and Mergeãã¢ã«ãŽãªãºã ã䜿çšããŠã»ã°ã¡ã³ããŒã·ã§ã³ãå®è¡ããŸãã ãã¬ãŒã ã®éå±€çãªå解ã«åºã¥ããŠããŸãã Horowitz and Pavlidisã«ãããšãåé¢ããã»ã¹ã¯ãç»åå šäœãæåã®ã»ã°ã¡ã³ããšããŠéå§ãããã®åŸãããã4åã®1ã«åå²ããŸãã åååæã¯ãã»ã°ã¡ã³ãããååã«å質ããã©ãããå€æããããã«ãç¹å®ã®åäžæ§åºæºã«ã€ããŠãã¹ããããŸãã åäžæ§ãååã§ãªãå Žåãã»ã°ã¡ã³ãã¯åã³ååæã«åå²ãããŸãã ãã®ããã»ã¹ã¯ãåçš®ã®ã»ã°ã¡ã³ãã®ã¿ãæ®ããŸã§ååž°çã«é©çšãããŸãã æšæºçãªåäžæ§åºæºã䜿çšããŸããæé«ãšæäœã®ã°ã¬ãŒããŒã³åŒ·åºŠã®å·®ã¯ãç¹å®ã®ãããå€ãäžåãå¿ èŠããããŸãã ãããå€ãmax_split_distanceãšåŒã³ãŸãã åçš®ã»ã°ã¡ã³ãã«ã¯ããã®å¹³åã°ã¬ãŒã¬ãã«ãå²ãåœãŠãããŸãã 次ã«ãããŒãžã®ããã»ã¹ã§ãã°ã¬ãŒããŒã³ã®å¹³åã¬ãã«ã®åŒ·åºŠããã©ã¡ãŒã¿ãŒmax_merge_distanceããå°ããå Žåãé£æ¥ããã»ã°ã¡ã³ããäžç·ã«çµåãããŸãã ãã®çµæãç»åã«è¡šç€ºããããã¹ãŠã®ã¢ãã¯ãã·ã³ãã«ã¯ãäžéšã®ã¢ãã¯ãã»ã°ã¡ã³ãã«å«ãŸããŠããå¿ èŠããããŸãã ãµã³ãã«ãã¬ãŒã ã®å ŽåããSplit and Mergeãã¢ã«ãŽãªãºã ã¯å³2ã«ç€ºãç»åã衚瀺ããŸãã
ãµã€ãºå¶éã
ã»ã°ã¡ã³ãåãããç»åã¯ãåäžãªã°ã¬ãŒããŒã³åŒ·åºŠã®é åã§æ§æãããŠããŸãã äžéšã®ãšãªã¢ã¯å€§ããããŸãããä»ã®ãšãªã¢ã¯å°ããããŠãã£ã©ã¯ã¿ãŒã®ã€ã³ã¹ã¿ã³ã¹ã«ã¯ãªããŸããã çµæãšããŠãåè²ã»ã°ã¡ã³ãã®å¹ ãšé«ãã¯max_sizeãè¶ ããŸããããã¯ãæ¥ç¶ãããã¢ãã¯ãã»ã°ã¡ã³ãã®åèšãµã€ãºãmin_sizeããå°ããããã§ãã ç»åã®äŸãå³3ã«ç€ºããŸãïŒåé€ãããã»ã°ã¡ã³ãã¯é»ã«ãªããŸãïŒã
å³1.å ã®ãã¬ãŒã
å³2. Split and Mergeã¡ãœããã䜿çšããå³1
ã·ãŒã±ã³ã·ã£ã«ãã¬ãŒã ã«åºã¥ãé«åºŠãªã·ãŒã±ã³ã¹
ãããªã¿ã€ãã«ãžã§ãã¬ãŒã¿ãŒã§äœæããããããªã®ããã¹ããåæãããããéåžžãé£ç¶ãããã¬ãŒã ã®æ°ã«åãããã¹ãã衚瀺ãããŸãã æããã«ãããã¹ãã®åæåã¯ããã€ãºãèæ¯ã®å€åãããã³/ãŸãã¯äœçœ®ã®å€åã®ããã«ãã¬ãŒã ããšã«ãããã«å€åãããããåãããã¹ãã®ãããã®è€æ°ã®ã€ã³ã¹ã¿ã³ã¹ã䜿çšããŠã»ã°ã¡ã³ããŒã·ã§ã³ã®çµæãæ¹åã§ããŸãã ãããã£ãŠãé£ç¶ãããã¬ãŒã ã§åè£é åã®å¯Ÿå¿ããã·ã³ãã«ãæ€åºããå¿ èŠããããŸãã
éå解æ
