-ããªãããªãèªèº«ãšããªãã®çµæŽã«ã€ããŠå°ãæããŠãã ããã
-ç§ã®ååã¯Yana Charuyskayaã§ããMTSã®ãããã¯ããªãŒããŒã§ãã ç§ã¯ããã°ããŒã¿åéã«èå³ããããçŽ2幎éããããã£ãŠããŸãã ç§ã®è©±ã«ã€ããŠç°¡åã«èšãã°ïŒç§ã¯ããžãã¹æ å ±åŠã®çµæžåŠéšãåæ¥ãã6幎éå匷ãããã®åŸå¿çåŠè ãšããŠ1幎éå匷ããŸããã ç§ã¯ITã³ã³ãµã«ãã£ã³ã°ã§4幎éåããŠããŸãããããã®ãã¡3人ã¯äž»ã«å€§æéè¡ã®ããŒã¿ãŠã§ã¢ããŠãžã³ã°ãããŒã¿ããŒãããã«ç®¡çã¬ããŒãã«åŸäºããŠããŸããã ã³ã³ãµã«ãã£ã³ã°ã®æåŸã®å¹Žã¯ãæ©æ¢°åŠç¿ãšäºæž¬åæã§ããã çŸåšãç§ã¯MTSã§ãããã¯ããããŒãžã£ãŒãšããŠåããŠããã6人ã®ããŒã ããããæé·ããŠããŸããè¿ãå°æ¥ãããã«7人ãéããŸããäžè¬ã«ãäŒç€Ÿãæ¡å€§ããŠãããçŸåšMTSã«ã¯150人以äžã®ããã°ããŒã¿ã¹ãã·ã£ãªã¹ããããŸããã¹ã¿ããã¯ã»ãŒ2åã§ãïŒïŒã ç§ã®ããŒã ãšç§ã¯åæã«ããã€ãã®è£œåãéçºããŠããŸãããçŸåšã¯å®è£ ã®ç°ãªã段éã«ãããŸããRïŒDã®æ®µéã«ãã補åãããã°ãçç£ã®æ®µéã«ãã補åããããŸãã
-ä»äºãããã°ããŒã¿ã«ãªã³ã¯ããããšã«ããã®ã¯ãªãã§ããã
-ããæç¹ã§ãã¡ãã·ã§ããã«ã§é¢çœããã®ã«ãªããŸããããç§ã«ãšã£ãŠã¯é£ãããŠç解ã§ããªãåéã§ããã ãã¡ãããç§ã¯å€§åŠã®CïŒããã°ã©ãã³ã°èšèªã«è¡ãããã®çè«çåºç€ãå°ãç解ããŸããããèªåã§ããã°ã©ãã³ã°ããããšã¯ãããŸããã§ããã ITã³ã³ãµã«ãã£ã³ã°ã®ä»äºã«å°±ããåŸãããããã®SQLã¹ã¯ãªãããæžããŸããã ããããPythonããã¥ãŒã©ã«ãããã¯ãŒã¯ãããã°ã©ãã³ã°èšèªã§ããã°ã©ã ãèšè¿°ããããäºæž¬ã¢ãã«ãæ§ç¯ããããããã®ã¯ãç§ã«ãšã£ãŠæ¬åœã«ç解ãããã£ãå¥åŠãªåèªã®ã»ããã§ããã ããã¯ç§ã«ãšã£ãŠææŠã§ããããããŠãç§ã¯è©ŠããŠã¿ããã£ãã§ãã ããã¯ãã¹ãŠãPythonã®ããã€ãã®ãµã€ããã€ã³ã¿ãŒãããã§èŠã€ãããšããäºå®ããå§ãŸããç°¡åãªåé¡ãèšç·ŽããŠè§£æ±ºãå§ããŸããã ã©ããããããå€æããããã«æããŸãããäœããæ¬ ããŠããŸããã ã¬ãŠã¹æ³ã䜿ã£ãŠä»»æã®ç·åœ¢æ¹çšåŒã解ãããã®ã³ãŒããæžããPythonã®å®¶åºæåž«ãèŠã€ããŸããã ãã®åé¡ã¯çŽ1ãæé解決ããŸããã 確ãã«ãããã¯ç§ã«ãšã£ãŠã²ã©ãå€æããŸãããå€åãå çã¯ããŸããããªãã£ããç§ã¯ç¥ããªãã®ã§ãããç§ã¯æçµçã«èªåã§æ±ºããŸããã
