ããã«ã¡ã¯Habrã æè¿ãç§ã¯ãã£ãŒãã©ãŒãã³ã°ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ãç»ååŠçãªã©ã«é¢ããèšäºãèªãã®ãæ¬åœã«æ¥œããã§ããŸãã å®éãããªãèªèº«ã®ãããæ§ãããªããšã¯ã¹ããã€ããé©ãããåºæ¿ããéåžžã«ã¯ãŒã«ãªèšäºãããã«ãããŸãã ã§ãããã2016幎8æ11æ¥ã«æžãããNvidiaã®èšäºã®ç¿»èš³ããã·ã¢èªã話ã人ã ã®æ³šæãåèµ·ããããšæããŸããããã§ã¯ãç»åå ã®ãªããžã§ã¯ããæ€åºããæ°ããDIGITSããŒã«ãšDetectNetãããã¯ãŒã¯ã玹ä»ãããŠããŸãã ãã¡ãããæåã®èšäºã¯æåã¯å°ãåºåã®ããã«èŠããŸãããŸããDetectNetãããã¯ãŒã¯ã¯ãé©æ°çãªããã®ã§ã¯ãããŸããããDIGITSããŒã«ãšDetectNetãããã¯ãŒã¯ã®çµã¿åããã¯èª°ã«ãšã£ãŠãèå³æ·±ããã®ã§ãã
çŸåšã NVIDIAãã£ãŒãã©ãŒãã³ã°GPUãã¬ãŒãã³ã°ã·ã¹ãã ïŒDIGITSïŒã®å©ããåããŠãç 究ã¢ããªã¹ãã¯ããã®åéã§æãäžè¬çãªã¿ã¹ã¯ã解決ããããã®ãã£ãŒãã©ãŒãã³ã°ã®ãã«ãã¯ãŒãèªç±ã«äœ¿çšã§ããŸããããšãã°ãããŒã¿ã®æºåãç³ã¿èŸŒã¿ãããã¯ãŒã¯ã®å®çŸ©ã ãåŠç¿ããã»ã¹ããªã¢ã«ã¿ã€ã ã§ç£èŠããæé©ãªã¢ãã«ãéžæããŸãã å®å šã«ã€ã³ã¿ã©ã¯ãã£ããªDIGITSããŒã«ã«ãããããã°ã©ãã³ã°ãšãããã°ãäžèŠã«ãªãããããã¯ãŒã¯ã®èšèšãšãã¬ãŒãã³ã°ã®ã¿ãè¡ãããšãã§ããŸãã
DIGITS 4ã¯ããªããžã§ã¯ããæ€åºããã¿ã¹ã¯ãžã®æ°ããã¢ãããŒããå°å ¥ããŸããããã«ããããããã¯ãŒã¯å ã§ãªããžã§ã¯ãïŒé¡ãè»äž¡ãæ©è¡è ãªã©ïŒãèŠã€ãããªããžã§ã¯ãã®åšå²ã®å¢çããã¯ã¹ãå®çŸ©ã§ããããã«ãªããŸãã ãã®æ¹æ³ã®è©³çŽ°ã«ã€ããŠã¯ã DIGITSã«ãããªããžã§ã¯ãæ€åºã®ãã£ãŒãã©ãŒãã³ã°ã®èšäºãã芧ãã ãã ã
å³1.è»äž¡æ€åºã®ããã®DetectNetãããã¯ãŒã¯æ€åº
DIGITSã®æäœæ¹æ³ããã°ããç¿åŸããããã«ãããŒã«ã«ã¯DetectNetãšåŒã°ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãã«ã®ä»£è¡šçãªäŸãå«ãŸããŠããŸãã å³ å³1ã¯ãèªç©ºåçã§è»äž¡ãæ€åºããããã«èšç·ŽãããDetectNetãããã¯ãŒã¯ã®çµæã瀺ããŠããŸãã
DetectNetããŒã¿åœ¢åŒ