ã»ã¯ã·ã§ã³3ã§æ¢ã«è¿°ã¹ãããã«ãããã§èæ ®ãããããã¹ãã¯éæ¢ãŸãã¯çŽç·ç§»åã®ããããã§ãããéæ¢ããã¹ãã§ããããã¬ãŒã ãããã¬ãŒã ãžå ã®äœçœ®ãäžå¿ã«æ°ãã¯ã»ã«ç§»åã§ããŸãã ãããã£ãŠãã¢ãŒã·ã§ã³åæãå®è¡ããŠãé£ç¶ãããã¬ãŒã ã§å¯Ÿå¿ããåè£é åãæ€åºããå¿ èŠããããŸãã ãããã¯ãããã³ã°ã¯ããŒããªããžã§ã¯ãã«é©ããŠãããããåãã¯ãããã¯ãããã³ã°ã䜿çšããŠè©äŸ¡ãããŸãããã£ã©ã¯ã¿ãŒã®åœ¢ç¶ãåããè²ãå€ãããªãå Žåããã£ã©ã¯ã¿ãŒã¯ããŒããšèŠãªãããŸãã ããã«ããããã¯ãããã³ã°ã¯éåžžã«äººæ°ããããH.261ãMPEG3ãªã©ã®åœéçãªãããªå§çž®èŠæ Œã§åããè£æ£ããããã«äœ¿çšãããŸãã ã³ã³ãã©ã€ã¢ã³ã¹åºæºã¯ã絶察差ã®æå°å¹³ååºæºã§ã[14]ã å¹³å絶察差ïŒMADïŒã¯æ¬¡ã®ããã«å®çŸ©ãããŸã
Rã¯ãå¹³è¡ç§»åãã¯ãã«ãèšç®ããããããã¯ã瀺ããŸãã ãã€ã¢ã¹æšå® forãããã¯Rã¯ãªãã»ãããšããŠæå®ãããMADå€ã¯æå°ã§ãã æ€çŽ¢ç¯å²ã¯å¶éãããŠããŸãã ã¹ã¯ããŒã«å¯èœãªã¿ã€ãã«ã®é床ã«ç¶ããŸãã
次ã®è³ªåã¯ãåãæšå®ã«äœ¿çšããããããã¯ã®äœçœ®ãšãµã€ãºã決å®ããæ¹æ³ã§ãã æããã«ããªãã»ããæšå®ã®å質ã¯ãã·ãŒã±ã³ã·ã£ã«ãã¬ãŒã ã®ã€ã³ã¹ã¿ã³ã¹ãšäžèŽãããããšããŠãããããã¯ã®äœçœ®ãšãµã€ãºã«äŸåããŸãã ããšãã°ãéžæãããããã¯ã倧ããããå Žåããããã¯ã®äžéšããã¬ãŒã ãé¢ããå¯èœæ§ãããããïŒã¹ã¯ããŒã«ãªã¹ãã§çºçããå¯èœæ§ãããïŒããŸãã¯æ¬¡ã®ãã¬ãŒã ã®ãããã¯ã®äžéšãèæ¯ãšããŠæ£ããèªèããããããã¢ã«ãŽãªãºã ãåçã®ãããã¯ãèŠã€ããããšãã§ããªãå ŽåããããŸããããã¯é€å€ããããåè£ãšãªã¢ã®äžéšã®ãŸãŸã§ããã
ãããã®åé¡ãåé¿ããããã«ãæåãåèªãšããŠè¡šç€ºããããããè¡ã«é 眮ããããšããäºå®ãå©çšããŸãã 次ã®ã¢ã«ãŽãªãºã ã䜿çšããŠRãããã¯ãéžæããŸããå ¥åç»åã¯2è²ã«å€æãããŸãïŒèæ¯=é»ãæ®ã=çœïŒã ãããŠãåçœããã¯ã»ã«ã¯ãæå®ãããååŸã®åã«æ¡å€§ããŸãã å³4ãããããããã«ãèšå·ãšåèªãã³ã³ãã¯ããªé åãæ§æããŠããŸãã æ¥ç¶ãããåã¯ã©ã¹ã¿ãŒãé·æ¹åœ¢ã§æ§æãããããã¯RãšããŠå®çŸ©ããŸããæ²ç·å åãç¹å®ã®ãããå€ãè¶ ããå Žåããã®ãããã¯ã䜿çšããŠåããåæããŸãã ãã£ã«ãã¡ã¯ã¿ãç¹å®ã®ãããå€ãäžåãå Žåãçµæã®ãããã¯ã®ãã£ã«ãã¡ã¯ã¿ããããå€ãè¶ ãããŸã§ããããã¯ã¯ååž°çã«å°ããªãããã¯ã«åå²ãããŸãã å¿ èŠãªãã¥ãŒãã£ãµã€ã¯ã«ã«å¯Ÿå¿ããçµæãããã¯ããšã«ãåãã®ãããã¯åæãå®è¡ãããŸãã
å³3.å³2ã®ãµã€ãºå¶éã®é©çš
å³4ïŒ2è²ã®ãã¬ãŒã ã«å€æããŠã¹ãã¬ããããåŸã®å³3ã ãããã¯ã¯é·æ¹åœ¢ã§ããŒã¯ãããŠããŸãã
åçã®ãããã¯ã¯ã次ã®ãã¬ãŒã ã§ç Žæ£ãããŸãã ããã«ãåŸç¶ã®ãã¬ãŒã ã§åçã®ãããã¯ãæã£ãŠãããããããã®å¹³åã°ã¬ãŒããŒã³åŒ·åºŠã«å€§ããªéãã瀺ããããã¯ã¯ç Žæ£ãããŸãã çµæã®ç»åã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ã®æ¬¡ã®æ®µéã«éä¿¡ãããŸãïŒå³5ïŒã
å³5ïŒå³3ã®2ã€ã®é£ç¶ãããã¬ãŒã ã«ã¢ãŒã·ã§ã³åæãé©çšããåŸã®ç»åçµæ