家åºæåž«ã®å€±æããçµéšã®åŸãç§ã¯ã³ãŒã¹ã«åå ãããªãã·ã§ã³ãæ€èšãå§ããŸãããç§ã¯ã€ã³ã¿ãŒãããäžã®ããã°ã©ã ãããã°ããŒã¿ã¹ãã·ã£ãªã¹ãããèŠã€ããŸãããç§ã¯ããããŸãã«ç§ãå¿ èŠãšããŠããããšãéåžžã«ããããæããŸããïŒ3ã¶æéæ©æ¢°åŠç¿ãè¡ããç¥ãããã®çŽ æŽãããæ©äŒããã°ããŒã¿ãå±éããããã®å€æ°ã®ã·ã¹ãã ã ç§ã«ãšã£ãŠããªã³ã©ã€ã³ãã¬ãŒãã³ã°ã¯ééããªãæé©ãªéžæè¢ã§ã¯ãããŸãããã³ã³ãã¥ãŒã¿ãŒã§äžäººã§å®¶ã«åº§ã£ãŠããªãããšãéèŠã§ããååã ãããã£ãŠãç§ã¯èªåã§NewprolabãéžæããŸããããåŸæã¯ããŠããŸããã
åœæãç§ã¯ããŒã¿ãŠã§ã¢ããŠã¹ãéçºããŠããŸããããç§ã«ãšã£ãŠã¯å°ãéå±ã§ãæ°ãããšãªã¢ã«ç§»ãããã£ãã®ã§ããããã®æç¹ã§ã¯ãã®ãããªå¯èœæ§ã¯ãªããšèšã£ãŠããŸãããã圌ã¯å€§èŠæš¡ãªéè¡ã®åæãå®å šã«éããããšãææ¡ããŸããã ããã°ã©ã ã®ééäžã«ãç§ã¯ãŸã æ©æ¢°åŠç¿ããããããšã«æ°ã¥ããŸãããç§ã¯é¢æ¥ãä»äºãæ¢ããŠããããã§ãããç§ã¯2ã€ã®ãªãã¡ãŒãåŸãŸããã ç§ã¯åœŒããšäžç·ã«ãªãŒããŒã®ãšããã«æ¥ãŠãããŒã¿ãµã€ãšã³ã¹ãå匷ãããã®ã§ãå»ããšèšããŸãã ãããã圌ã ãã瀟å ã§ãã®ãããªæ©äŒãæäŸããŠãããŸããã å¥ã®ãšãªã¢ã«ç§»åããããã®æ¡ä»¶ã®1ã€ã¯ã圌ã®ã¢ããªã¹ãããŒã ã®æŸæ£ã§ããã ç§ã¯äžäººã«ããããããã¯å€§å€ã§ããã ã»ãšãã©ã®å Žåãããªã»ãŒã«ã¹ã«åŸäºããŠããŸãããã€ãŸããã¢ãã«ãäœæããããã«ã¯ããŸãã¯ã©ã€ã¢ã³ããèŠã€ãããã®ã¢ãã«ã販売ããäœæããä¿è·ããæ¯æããåããªããã°ãªããŸããã§ããã ãããããããã¯äžåºŠéãã®ã¢ã¯ãã£ããã£ã§ãããããŒã ãç²åŸããããšã¯ã§ããŸãããå°éç¥èã¯ããŸããããŸããã§ããã 補åã®ã»ãšãã©ã¯åçšã§ããããªãŒãã³ãœãŒã¹ãœãªã¥ãŒã·ã§ã³ã¯å®è³ªçã«äœ¿çšããªãã£ããããPythonãSparkãå¿ èŠãããŸããã§ãããã¢ãã«ã¯äž»ã«ãåŸæ¥ã®å¿çã¢ãã«ãæ§ç¯ããããã®åçšãœãªã¥ãŒã·ã§ã³ã䜿çšããŠæ§ç¯ãããŸããã ããŒã¿ãµã€ãšã³ã¹ã®åéã§ããå€ãã®å°éç¥èãç²åŸããèå³æ·±ã補åãäœæããå°é家ã®å€§èŠæš¡ãªããŒã ã§ä»äºããããã£ããšããäºå®ã«ãããç§ã¯åã³ä»äºãæ¢ãããšã«ããŸããã