ç»åã®åé¡ã§ã¯ããã¬ãŒãã³ã°ãµã³ãã«ã®å ¥åããŒã¿ã¯ãéåžžã®ç»åïŒéåžžãµã€ãºãå°ããã1ã€ã®ãªããžã§ã¯ããå«ãïŒãšã¯ã©ã¹ã©ãã«ïŒéåžžã¯æŽæ°ã¯ã©ã¹èå¥åãŸãã¯æååã¯ã©ã¹åïŒã§ãã äžæ¹ããªããžã§ã¯ããæ€åºããã¿ã¹ã¯ã®å Žåããã¬ãŒãã³ã°ã«ã¯ããå€ãã®æ å ±ãå¿ èŠã§ãã DetectNetã®ãã¬ãŒãã³ã°ãµã³ãã«ã®å ¥åããŒã¿ããã®ç»åã¯å€§ãããè€æ°ã®ãªããžã§ã¯ããå«ã¿ãŸããç»åå ã®åãªããžã§ã¯ãã«ã€ããŠãã©ãã«ã«ã¯ãªããžã§ã¯ããå±ããã¯ã©ã¹ã«é¢ããæ å ±ã ãã§ãªããå¢çããã¯ã¹ã®è§ã®äœçœ®ãå«ããå¿ èŠããããŸãã ãã®å Žåãé·ããšå¯žæ³ãç°ãªãã©ãã«åœ¢åŒãåçŽã«éžæãããšããã¬ãŒãã³ã°ç»åå ã®ãªããžã§ã¯ãã®æ°ãå€åããå¯èœæ§ãããããã æ倱é¢æ°ã®æ±ºå®ãå°é£ã«ãªãå¯èœæ§ããããŸãã
DetectNetã¯ãåºå®ããã3次å ã©ãã«åœ¢åŒã䜿çšããŠãã®åé¡ã解決ããŸããããã«ãããä»»æã®ãµã€ãºã®ç»åãšç°ãªãæ°ã®ãªããžã§ã¯ããæäœã§ããŸãã DetectNetã®ãã®å ¥åè¡šçŸã¯ãä»äºã«ãã£ãŠã觊çºããããŸãã[Redmon et alã 2015] ã
å³ å³2ã«ãDetectNetãããã¯ãŒã¯ããã¬ãŒãã³ã°ããããã®ããŒã¯ã¢ããã䜿çšãããã¬ãŒãã³ã°ãµã³ãã«ã®ç»ååŠçã®æŠç¥å³ã瀺ããŸãã æåã«ãæ€åºããæå°ã®ãªããžã§ã¯ãããããããã«å°ãããµã€ãºã®åºå®ã°ãªãããå ã®ç»åã«éããããŸãã ããã«ãã©ãã£ã¹ã®åæ£æ¹åœ¢ã«ã¯ãã©ãã£ã¹ã®æ£æ¹åœ¢ã«ãããªããžã§ã¯ãã®ã¯ã©ã¹ ãããã³ã©ãã£ã¹ã®æ£æ¹åœ¢ã®äžå¿ã«å¯Ÿããå¢çç©åœ¢ã®è§ã®ãã¯ã»ã«åº§æšã®æ å ±ãããŒã¯ãããŸã ã æ Œåã®æ£æ¹åœ¢ã«ãªããžã§ã¯ããèœã¡ãªãå Žåãç¹å¥ãªã¯ã©ã¹ãdontcareãã䜿çšããŠåºå®ããŒã¿åœ¢åŒãä¿åããŸãã ãŸããè¿œå ã®ãã«ãã¬ããžãå€ãå ¥åããŒã¿åœ¢åŒã«è¿œå ããã0ãŸãã¯1ã®å€ãåãããªããžã§ã¯ããã°ãªããã®æ£æ¹åœ¢ã«ååšãããã©ããã瀺ããŸãã è€æ°ã®ãªããžã§ã¯ããã°ãªããã®1ã€ã®æ£æ¹åœ¢ã«åãŸãå ŽåãDetectNetã¯æ倧ãã¯ã»ã«æ°ãå ãããªããžã§ã¯ããéžæããŸãã ãã¯ã»ã«æ°ãåãå ŽåãããŠã³ãã£ã³ã°ããã¯ã¹ã®æå°ã®çžŠåº§æšïŒ OY ïŒãæã€ãªããžã§ã¯ããéžæãããŸãã ãã®ãããªãªããžã§ã¯ãã®éžæã¯ãèªç©ºåçã§ã¯éèŠã§ã¯ãããŸããããå°å¹³ç·ã®ããç»åãããšãã°ãããŠã³ãã£ã³ã°ããã¯ã¹ã®æå°ã®çžŠåº§æšãæã€ãªããžã§ã¯ããã«ã¡ã©ã®è¿ãã«ããDVRã®ç»åã§ã¯æå³ããããŸãã
å³2. DetectNetã®å ¥åã®ãã¬ãŒã³ããŒã·ã§ã³
ãããã£ãŠãDetectNetãæããç®çã¯ãç¹å®ã®ç»åã®ããŒã¿ã®åæ§ã®è¡šçŸãäºæž¬ããããšã§ãã ãŸãã¯ãæèšããã°ãDetectNetã¯ã©ãã£ã¹ã®åæ£æ¹åœ¢ã«ãªããžã§ã¯ããååšãããã©ãããäºæž¬ããå¢çããã¯ã¹ã®è§åºŠã®çžå¯Ÿåº§æšãèšç®ããå¿ èŠããããŸãã