ã³ã³ãã©ã¹ãåæã䜿çšããåè£é åã®ã»ã°ã¡ã³ããŒã·ã§ã³ã®æ¹å
ã³ã³ãã©ã¹ãåæ
ãããªã¿ã€ãã«ãžã§ãã¬ãŒã¿ãŒã«ãã£ãŠäœæãããã·ã³ãã«ã¯ãéåžžãèæ¯ãšå¯Ÿç §çã§ãã ãããã£ãŠãããã¯åè£å°åã®åææ¡ä»¶ã§ããããŸãã ãã®ãããåã®ã»ã°ã¡ã³ããŒã·ã§ã³æé ã§æ®ã£ãåé åããã§ãã¯ããŠããã®èŒªéãèæ¯ããã®ä»ã®æ®ãã®é åãšéšåçã«åŒ·ã察æ¯ããŠãããã©ããã確èªããŸãã ç¹ã«æåã®äžã«ããããšãå€ãæã圱ã¯ãèªã¿ããããåäžãããããã«ãæåã®é åãšãã®ç°å¢ã®äžéšã®éã«éåžžã«åŒ·ãã³ã³ãã©ã¹ããããããã¯ãã§ãã ãã®ãããªã³ã³ãã©ã¹ããé åã§èŠã€ãããªãå Žåãã·ã³ãã«ã«å±ããããšãã§ããªããšçµè«ä»ããé åãç Žæ£ããŸãã
ã³ã³ãã©ã¹ãåæã¯ã次ã®åŠçãã¥ãŒã«ãã£ãŠå®è¡ãããŸããCannyã®å¢çã®ããããèšç®ãïŒ1ïŒãéåžžã«é«ããããå€ïŒcanny_thresholdãšåŒã°ããïŒãé©çšããŠãéããšããžãžã®å¿çãå¶éããŸãã çµæã®ãšããžç»åã¯ãdilation_radiusã䜿çšããŠå±éãããŸãã 次ã«ãã¢ãŒã·ã§ã³åæã®ã»ã°ã¡ã³ããŒã·ã§ã³ã»ã°ã¡ã³ãã®é åã¯ãæ¡åŒµããããšããžãšäº€å·®ããªãå Žåã¯ç Žæ£ãããŸãã ãã®äŸã§ã¯ãå³6ã«ç€ºãçµæã«ãªããŸãã
ãã¥ãŒãã£æ¯ãšå¹ ãšé«ãã®æ¯
äžèšã®ã¢ãŒã·ã§ã³åæã»ã¯ã·ã§ã³ã§èª¬æããããã«ããããã¯ãšããããã®ãã£ã«ãã¡ã¯ã¿ãŒã¯ãæ®ãã®ååè£é åã«å¯ŸããŠå床èšç®ãããŸãã ãã£ã«ãã¡ã¯ã¿ãäœãããå Žåã察å¿ããé åã¯ç Žæ£ãããŸãã 次ã«ããããã¯ã®å¹ ãšé«ãã®æ¯çãèšç®ãããŸãã ç¹å®ã®å¶éãè¶ ããå Žåãã€ãŸã min_ratioãšmax_ratioã®éã«ãªãå Žåã察å¿ããé åãç Žæ£ãããŸãã ãã®ããã»ã¹ã«ãããã»ã°ã¡ã³ããŒã·ã§ã³ã®æçµã€ã¡ãŒãžãåŸãããŸãã å³7ã¯ãäŸç€ºçãªãããªãã¬ãŒã ã®ããã瀺ããŠããŸãã
ã»ã°ã¡ã³ããŒã·ã§ã³çµæ
ãããŸã§ãåãã¬ãŒã ã®åè£ã·ã³ãã«é åãæœåºãããŸããã ãªãŒãžã§ã³ã¯æ°ãããã¬ãŒã ã«ä¿åããããããæ°ãããããªãäœæãããŸãã ãããã®ãã¬ãŒã ã§ã¯ãåè£é åã«å±ãããã¯ã»ã«ã¯å ã®ã°ã¬ãŒã¬ãã«ãä¿æããŸãã ä»ã®ãã¹ãŠã®ãã¯ã»ã«ã¯èæ¯ãšããŠããŒã¯ãããŸãã ã»ã°ã¡ã³ããŒã·ã§ã³ãå®äºããæšæºã®OCRãœãããŠã§ã¢ã䜿çšããŠæ°ãããããªããã¬ãŒã ããšã«åæã§ããŸãã
å³6ïŒå³5ã®ã³ã³ãã©ã¹ãåæåŸã®çµæ
å³7ïŒæçµçãªã»ã°ã¡ã³ããŒã·ã§ã³
æåèªè
ã»ã°ã¡ã³ããŒã·ã§ã³ã¯ãåè£è ã®ãšãªã¢ã瀺ããããªãæäŸããŸãã æåèªèã§ã¯ãåãã¬ãŒã ãOCRãœãããŠã§ã¢ã§åæããå¿ èŠããããŸãã [11]ã§èª¬æãããŠããããã«ããã¯ãã«ç¹æ§ãæã€ãªããžã§ã¯ãã®åé¡ã¢ãããŒãã䜿çšããŠãç¬èªã®OCRãœãããŠã§ã¢ãå®è£ ããŸããã ãã ãããã®ãœãããŠã§ã¢ã¯å®å šã«ã¯ã»ã©é ããããåçšãœãããŠã§ã¢ããã±ãŒãžã䜿çšãããšãèªèçãé«ããªããŸãã