-MTSã«ã©ã®ããã«é¢äžãããã«ã€ããŠè©³ãã説æããŸãã åªç§ãªã¹ãã·ã£ãªã¹ããç¶æããæ¹æ³ãšãã®æ¹æ³ãæããŠãã ããã
-ãã¡ãããããã¯äŸ¡å€ãããããããä¿æããã®ã§ã¯ãªãããã¹ãŠã®æ¡ä»¶ãäœæããŠ
圌ãã¯ãšã©ãŸãããã£ãïŒ ããã°ããŒã¿åžå Žã«ã¯å€ãã®åªç§ãªå°é家ãããªããããããŒã å ã§å奜çãªé°å²æ°ãç¶æããããšã«å€ãã®æéãè²»ãããŠããŸãã ç§ãã¡ã¯å€ãã®ããšãäŒããã¢ã€ãã¢ãå°è±¡ãå ±æããŸãã ãŸããäžç·ã«äŒè°ã«åå ããŠç¥çãªã²ãŒã ããã¬ã€ããŸãïŒããšãã°ããäœïŒã©ãïŒãã€ïŒãïŒã ç§ã¯ãã¹ãŠã®äººã«é¢çœãããºã«ãäžããŠã圌ãã®ããŠã³ããŒããèŠãŠãéåŽããªãããã«ããŸãã
-ãããŠãæåã¯ãããšããŠã©ã®ãããªå°é£ã«çŽé¢ããŸããããã©ã®ãããªèª²é¡ãå æããªããã°ãªããŸããã§ãããïŒ
-æ倧ã®èª²é¡ã¯ããã°ã©ãã³ã°èšèªã§ãããç§ã¯æ°åŠè ã§ãããå€æ°ã®å²ãåœãŠãã¯ã©ã¹ã®æ§ç¯ãç¶æ¿ãããªã¢ãŒãã£ãºã ãªã©ã®ç°ãªãããžãã¯ãããã°ã©ãã³ã°ããããã§ãã ããã°ã©ãã³ã°ãç§ã®ãã®ã§ã¯ãªããšããäºå®ãããç§ã¯èªåã§HSEã«æ»ãããšã«ããŸããã æ倧ã®å°é£ã®1ã€ã¯ãã³ãŒããèšè¿°ã§ãããšããå¿ççéå£ãå æããããšã§ããããããã¯ç§ã«ãšã£ãŠåé¡ã§ã¯ãããŸããã äžè¬çã«ãããã»ã©å€ãã®å°é£ã¯ãªããå€ãã®è³ªåããããŸããã Newprolabã®ã¯ã©ã¹ã¡ãŒããšãããŒã¿ãµã€ãšã³ã¹ãšããã°ããŒã¿ã«é¢ããããŸããŸãªäŒè°ã§åºäŒã£ãå°æ¥ã®å人ã®äž¡æ¹ã«ãããããã¹ãŠã®è³ªåã«çããå人ãããããããããšã¯è¯ãããšã§ãã ãŸãã質åãããããšãã§ããSlackã®Open Data Scienceãšãåé¡ã«ã€ããŠè©±ãåãããšãã§ããData Scienceã®æé£ããããŸãã äžè¬çã«ãããŒã¿ãµã€ãšã³ã¹ã¯çŸåšæŽ»çºã«éçºãããŠããã圌ãã¯éåžžã«ãªãŒãã³ã§æ¯æŽããæºåãã§ããŠãããããå°é£ãããã°ç°¡åã«å æã§ããããã«æããŸãã