DetectNetãããã¯ãŒã¯ã¢ãŒããã¯ãã£
DetectNetãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯ãCaffeãã¬ãŒã ã¯ãŒã¯ãããã¯ãŒã¯ã¢ãã«ãã¡ã€ã«ã§å®çŸ©ããã5ã€ã®éšåããããŸãã å³ å³3ã¯ããã¬ãŒãã³ã°äžã«äœ¿çšãããDetectNetãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã瀺ããŠããŸãã 3ã€ã®éèŠãªããã»ã¹ãåºå¥ã§ããŸãã
- ãã¬ãŒãã³ã°ã»ããã®ç»åãšããŒã¯ãããŒã¿ã¬ã€ã€ãŒã«å ¥åãããŸãã ããã«ãå€æã¬ã€ã€ãŒã¯ããªã³ã¶ãã©ã€ãã§ããŒã¿ãè£å®ããŸãã
- å®å šç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒFCNïŒã¯ãç¹åŸŽã®æœåºãšãç¹åŸŽã¯ã©ã¹ã®äºæž¬ãããã³ã°ãªããæ£æ¹åœ¢äžã®é·æ¹åœ¢ã®å¢çãçæããŸãã
- æ倱é¢æ°ã¯ãåæã«ããªããžã§ã¯ãã®ã«ãã¬ããžãäºæž¬ããåé¡ã®èª€å·®ãšãæ Œåã®æ£æ¹åœ¢ã«ããå¢çç©åœ¢ã®è§åºŠãèæ ®ããŸãã
å³3.ãã¬ãŒãã³ã°çšã®DetectNetãããã¯ãŒã¯æ§é
å³ å³4ã«ãæ€èšŒçšã®DetectNetãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã瀺ããŸããããã«ã¯ãããã«2ã€ã®éèŠãªããã»ã¹ããããŸãã
- äºæž¬ãããå¢çããã¯ã¹ãã¯ã©ã¹ã¿ãªã³ã°ããŠãæçµã»ãããååŸããŸãã
- ãã¹ããµã³ãã«å šäœã§ã¢ãã«ã®æå¹æ§ã枬å®ããããã®åçŽåãããã¡ããªãã¯mAPïŒå¹³å粟床ïŒã®èšç®ã
å³4.æ€èšŒã®ããã®DetectNetãããã¯ãŒã¯æ§é
detectnet_groundtruth_param
ã¬ã€ã€ãŒã®ã¹ãã©ã€ãããã¯ã»ã«åäœã§èšå®ããããšã«ããããã¬ãŒãã³ã°ããŒã¯ã®ã°ãªããã¹ã¯ãšã¢ã®ãµã€ãºãå€æŽã§ããŸãã äŸãã°
detectnet_groundtruth_param { stride: 16 scale_cvg: 0.4 gridbox_type: GRIDBOX_MIN min_cvg_len: 20 coverage_type: RECTANGULAR image_size_x: 1024 image_size_y: 512 obj_norm: true crop_bboxes: false }
ãã®ã¬ã€ã€ãŒã®ãã©ã¡ãŒã¿ãŒã§ã¯ããã¬ãŒãã³ã°ç»åã®ãµã€ãº(image_size_x, image_size_y)
ãæå®ã§ããŸãã ãããã£ãŠããããã®ãã©ã¡ãŒã¿ãŒãæå®ãããšããã¬ãŒãã³ã°äžã«DetectNetãããã¯ãŒã¯ã«å
¥ãç»åã¯ããããã®ãµã€ãºã«ã©ã³ãã ã«ããªãã³ã°ãããŸãã ããã¯ãæ€åºãããªããžã§ã¯ããéåžžã«å°ããéåžžã«å€§ããªç»åã§ãã¬ãŒãã³ã°ã»ãããæ§æãããŠããå Žåã«åœ¹ç«ã¡ãŸãã