ãããªãåæãããšãåãã£ã©ã¯ã¿ãŒãããã€ãã®é£ç¶ãããã¬ãŒã ã«è¡šç€ºãããŸãã ãããã£ãŠãåãæåã®ãã¹ãŠã®èªèã€ã³ã¹ã¿ã³ã¹ã1ã€ã®èªèçµæã«çµåããå¿ èŠããããŸãã ã»ã¯ã·ã§ã³4.2ã§èª¬æãããŠããããã«ã察å¿ããã·ã³ãã«ãšã·ã³ãã«ã®ã°ã«ãŒãã¯ã¢ãŒã·ã§ã³åæã«ãã£ãŠèå¥ãããŸãã ãããã£ãŠãè€æ°ã®ç¬ç«ããèªèçµæãåãæåãšåèªã«é¢é£ä»ããããšãã§ããŸãã æãäžè¬çãªçµæã¯ãèªèã®æçµçµæã§ãã
å®è£
ã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ã¯ãSolaris 2.4ã§ã¯SUN SPARCstation 5ãCã³ãŒãã¯2300è¡ã®Digital Unix 3.2ã§ã¯DEC ALPHA 3000ã«å®è£ ãããŠããŸããããMoCA Workbench5ã®äžéšã§ãããVista 1.3ã©ã€ãã©ãªãå¿ èŠã§ãã Cã®1200è¡ã®Cã³ãŒãã§ã14çš®é¡ã®ãã¹ãã¹ã¯ãªãããã©ã³ãã§ãã¬ãŒãã³ã°ãããŠããŸãã ãã ããæåèªèããã»ã¹ã®2çªç®ã®éšåãã€ãŸãããã¹ãŠã®ããã¹ãèªèçµæã1ã€ã®æçµããã¹ãåºåã«çµåããäœæ¥ã¯ãŸã é²è¡äžã§ããããŸããªãå®äºããäºå®ã§ãã
å®éšçµæ
ããžã¿ã«ãããªã®8ã€ã®ãµã³ãã«ã§ã»ã°ã¡ã³ããŒã·ã§ã³ã¢ãããŒãããã¹ãããŸããã ãããªããŒã¿ã¯ãå質ä¿æ°508ããµã€ãº384 x 288ãã¯ã»ã«ã14ãã¬ãŒã /ç§ã®24ãããJPEGç»åã®åœ¢åŒã§ããã€ãããã³åœéçãªãã¬ãæŸéããããžã¿ã«åãããŸããã ãã¹ãŠã®JPEGç»åã¯ã°ã¬ãŒã¹ã±ãŒã«ç»åãšããŠã®ã¿ãã³ãŒããããŸããã 次ã®ã¯ã©ã¹ããšã«2ã€ã®ãµã³ãã«ããããŸãã
- éæ¢ããããã¹ããéæ¢ããã·ãŒã³ã
- éæ¢ããã¹ããåãã·ãŒã³ã
- åãããã¹ããåãã®ãªãã·ãŒã³ã
- ããã¹ãã®ç§»åãã·ãŒã³ã®ç§»åã
ããã¹ãã®ç§»åãšã¯ãããšãã°ãããã¹ããã·ãŒã³å ã移åããããšã§ãã ããã ã¢ãããŸãã¯å³ããå·Šã åæ§ã«ãåããŠããã·ãŒã³ãšã¯ãåããéåžžã«å€§ããã·ãŒã³ããŸãã¯ããäžè¬çã«ç¥ãããŠããéåžžã«åŒ·ãå€åãããã·ãŒã³ãæããŸãã éæ¢ã·ãŒã³ã¯ãéæ¢ç»åãŸãã¯éåžžã«éçãªã·ãŒã³ïŒãã¥ãŒã¹ãªãªãŒã¹ã®ã³ã©ã ã·ãŒã³ãªã©ïŒã§ãã åºå®ããã¹ãã¯åºå®äœçœ®ã®ãŸãŸã§ãã ããã«ããããªãµã³ãã«ã®æåã¯ããµã€ãºãè²ã圢ãç°ãªããŸãã
å®éšã§ã¯ã次ã®ãã©ã¡ãŒã¿ãŒã«æ¬¡ã®å€ã䜿çšããŸãã
- max_split_distance = 30;
- max_merge_distance = 30;
- max_size = 70ãã¯ã»ã«;
- min_size = 5ãã¯ã»ã«;
- search_area = 20ãã¯ã»ã«ã
- æ¡åŒµååŸ = 3ãã¯ã»ã«ã
- fill_faktor_threshold = 0.7ïŒã»ã¯ã·ã§ã³4.2ïŒããã³0.3ïŒã»ã¯ã·ã§ã³4.3ïŒã
- canny_threshold = 80;
- min_ratio = 0ããã³max_ratio = 6