ç§ã¯ãããŒã¿ãµã€ãšã³ã¹ã®åéã®æ°èŠåå ¥è ãå«ãããã®åéã«åå ¥ãããã©ãããçã人ã ãšå€ãã®ããšã話ããŸãã 圌ãã¯äžç涯äœããã®åéã§åããŠãããããŒã¿ãµã€ãšã³ã¹ã«èå³ãæã£ãŠããŸãããäœããå€ãã䟡å€ããããã©ããã圌ãã¯æããŠããŸãã 人çãå€ããŠå€¢ã«è¡ããããªããããã¯éåžžã«çŸå®çã ãšæããŸãã ç§ã¯ããã¢ãŒã¿ãŒããå§ããAuchanã§åãããšãŒã°ã«ãã宣äŒãããã®åŸæ°åŠã®å®¶åºæåž«ã«ãªãã3幎éïŒãããã¯ãã以äžïŒå®¶åºæåž«ã«åŸäºããŸããããããã¯äœããã®åå ¥ããããããŸãããå¿ ãããããã§ã¯ãªãããšã«æ°ä»ããŸããã ç§ã¯çµæžåŠè ãšããŠãªãŒã¹äŒç€Ÿã§åãã«è¡ããŸããããITã¯ãããŸããã§ãããExcelã¯ããããããã«ããããã¯ããæžããŠããŸããã§ããã ç§ã¯å¥ã®é åã«èªåèªèº«ãèŠã€ããããšããŸããïŒå®éãç§ã®æè²ã«ãã£ãšé¢ä¿ããããŸãïŒ-ç§ã¯ã³ã³ãµã«ãã£ã³ã°ã«è¡ãã貯èµæœèšã«åŸäºããŠããŸããã ããããããªããžããªã¯ç²ããŠããŸããåã³ç§ã¯æ¬¡ã«è¡ãå Žæã®éžæã«çŽé¢ããŸããã ç§ã®å°éçãªæŽ»åã®å€åã«é¢é£ãããã®ãããªæ®µéçãªã¹ãããã§ãç§ã¯ããã°ããŒã¿ã«æ¥ãŸããããããã¯å šãåŸæããŠããŸããã ãã®åéãç解ããããã«ãç§ã¯æéãšãªãœãŒã¹ãè²»ããæºåãã§ããŠããŸããã ã¢ãããŒã·ã§ã³ãããã°ããã¹ãŠã®é害ãç°¡åã«å æããæããã®ãéæã§ãããšæããŸãã ç¹°ãè¿ããŸãããæããå¿ èŠã¯ãããŸããã
-åªãã人çã®äœçœ®ãšããªãã®ç©èªã¯ãå¿ èŠã«å¿ããŠãã¹ãŠãå¯èœã§ãããšããäºå®ã®çŽ æŽãããäŸã§ãã ããŒã¿ãµã€ãšã³ã¹ã«è¡ããã人ã«æ»ã£ãŠãããªãã¯ææã«å ããŠãä»ã«äœãæ¢ãããããšæããŸããïŒ ããªãã¯å€ãã®äººãšè©±ããŸãããããã圌ãã¯ããªããšå ±æããŸãã
-äž»ãªãã®-ãç§ã¯çµéšããªããæºåãã§ããŠããããäœãç¥ããŸãããã ç§èªèº«ã®çµéšããããã«ã話ãããŸããNewprolabã®ã³ãŒã¹ã«è¡ããããã§2é±éå匷ããŸããããããŒã¿ãµã€ãšã³ã¹ã®åéã§ã¯ãè¯ã絊äžãåŸãããã«2ã€ã®ç³ãåºããããŸããã 2ã€ã®ç³ãåºããããŠç§ã¯ãŸã å匷ããŠããïŒ ç§ã¯ãã®åéã§ä»äºãããŠããŸããã§ãããã»ãã®å°ãã®PythonãæããŠããŸããããä»ã¯ã¡ããã©ã³ãŒã¹ãåè¬ãå§ããŸããã éçšäž»ã®ããšã«æ¥ãŠãä»ãã®ããã°ã©ã ã§å匷ããŠãããšèšããŸããã6æ8æ¥ã«çµãããŸããç§ã¯ãã®åéã§éçºããæ欲ããããããŒã¿ãŠã§ã¢ããŠã¹ã§é¢é£ããçµéšããããŸãã äŒæ¥ã¯ç§ãé£ããŠè¡ãçšæãã§ããŠããŸããã çŸåšãåžå Žã¯éåžžã«çããããŒã¿ãµã€ãšã³ãã£ã¹ãã¯éåžžã«å°ãªããããäŒæ¥ã¯éåžžã人ã ãæé·ã«é£ããŠè¡ããŸãã 圌ããããªãã«å¯èœæ§ãèŠåºãããã圌ãã¯ãããéçºããæºåãã§ããŠããŸãã