ãã®å Žã§å
¥åããŒã¿ãè£å®ããã¬ã€ã€ãŒã®ãã©ã¡ãŒã¿ãŒã¯ã detectnet_augmentation_param
å®çŸ©ããdetectnet_augmentation_param
ã äŸãã°
detectnet_augmentation_param { crop_prob: 1.0 shift_x: 32 shift_y: 32 scale_prob: 0.4 scale_min: 0.8 scale_max: 1.2 flip_prob: 0.5 rotation_prob: 0.0 max_rotate_degree: 5.0 hue_rotation_prob: 0.8 hue_rotation: 30.0 desaturation_prob: 0.8 desaturation_max: 0.8 }
ããŒã¿è¿œå æé ã¯ãDetectNetã䜿çšããé«æ床ã§æ£ç¢ºãªãªããžã§ã¯ãæ€åºåšã®ãã¬ãŒãã³ã°ãæåãããããã«éèŠãªåœ¹å²ãæãããŸãã detectnet_augmentation_param
ã®ãã©ã¡ãŒã¿ãŒã¯ããã¬ãŒãã³ã°ã»ããã«å¯ŸããããŸããŸãªã©ã³ãã å€æïŒå€äœãåå°ãªã©ïŒãå®çŸ©ããŸãã ãã®ãããªå
¥åããŒã¿ã®å€æã«ããããããã¯ãŒã¯ãåãç»åã2ååŠçããããšããªããªãããããã¹ããµã³ãã«ã®ãªããžã§ã¯ãã®åœ¢ç¶ã®åãã¬ãŒãã³ã°ãèªç¶ãªå€åã«å¯Ÿããèæ§ãé«ãŸããŸãã
DetectNet FCNãµããããã¯ãå ¥åå±€ãæçµããŒã«å±€ãããã³åºåå±€ã®ãªãGoogLeNetãããã¯ãŒã¯ã«äŒŒãæ§é ãæã£ãŠããŸã[Szegedy et alã 2014] ã ãã®ã¢ãããŒãã«ãããDetectNetã¯æ¢ã«ãã¬ãŒãã³ã°æžã¿ã®GoogLeNetã¢ãã«ã䜿çšããŠããã¬ãŒãã³ã°æéãççž®ããå®å šãªã¢ãã«ã®ç²ŸåºŠãåäžãããããšãã§ããŸãã å®å šãªç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒFCNïŒã¯ãå®å šã«æ¥ç¶ãããã¬ã€ã€ãŒã®ãªãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ãã ããã¯ããããã¯ãŒã¯ãå ¥åã§ããŸããŸãªãµã€ãºã®ç»åãåä¿¡ããéåžžã®æ¹æ³ã§ã¹ãããä»ãã®ã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠæè¡ã䜿çšããŠå¿çãã«ãŠã³ãã§ããããšãæå³ããŸãã åºåã¯ãå®æ°å€ã®å€æ¬¡å é åã§ãããå ¥åããŒã¯ãDetectNetã®æ£æ¹åœ¢ã°ãªããã®ããã«ãå ¥åç»åã«éãåãããããšãã§ããŸãã ãã®çµæãæçµå±€ããŒã«ã®ãªãGoogLeNetãããã¯ãŒã¯ã¯ã555 x 555ãã¯ã»ã«ã®ã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠãš16ãã¯ã»ã«ã®ããããæã€äžçš®ã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ã[1] ã