å®éšçµæã¯è¡š1ã«ãããŸããæåã®åã¯ãããªã®ã¿ã€ãã決å®ãããã®åŸã«ãã¬ãŒã ã§æž¬å®ããããããªã®é·ããç¶ããŸãã 3çªç®ã®åã«ã¯ã察å¿ãããããªãµã³ãã«ã®å®éã®æåæ°ãå«ãŸããŠããŸãã ãããªãµã³ãã«ã«è¡šç€ºããããããªã¿ã€ãã«ã®ããã¹ãå šäœãšæåã«ãŠã³ããèšé²ããããšã§æž¬å®ãããŸãã ãããã£ãŠãæåçªå·ã¯ããã¹ãŠã®ãã¬ãŒã ã«è¡šç€ºãããæåã®æ°ã®åèšã«ãã£ãŠãããªã®ããã¹ããåç §ããŸããã 4çªç®ã®åã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ã¢ã«ãŽãªãºã ã«åŸã£ãŠåè£é åãšããŠã»ã°ã¡ã³ãåãããæåã®æ°ãšå²åã瀺ããŸããå®éšã®ã»ã°ã¡ã³ããŒã·ã§ã³å¹çã¯åžžã«86ïŒ ãã100ïŒ ãšéåžžã«é«ãããããã£ãŠãã¢ã«ãŽãªãºã ã®å質ã«é¢ããå®éšããŒã¿ãæäŸããŸããåããŠããããã¹ããåããŠããã·ãŒã³ãå«ããããªãµã³ãã«ã®å Žåãã»ã°ã¡ã³ããŒã·ã§ã³ããã©ãŒãã³ã¹ã¯97ïŒ ãã100ïŒ ã®ç¯å²ã§ãããããã®ããã©ãŒãã³ã¹æž¬å®ã¯ãåœç€Ÿã®ã¢ãããŒããšäžèŽããŠããŸããåããã£ã©ã¯ã¿ãŒã®ãã¹ãŠã®ã€ã³ã¹ã¿ã³ã¹ãåãèæ¯ãæã£ãŠãããããéæ¢ããã¹ãã®éæ¢ã·ãŒã³ã®è€æ°ã®ã€ã³ã¹ã¿ã³ã¹ã®æ©æµãåããããšã¯ã§ããŸããããããã£ãŠãã»ã°ã¡ã³ããŒã·ã§ã³ããã©ãŒãã³ã¹ã¯äœäžããŸãã
8æ¬ã®ãããªã¯ãªãããèŠãããšã«èå³ã®ããèªè ã¯ãããããæãåºãããšãã§ããŸãããããã§ã¯æåã®ã»ã°ã¡ã³ããŒã·ã§ã³ã®ã¿ãæ±ã£ãŠãããããèªèããã»ã¹ã®åè£é åã®æåã®å質ã¯ããã§ã¯è©äŸ¡ã§ããŸããããã®ãããªè©äŸ¡ã¯OCRãœãããŠã§ã¢ãšçµã¿åãããŠã®ã¿å®è¡ã§ããä»åŸã®å®éšã§èª¿æ»ããå¿ èŠããããŸãã
ã»ã°ã¡ã³ããŒã·ã§ã³ããã»ã¹ã§ã®ãã1ã€ã®éèŠãªå質èŠå ã¯ãåãã¯ã»ã«ã®å¹³åçž®å°çã§ããããã«ãããã»ã°ã¡ã³ããŒã·ã§ã³ããã»ã¹ã§ã®é¢é£ãã¯ã»ã«æ°ã®åæžã決å®ãããèªèããã»ã¹ã®äœæ¥è² è·ã軜æžãããŸããããã«ãçž®å°çãé«ãã»ã©ãæååè£é åã®äžéšã§ããéæåé åãå°ãªããªããOCRãœãããŠã§ã¢ã®èª€èªèãæžå°ããŸããå¹³ååæžçã決å®ãããŸã
è¡š1ã®æåŸã®åã¯ããããªãµã³ãã«ã®ãã¬ãŒã ãããã®æåæ°ã瀺ããŠããŸããããã¯ãå¹³ååæžçãšçžé¢ããŠããŸãã
ãããªã®çš®é¡ | ãã¬ãŒã | ãã£ã©ã¯ã¿ãŒ | ãããã®ãã¡ãåè£ãšãªã¢ã«å«ãŸãã | æžãã | ãã¬ãŒã å ã®ãã£ã©ã¯ã¿ãŒ | |
---|---|---|---|---|---|---|
éæ¢ããã¹ããéæ¢ã·ãŒã³ | 400 | 137 | 131 | 96ïŒ | 0.058 | 0.34 |
éæ¢ããã¹ããéæ¢ã·ãŒã³ | 400 | 92 | 79 | 86ïŒ | 0,028 | 0.23 |
éæ¢ããããã¹ããåãã·ãŒã³ã | 116 | 21 | 21 | 100ïŒ | 0,035 | 0.18 |
éæ¢ããããã¹ããåãã·ãŒã³ã | 400 | 148 | 144 | 97ïŒ | 0,037 | 0.36 |