çµå±ã®ãšãããããªãã®ç¥èã掻æ°ã¥ããããã«ãéåžžã«å€ãã®ç°ãªããã¬ãŒãã³ã°ãªãœãŒã¹ããããŸãïŒ Coursera ã EdX ã Udacity ã çµ±èšãç¥ããªããŠããç·åœ¢ä»£æ°ãæ°åŠãããã°ã©ãã³ã°èšèªãç¥ããããŸã£ããäœãç¥ããŸãããããªãã®ç¡ç¥ã®ããããã«ããã¹ãŠãç解ããããã«è¿ éãã€è¿ éã«åããç¹å®ã®ã³ãŒã¹ããããŸãã ãããŠããç§ã«ã¯çµéšããªãããšãããã®ã¯ãããŸãããäž»ãªãã®ã¯ãåæ©ãè³æºããšãã«ã®ãŒã§ãã ãããŠãããããªãããããæããªããæéããããšæããŸãã
Data Scienceã«ãããšãä»ã§ã¯å€ãã®ãªã³ã©ã€ã³ã³ãŒã¹ãé¢å©ããã©ãã§ãã³ã³ããã¹ãåºåãããã€ãã®ã³ãŒã¹ã§ã次ã«ä»ã®ã³ãŒã¹ã§ãããã¢ãã衚瀺ãããŸãã ãããŠã圌ãã®è²»çšã¯ããªã倧ããã§ãããç§ã¯åããŠã³ãŒã¹ã®ãµãã©ã€ã€ãŒäŒç€ŸãèŠããèãããããŸãã äžè¬ã«ãããã¯ãã¡ããèªå€§å®£äŒã§ãããå®éã«ã¯äœãæäŸããªã質ã®äœãã³ãŒã¹ããããããããšæããŸãã
-芳å¯ããïŒåå¿è ãšçµéšè±å¯ãªããŒã¿ãµã€ãšã³ãã£ã¹ãã®äž¡æ¹ãçã«é«åºŠãªè³æ Œãæã€ã¹ãã·ã£ãªã¹ãã«ãªãã«ã¯ãå€ãã®å Žåãã©ã®ãœããã¹ãã«ãšããŒãã¹ãã«ã§ã¯äžååã§ããïŒ äœãæ¢ãã¹ãã§ããïŒ
-å€ãã®å Žåãå šç€ŸèŠæš¡ã§ã¢ãã«ãå®è£ ããããã®ååãªå®è·µçã¹ãã«ããããŸããã察象åéãç解ããäœæ¥ã«æ£ããåªå é äœãä»ããããšãéèŠã§ãã ã¿ã¹ã¯ã«å€ãã®æéãè²»ããã¹ãã§ã¯ãããŸããããã®çµæã¯äŒç€Ÿã«ãã©ã¹ã®å¹æããããããªãã§ãããã ããŒã¿ãµã€ãšã³ãã£ã¹ãã¯ã瀟å å€ã®ååã«è£œåã®çµæãæ瀺ããã³ãã¥ãã±ãŒã·ã§ã³ã¹ãã«ã身ã«ä»ããããšã奚å±ãããŠããŸãã ããŒãã¹ãã«ã«ã€ããŠã¯ãçšèªã®ç解ãæ·±ããã¢ãã«æ§ç¯ã®æ°åŠçåºç€ãç解ããããŸããŸãªã¿ã€ãã®æ©æ¢°åŠç¿ã¿ã¹ã¯ã«ã¢ãã«ã䜿çšããå Žåãç¥ã£ãŠããããããšæããŸãã åµé æ§ãšæ³ååã¯ãåé¡ã解決ããããã®æ°ããã¢ãããŒããéçºããããã«ãéåžžã«éèŠã§ãïŒããŒã¿ã¹ãã¢ã«ã¡ããªãã¯ãè¿œå ãããç¹å®ã®æ¹æ³ã§æ§é ãå€æŽããããŸãã¯å¥ã®ã¯ã©ã¹ã®ã¢ãã«ã䜿çšããïŒã
-ããªããè¡ã£ãããŒã¿ãµã€ãšã³ã¹ã®åéã®ãããžã§ã¯ãã«ã€ããŠè©³ããæããŠãã ããã