DetectNetã¯ã2ã€ã®ç¬ç«ããæ倱é¢æ°ã®ç·åœ¢çµåã䜿çšããŠãæçµçãªæ倱é¢æ°ãšæé©åãäœæããŸãã æåã®coverage_loss
æ倱é¢æ°ã¯ããªããžã§ã¯ãã®å®éã®ã«ãã¬ããžãšäºæž¬ã«ãã¬ããžã®éã®ãœãŒã¹ããŒã¿ã©ãã£ã¹ã®ãã¹ãŠã®å¹³æ¹ã«å¯Ÿãã2次誀差ã§ãã
2çªç®ã®é¢æ°bbox_loss
ã¯ãã©ãã£ã¹ã®ãã¹ãŠã®æ£æ¹åœ¢ã®å¢çç©åœ¢ã®å®è§åºŠãšäºæž¬è§åºŠã®éã®å¹³å誀差ã§ãã
Caffeãã¬ãŒã ã¯ãŒã¯ã¯ããããã®æ倱é¢æ°ã®å€ã®å éåèšãæå°åããŸãã
DetectNetãããã¯ãŒã¯åºå
DetectNetãããã¯ãŒã¯ã®æåŸã®ã¬ã€ã€ãŒã¯ãçæãããã°ãªããåè§åœ¢ã®å¢çç©åœ¢ã®ã»ããããã£ã«ã¿ãŒåŠçããã³ã¯ã©ã¹ã¿ãŒåããŸãã ããã«ã¯ãOpenCVã©ã€ãã©ãªã®groupRectanglesã¢ã«ãŽãªãºã ã䜿çšãããŸãã å¢çç©åœ¢ã¯ããªããžã§ã¯ãã®äºæž¬ã«ãã¬ããžã®å€ã«å¿ããŠããããå€æ³ã«ãã£ãŠãã£ã«ã¿ãªã³ã°ãããŸãã ãããå€ã¯ãDetectNetã¢ãã«ã®gridbox_cvg_threshold
ãã¡ã€ã«ã®gridbox_cvg_threshold
ãã©ã¡ãŒã¿ãŒã«ãã£ãŠèšå®ãããŸãã å¢çé·æ¹åœ¢ã¯ãé·æ¹åœ¢ã®ç䟡åºæºã䜿çšããŠã¯ã©ã¹ã¿ãŒåãããŸããããã¯ãåæ§ã®äœçœ®ãšãµã€ãºã®åœ¢ç¶ãçµã¿åãããŸãã é·æ¹åœ¢ã®é¡äŒŒæ§ã¯å€æ°eps
ã«ãã£ãŠæ±ºå®ãããŸããå€ããŒãã®å Žåãé·æ¹åœ¢ã¯çµåããããå€ãç¡é倧ã«ãªãåŸåãããå Žåããã¹ãŠã®é·æ¹åœ¢ã1ã€ã®ã¯ã©ã¹ã¿ãŒã«åé¡ãããŸãã é·æ¹åœ¢ãã¯ã©ã¹ã¿ãŒã«çµåããåŸã gridbox_rect_thresh
ãã©ã¡ãŒã¿ãŒã§æå®ããããããå€ã§å°ããªã¯ã©ã¹ã¿ãŒã®ãããå€ãã£ã«ã¿ãªã³ã°ãè¡ãããäžå€®ã®é·æ¹åœ¢ãæ®ãã®ã¯ã©ã¹ã¿ãŒãšèŠãªãããåºåãªã¹ãã«èšé²ãããŸãã ã¯ã©ã¹ã¿ãªã³ã°æ¹æ³ã¯Pythonã®é¢æ°ã«ãã£ãŠå®è£
ããããPython Layersãã€ã³ã¿ãŒãã§ãŒã¹ãä»ããŠCaffeã§åŒã³åºãããŸãã groupRectangles
ã¢ã«ãŽãªãºã ã®ãã©ã¡ãŒã¿ãŒã¯ãDetectNetãããã¯ãŒã¯ã¢ãã«ãã¡ã€ã«ã®cluster
ã¬ã€ã€ãŒãä»ããŠèšå®ãããŸãã