ããã¹ãã®ç§»åãéæ¢ã·ãŒã³ | 139 | 264 | 264 | 100ïŒ | 0,065 | 1.90 |
ããã¹ãã®ç§»åãéæ¢ã·ãŒã³ | 190 | 273 | 273 | 100ïŒ | 0,112 | 1.44 |
ããã¹ãã®ç§»åãã·ãŒã³ã®ç§»å | 202 | 373 | 372 | 99.7ïŒ | 0.130 | 1.85 |
ããã¹ãã®ç§»åãã·ãŒã³ã®ç§»å | 400 | 512 | 512 | 100ïŒ | 0,090 | 1.28 |
ã¢ã«ãŽãªãºã ã®å®å®æ§ã®çµéšç蚌æ ã瀺ãããã«ãããã¹ããªãã®9çªç®ã®ãããªãµã³ãã«ã§ãã¹ãããŸããããããªãµã³ãã«ã¯500ãã¬ãŒã ã§æ§æãããå¹³ååæžçã¯0.038ã§ããããã®å€ã¯ãããã¹ããå«ããããªãµã³ãã«ã§èŠãããå€ãšæ¯èŒããŠéåžžã«äœãå€ã§ãããããã£ãŠããã®ã¢ã«ãŽãªãºã ã¯ãããã¹ããã»ãšãã©ãŸãã¯ãŸã£ããå«ãŸãªãã·ãŒã³ãæ€åºããããšãã§ããŸããããããæçµæ±ºå®ã¯OCRããŒã«ã«ããã£ãŠããŸããäžéšã®èªè ã¯ãã·ãŒã³ã®äžéšãšããŠã®ããã¹ãã«ã€ããŠã¯ã©ãã§ããããïŒããã¯ãã¢ã«ãŽãªãºã ã®å®éšçµæãæªããŸããïŒäžè¬ã«ãã·ãŒã³ããã¹ãã¯æœåºãããŸããããã ãã人工ããã¹ããšåãæ©èœãããå Žåã¯æœåºãããŸããããã¯éåžžãåæ§ã®ã¿ã¹ã¯ã®ãããªã§äœ¿çšãããã·ãŒã³ããã¹ãã§çºçããŸãã人工ããã¹ããªã©ãããšãã°ãè¿è·é¢ã®éœåžåã®ã¹ãããã·ã§ããã
çµè«ãšå±æ
åºæããã£ãã·ã§ã³ãããã³ã¯ããŒãžã³ã°ã¯ãŒãã®ããã¹ããèªåçãã€ç¢ºå®ã«æœåºããåç»ã®æåã®èªåã»ã°ã¡ã³ãåã¢ã«ãŽãªãºã ãå°å ¥ããŸãããåèš2247ãã¬ãŒã ã§æ§æãããããžã¿ã«ãããªã®8ã€ã®ãµã³ãã«ã®å®éšçµæã¯ãéåžžã«ææã§ããåœç€Ÿã®ã¢ã«ãŽãªãºã ã¯ãããžã¿ã«ãããªãµã³ãã«ã«è¿œå ããããã¹ãŠã®ããã¹ãç»åã®86ïŒ ãã100ïŒ ãæœåºããŸãããåããŠããããã¹ããåããŠããã·ãŒã³ãå«ããããªãµã³ãã«ã®å Žåãã»ã°ã¡ã³ããŒã·ã§ã³ããã©ãŒãã³ã¹ã¯97ïŒ ãã100ïŒ ã®ç¯å²ã§ããçµæã®åè£é åã¯ãæšæºã®OCRãœãããŠã§ã¢ã§ç°¡åã«åæã§ããŸããåœç€Ÿã®èªèã¢ã«ãŽãªãºã ã¯ãåãæåã®ãã¹ãŠã®èªèã€ã³ã¹ã¿ã³ã¹ãåäžã®èªèçµæã«çµåããŸãã
çŸåšãåœç€Ÿã®ã¢ã«ãŽãªãºã ã¯ã°ã¬ãŒã¹ã±ãŒã«ç»åãåŠçããŠããŸããããã«ãããããšãã°ãç°è²ããã£ãéè²ã®èæ¯ã«é»è²ã®ããã¹ããæ€åºããããšãé£ãããªããŸãããããã®è²ã¯ã°ã¬ãŒã¹ã±ãŒã«ã®ç»åãšå¯Ÿç §çã§ã¯ãªãããã§ãããããã£ãŠããã®æ¹æ³ã§ã¯ããã®ãããªããã¹ãã確å®ã«ã»ã°ã¡ã³ãåã§ããŸããã§ãããä»åŸã®èšç»ã§ã¯ã察å¿ããè²ç©ºéã®ã«ã©ãŒç»åãåŠçããã¢ã«ãŽãªãºã ãæ¡åŒµãããããã®ã«ã©ãŒç»åã®ã³ã³ãã©ã¹ããèšç®ããŸãã