-æåã«ãã³ã³ãµã«ãã£ã³ã°ã§è¡ã£ãããšãç°¡åã«èª¬æããŸãã ããŸããŸãªåéã§ãããžã§ã¯ãããããéšéã¯ããã»ã©å€§ãããªããããŸããŸãªã¿ã¹ã¯ã«åŸäºããŠããŸããã ç§ã®æåã®ä»äºã¯ããã·ã¢ã®å€§æéè¡ã®ããŒã³ååã®å¯Ÿå¿ã¢ãã«ã«é¢é£ããŠããŸããã ã¢ãã«ã¯æåããè¯å®çãªçµæãåŸãããŸãããç§ã¯åçšãœãªã¥ãŒã·ã§ã³ã䜿çšããŠãããè¡ããŸããã ãã®ã¢ãã«ã®å®è£ ã®ãããã§ãããžãã¹èŠä»¶ã®èª¿æŽãã¢ãã«ã®æ§ç¯ãšè£œé ãããã³å質ã®è©äŸ¡ãšã¹ã±ãžã¥ãŒã«ã®èšå®ã«é¢ããããããäœæ¥ãè¡ãããšãã§ããŸããã ç§ã®éå»ã®äŒç€Ÿã¯äž»ã«éè¡ã»ã¯ã¿ãŒãå°éãšããŠãããããäž»ã«éè¡åãã®ã¢ãã«ãäœæããŸããããä»ã®åéïŒä¿éºãå°å£²ãªã©ïŒãè©ŠããŸããã ãã®æãŸã§ã«ãç§ã¯ãããã®ãããžã§ã¯ãã«ããŒã¿ãµã€ãšã³ãã£ã¹ããšããŠã ãã§ãªãããããŒãžã£ãŒãšããŠãåå ããŸããã ãµããžã§ã¯ããšãªã¢ãå¶éããããšã¯ã§ããŸãããã©ã®ãµããžã§ã¯ããšãªã¢ã§ãããã«ç解ã§ããããã«æããŸãã ITã³ã³ãµã«ãã£ã³ã°ããã®ãããªæè»æ§ãäžããŠãããããšãéåžžã«å¬ããæããŸãã
-èŠããŠãããŠç¹ã«å¬ãããããžã§ã¯ãã¯ãããŸããïŒ
-ã¯ãã1ã€ãããŸãããã·ã¢ã®å€§èŠæš¡ãªéè¡ã§ã®æåã®ãããžã§ã¯ãã§ããéåžžã«å奜çãªããŒã ããããããŒã¿ãŠã§ã¢ããŠã¹ããŒãããæ§ç¯ãããã®éçºã«æºãããã¬ããŒããäœæããŸããã ãšãŠãã¯ãŒã«ãªè£œåã§ããã ç§ãã¡ã¯å€ãã®çµéšãç©ã¿ãçŽ æŽãããããŒã ãäœããŸããã ç§ãã¡ã¯é·ãéããŸããŸãªäŒæ¥ã«æ£ãã°ã£ãŠããŸããããããã§ãç©æ¥µçã«é¢ä¿ãç¶æããŠããŸãã ãããããã®éè¡ã§èŠã€ããã§ãããã
-ãããã MTSã«ç§»ããŸãããã ãªãæ£ç¢ºã«ãããã§ããïŒ äœããããªã«é¢çœãããšãããããã«æäŸãããŸãããïŒ ããªããšããªãã®ããŒã ã¯ä»ã©ã®ãããªèª²é¡ã«çŽé¢ããŠããŸããïŒ
-ãŸããããã°ããŒã¿ã®å·šå€§ãªããŒã ã«MTSã«é äºãããŸãããããã°ããŒã ã¯ããã€ã§ãçžè«ã§ããå°é家ã®éãŸãã§ãITã³ã³ãµã«ãã£ã³ã°ã§ã¯ãããŸããã§ããããéåžžã«äžè¶³ããŠããŸããã éåžžã«çµéšè±å¯ãªãªãŒããŒãšè€æ°ã®ããŒã¿ãµã€ãšã³ãã£ã¹ããããŸãããã圌ãã®çµéšã§ã¯åé¡ã解決ããã®ã«ååã§ã¯ãªãã£ãããšã¯æããã§ãã 