DetectNetã§ã¯ãPythonã¬ã€ã€ãŒã€ã³ã¿ãŒãã§ã€ã¹ã䜿çšããŠãå¢çç©åœ¢ã®æçµã»ããããèšç®ãããåçŽåãããã¡ããªãã¯mAPïŒå¹³å粟床ïŒãèšç®ããŠåºåããŸãã äºæž¬ããã³çŸåšã®å¢çé·æ¹åœ¢ã«ã€ããŠã ãŠããªã³ã®äº€å·®ç¹ïŒIoUïŒå€-é·æ¹åœ¢ã®äº€å·®é¢ç©ãšãã®é¢ç©ã®åèšã®æ¯çãèšç®ãããŸãã IoUã«ãããå€ïŒããã©ã«ã0.7ïŒã䜿çšããå Žåãäºæž¬ãããé·æ¹åœ¢ã¯çéœæ§ãŸãã¯åœéœæ§ã®äºæž¬ãšããŠåé¡ã§ããŸãã é·æ¹åœ¢ã®ãã¢ã®IoUå€ããããå€ãè¶ ããŠããªãå Žåãäºæž¬ãããé·æ¹åœ¢ã¯åœé°æ§ã®äºæž¬ã®ã«ããŽãªãŒã«å ¥ããŸã-ãªããžã§ã¯ãã¯æ€åºãããŸããã§ããã ãããã£ãŠãDetectNetã®ç°¡æmAPã¡ããªãã¯ã¯ã 粟床 ïŒç²ŸåºŠã¯çéœæ§ãšåœéœæ§ã®åèšã«å¯Ÿããçéœæ§ã®æ¯çïŒãšå®å šæ§ã®å°ºåºŠ ïŒæ³èµ·ã¯çéœæ§ãšçé°æ§ã®åèšã«å¯Ÿããçéœæ§ã®æ¯çïŒã®ç©ãšããŠèšç®ãããŸãã
ãã®ã¡ããªãã¯ã¯ããã¬ãŒãã³ã°ãµã³ãã«ãªããžã§ã¯ãã®æ€åºã«å¯ŸããDetectNetãããã¯ãŒã¯ã®æ床ã®äŸ¿å©ãªç¹æ§ã§ããã誀ã£ãçµæãšå¢çããã¯ã¹ã®ç²ŸåºŠãç Žæ£ããŸãã ãªããžã§ã¯ãæ€åºã®ãšã©ãŒã®åæã«é¢ãã詳现ã¯ã [Hoiem et alã 2012] ã
åŠç¿å¹æãšçµæ
ãªããžã§ã¯ãæ€åºã¿ã¹ã¯ã«å¯ŸããDetectNetãããã¯ãŒã¯ã®äž»ãªå©ç¹ã¯ããªããžã§ã¯ãã®æ€åºå¹çãšçæãããå¢çç©åœ¢ã®ç²ŸåºŠã§ãã å®å šãªç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒFCNïŒã®ååšã«ãããã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠäžã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«åºã¥ãåé¡åšã䜿çšããŠæ¯èŒããããšã«ãããDetectNetãããã¯ãŒã¯ãããå¹ççã«ããããšãã§ããŸãã ããã«ãããéè€ãããŠã£ã³ããŠã«é¢é£ããäžèŠãªèšç®ãåé¿ãããŸãã çµ±äžããããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã䜿çšãããã®ã¢ãããŒãã¯ãæ€åºåé¡ã解決ããããã«ãããã·ã³ãã«ã§æŽç·ŽãããŠããŸãã
Nvidia Caffe 0.15.7ããã³cuDNN RC 5.1ã䜿çšããDIGITS 4ã§ã®DetectNetãã¬ãŒãã³ã°ã¯ã307ãã¬ãŒãã³ã°ã®ãµã³ãã«ãš1536 x 1024ãã¯ã»ã«ã®ãµã€ãºã®24æã®ãã¹ãã€ã¡ãŒãžã§ãåäžã®Titan Xã°ã©ãã£ãã¯ã«ãŒãã䜿çšããŠ63åããããŸãã
DetectNetã¯ã16ãã¯ã»ã«ã®æ Œåãµã€ãºã§1536 x 1024ãã¯ã»ã«ã®ãªããžã§ã¯ããæ€åºããŸãã以åã®æ§æïŒ1å°ã®TitanXãNvidia Caffe 0.15.7ãcuDNN RC 5.1ïŒã§ã¯41ããªç§ïŒçŽ24 fpsïŒããããŸãã
DetectNetã®æåã®ã¹ããã
ç¬èªã®ããŒã¿ã§DetectNetãè©ŠããŠã¿ããå Žåã¯ã DIGITS 4ãããŠã³ããŒãã§ããŸãã DIGITSã§ãªããžã§ã¯ããæ€åºããããã®ã¯ãŒã¯ãããŒã®æ®µéçãªãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãããã«ç€ºããŸã ã