å°æ¥çã«ã¯ãèªåãããªã¢ãã¹ãã©ã¯ã·ã§ã³ã·ã¹ãã ã«ããã¹ãã»ã°ã¡ã³ããŒã·ã§ã³ãšããã¹ãèªèã¢ãžã¥ãŒã«ãå«ããŠããã£ã«ã ã®ååãšãã£ã«ã ã®æãéèŠãªä¿³åªãæœåºã«äžå¯æ¬ ãªéšåã§ãããããããããæœåºã§ããããã«ããäºå®ã§ããç¹å®ã®ãžã£ã³ã«ã¯ç¹å®ã®ããã¹ãã«ãã£ãŠç¹åŸŽä»ãããããããããã©ãŒãã³ã¹ã®åäžãèæ ®ããŠããããªãžã£ã³ã«ã®èªåèªèã®ããã®ã¢ã«ãŽãªãºã ãã·ã¹ãã ã«çµã¿èŸŒãŸããŸã[2]ã
åç
§è³æ
[1] John Canny, âA Computational Approach to Edge Detectionâ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-697, Nov. 1986.
[2] Stefan Fischer, Rainer Lienhart, and Wolfgang Effelsberg, âAutomatic Recognition of Film Genresâ, Proc. ACM Multimedia 95, San Francisco, CA, Nov. 1995, pp. 295-304.
[3] DL Gall, âMPEG: A Video Compression Standard for Multimedia Applicationsâ, Communications of the ACM, 34, 4, April 1991.
[4] SL Horowitz and T. Pavlidis, âPicture Segmentation by a Traversal Algorithmâ, Comput. Graphics Image Process. 1ãppã 360-372, 1972.
[5] Rainer Lienhart, Silvia Pfeiffer, and Wolfgang Effelsberg, âThe MoCA Workbenchâ, University of Mannheim, Computer Science Department, Technical Report TR-34-95, November 1996.
[6] Shunji Mori, Ching Y. Suen, Kazuhiko Yamamoto, âHistorical Review of OCR Research and Developmentâ, Proceedings of the IEEE, Vol. 80, No. 7, pp. 1029-1058, July 1992.
[7] Jun Ohya, Akio Shio, and Shigeru Akamatsu, âRecognizing Characters in Scene Imagesâ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 2, pp. 214-220, 1994.
[8] William B. Pennebaker and Joan L. Mitchel, âJPEG Still Image Data Compression Standardâ, Van Nostrand Rheinhold, New York, 1993.
[9] Arthur R. Pope, Daniel Ko, David G. Lowe, âIntroduction to Vista Programming Toolsâ, Department of Computer Science, University of British Columbia, Vancouver.
[10] Arthur R. Pope and David G. Lowe, âVista: A Software Environment for Computer Vision Researchâ, Department of Computer Science, University of British Columbia, Vancouver.
[11] Alois Regl, âMethods of Automatic Character Recognitionâ, Ph. D. thesis, Johannes Kepler University Linz, Wien 1986 (in German).
[12] Michael A. Smith and Takeo Kanade, âVideo Skimming for Quick Browsing Based on Audio and Image Characterizationâ, Carnegie Mellon University, Technical Report CMU-CS-95-186, July 1995.
[13] M. Takatoo et al., âGray Scale Image Processing Technology Applied to Vehicle License Number Recognition Systemâ, in Proc. Int. Workshop Industrial Applications of Machine Vision and Machine Intelligence, pp. 76-79, 1987.
[14] A. Murat Tekalp, âDigital Video Processingâ, Prentice Hall Signal Processing Series, ISBN 0-13-190075-7, 1995.
[15] Ramin Zabih, Justin Miller, and Kevin Mai, âA Feature-Based Algorithm for Detecting and Classifying Scene Breaksâ, Proc. ACM Multimedia 95, San Francisco, CA, pp. 189-200, Nov. 1995.
[16] HJ Zhang, CY Low, SW Smoliar, and JH Wu, âVideo Parsing, Retrieval and Browsing: An Integrated and Content-Based Solutionâ, Proc. ACM Multimedia 95, San Francisco, CA, pp. 15-24, Nov. 1995.
[17] Hong Jiang Zhang and Stephen W. Smoliar, âDeveloping Power Tools for Video Indexing and Retrievalâ, Proc. SPIE Conf. on Storage and Retrieval for Image and Video Databases, San Jose, pp. 140-149, CA, 1994.
[2] Stefan Fischer, Rainer Lienhart, and Wolfgang Effelsberg, âAutomatic Recognition of Film Genresâ, Proc. ACM Multimedia 95, San Francisco, CA, Nov. 1995, pp. 295-304.
[3] DL Gall, âMPEG: A Video Compression Standard for Multimedia Applicationsâ, Communications of the ACM, 34, 4, April 1991.
[4] SL Horowitz and T. Pavlidis, âPicture Segmentation by a Traversal Algorithmâ, Comput. Graphics Image Process. 1ãppã 360-372, 1972.
[5] Rainer Lienhart, Silvia Pfeiffer, and Wolfgang Effelsberg, âThe MoCA Workbenchâ, University of Mannheim, Computer Science Department, Technical Report TR-34-95, November 1996.
[6] Shunji Mori, Ching Y. Suen, Kazuhiko Yamamoto, âHistorical Review of OCR Research and Developmentâ, Proceedings of the IEEE, Vol. 80, No. 7, pp. 1029-1058, July 1992.
[7] Jun Ohya, Akio Shio, and Shigeru Akamatsu, âRecognizing Characters in Scene Imagesâ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 2, pp. 214-220, 1994.
[8] William B. Pennebaker and Joan L. Mitchel, âJPEG Still Image Data Compression Standardâ, Van Nostrand Rheinhold, New York, 1993.
[9] Arthur R. Pope, Daniel Ko, David G. Lowe, âIntroduction to Vista Programming Toolsâ, Department of Computer Science, University of British Columbia, Vancouver.
[10] Arthur R. Pope and David G. Lowe, âVista: A Software Environment for Computer Vision Researchâ, Department of Computer Science, University of British Columbia, Vancouver.
[11] Alois Regl, âMethods of Automatic Character Recognitionâ, Ph. D. thesis, Johannes Kepler University Linz, Wien 1986 (in German).
[12] Michael A. Smith and Takeo Kanade, âVideo Skimming for Quick Browsing Based on Audio and Image Characterizationâ, Carnegie Mellon University, Technical Report CMU-CS-95-186, July 1995.
[13] M. Takatoo et al., âGray Scale Image Processing Technology Applied to Vehicle License Number Recognition Systemâ, in Proc. Int. Workshop Industrial Applications of Machine Vision and Machine Intelligence, pp. 76-79, 1987.
[14] A. Murat Tekalp, âDigital Video Processingâ, Prentice Hall Signal Processing Series, ISBN 0-13-190075-7, 1995.
[15] Ramin Zabih, Justin Miller, and Kevin Mai, âA Feature-Based Algorithm for Detecting and Classifying Scene Breaksâ, Proc. ACM Multimedia 95, San Francisco, CA, pp. 189-200, Nov. 1995.
[16] HJ Zhang, CY Low, SW Smoliar, and JH Wu, âVideo Parsing, Retrieval and Browsing: An Integrated and Content-Based Solutionâ, Proc. ACM Multimedia 95, San Francisco, CA, pp. 15-24, Nov. 1995.
[17] Hong Jiang Zhang and Stephen W. Smoliar, âDeveloping Power Tools for Video Indexing and Retrievalâ, Proc. SPIE Conf. on Storage and Retrieval for Image and Video Databases, San Jose, pp. 140-149, CA, 1994.