DIGITS 4ã®ãªããžã§ã¯ãæ€åºæ©èœã®äœ¿çšã®æŠèŠã«ã€ããŠã¯ã DIGITSã«ãããªããžã§ã¯ãæ€åºã®ãã£ãŒãã©ãŒãã³ã°ã®æçš¿ãåç
§ããŠãã ããã
ãªããžã§ã¯ããæ€åºããã¿ã¹ã¯ã§æ·±å±€åŠç¿ã䜿çšããããŸããŸãªã¢ãããŒãã®é·æãšçæã«èå³ãããå Žåã¯ãGTC 2016ã§Jon Barkerã®ããã©ãŒãã³ã¹ãåç §ããŠãã ããã
ãŠã§ãããŒãªã©ãå«ãä»ã®è©³çŽ°ãªãã¬ãŒãã³ã°è³æã¯ã NVIDIA Deep Learning Instituteã§èŠã€ããããšãã§ããŸãã
åç §è³æ
HoiemãD.ãChodpathumwanãYããããã³DaiãQã2012ããªããžã§ã¯ãæ€åºåšã®ãšã©ãŒã®èšºæã ã³ã³ãã¥ãŒã¿ãŒããžã§ã³-ECCV 2012ãSpringer Berlin Heidelbergã340ã353ã
RedmonãJ.ãDivvalaãS.ãGirshickãRããããã³FarhadiãAã2015ãäžåºŠã ãèŠãïŒçµ±åããããªã¢ã«ã¿ã€ã ã®ãªããžã§ã¯ãæ€åºã arXiv [cs.CV]ã http://arxiv.org/abs/1506.02640
SzegedyãC.ãLiuãW.ãJiaãY.ãet alã 2014.ã³ã³ããªã¥ãŒã·ã§ã³ã§ããã«æ·±ãã arXiv [cs.CV]ã http://arxiv.org/abs/1409.4842
翻蚳è ããã®è¿œå æ å ±ãšãªã³ã¯
å ã®èšäºã¯ãã¡ãã«ãããŸã ã DIGITSãããžã§ã¯ãã¯ãªãŒãã³ãœãŒã¹ã§ããã ãã¡ãã§èŠã€ããããšãã§ããŸã ã DetectNet prototxtãã¡ã€ã«ã¯ã ãããŸãã¯ç»åãšããŠããã«ãããŸã ã
DIGITSã®ã€ã³ã¹ããŒã«ã«ã€ããŠ
詳现ãªã€ã³ã¹ããŒã«æé ã«ã€ããŠã¯ã ãã¡ããã芧ãã ãã ã
DIGITSã¢ããªã±ãŒã·ã§ã³ã«ã¯ãDetectNetãããã¯ãŒã¯ã®å®è¡ã«å¿
èŠãªPythonã¬ã€ã€ãŒãè¿œå ããããã«ãCaffeããŸãã¯ãããNVidiaã®ãã©ãŒã¯ãå¿
èŠã§ãã ã倧ããåé¡ã§ã¯ãªãããã®ãã©ãŒã¯ã¯ãMac OSXãšUbuntuã«ã€ã³ã¹ããŒã«ã§ããŸãã Windowsã®å Žåãåé¡ã¯ãBVLC / Caffeããã®Windowsãã©ã³ãããã©ãŒã¯ã«ãªããããèè
ãæžããŠããããã«ã DIGITS for Windowsã¯DetectNetããµããŒãããŠããªãããšã§ã ã ãããã£ãŠãWindowsã§ã¯ãBVLC / Caffeãã€ã³ã¹ããŒã«ããŠãæšæºããããã¯ãŒã¯ãå®è¡ã§ããŸãã
泚é
[1]æçµããŒãªã³ã°å±€ãåé€ããŠGoogLeNetã䜿çšãããšã555 x 555ãã¯ã»ã«ã®å容éãš16ãã¯ã»ã«ã®ã¹ãã©ã€ããæã€CNNã®ã¹ã©ã€ãã£ã³ã°ãŠã£ã³ããŠã¢ããªã±ãŒã·ã§ã³ã«ãªããŸãã