倧ãŸãã«èšãã°ãæšæºçãªã¿ã¹ã¯ã»ããããããå°éç¥èããªãã£ãããããã®ã¿ã¹ã¯ã»ããããéžè±ããªãããã«ããŸããã MTSãéžãã ã®ã¯éåžžã«ããããããšã§ããçŸåš150人以äžã®åŸæ¥å¡ãããŸããã幎æ«ãŸã§ã«70ïŒ æé·ããããšèããŠããŸãã ããã¯ãšãŠãã¯ãŒã«ã§ãçµéšãäŒãããå ±æãããããã®ã奜ãã§ããæ°ããè¡ã¯çµ¶å¯Ÿã«çããªããšæããŸãã
第äºã«ãããã«ã¯å¹ åºãæè¡ã®ã¹ã¿ãã¯ãããããªãŒãã³ãœãŒã¹ã䜿çšããŠããŸãïŒPythonãSparkãHiveãKafka-ããã°ããŒã¿ã®åéã§äººæ°ã®ãããã¹ãŠã®æµè¡èªã åçšãœãªã¥ãŒã·ã§ã³ããããŸãããããã«ã¯è§Šãããã¢ãã«ãæ§ç¯ããŸããã Newprolabããã°ã©ã ã§ãã®ã¹ã¿ãã¯ã«ç²Ÿéãããã®åŸMTSã§ç¥èãçµ±åã§ããããšã¯çŽ æŽãããããšã§ãã
å ããŠããã¡ãããèå³æ·±ãã¿ã¹ã¯ãèå³æ·±ã補åã 顧客ã¯ã»ãšãã©ãåœå ã§ãããäžéšã®è£œåã¯æã¡åºãããŠããŸãã ç§ãã¡ã®ããŒã ã«ã¯ããã€ãã®é åããããŸããæŠç¥çã§ãããçŸåšç§ãã¡ã«ãéããããããªãã¢ãã«ã®å®è£ ã«é¢ä¿ããŠããŸãã ä»å¹Žã®è²¡åçµæã瀺ãã¯ãã®åæ¥ãããžã§ã¯ãããããŸãã ç§ã¯RïŒDããŒã ã§åããŠãããå°æ¥çã«MTSã®æ¹åã«åœ¹ç«ã€è£œåã®è²©å£²ã«åãçµãã§ããŸãã
ç§ã®ããŒã ãšç§ã¯ä»3ã€ã®è£œåãæã£ãŠããŸãã 1ã€ç®ã¯ãåå å ¥è ã®ã¬ãã«ã§ã®NPSïŒé¡§å®¢ãã€ã€ã«ãã£ã€ã³ããã¯ã¹-èè 泚ïŒã®äºæž¬ãå«ããããŸããŸãªé£çµ¡å ã§ã®å å ¥è ã®ãµãŒãã¹å質ã®è©äŸ¡ã§ãã MTSãã©ã³ããæšå¥šããæºåãã§ããŠãããã©ãããç解ããããã«ããã¹ãŠã®ãµãã¹ã¯ã©ã€ããŒã«å¯ŸããŠæ¯æå®æœããã¢ã³ã±ãŒããå®æœããŠããŸãã 0-誰ã«ãæšèŠããæºåãã§ããŠããªãã10-æºåãã§ããŠç©æ¥µçã«ãã£ãŠããã ãããã®æšå®å€ãåéããå å ¥è ã調æ»ãè¡ã£ãå Žåã«æäŸããè©äŸ¡ãäºæž¬ãããã®è©äŸ¡ã«åœ±é¿ãäžããå¯èœæ§ã®ããçç±ã確èªããŸãã ããã«ä¿®æ£ããããšãã§ããŸãã ãããæåã®è£œåã§ãã
2çªç®ã®è£œåã¯é³å£°åæã«é¢é£ããŠããŸãã ããã§ã¯ããããŸã§RïŒDã®ã¿ã§ãé³å£°åæã®ã¿ã¹ã¯ã®1ã€ã¯ãã³ãŒã«ãåæããŠèªåçã«åé¡ããããã«ãã³ã³ã¿ã¯ãã»ã³ã¿ãŒãžã®ã³ãŒã«ã«ããé³å£°ã®ããã¹ããžã®èªèã§ãã çŸæç¹ã§ã¯ãããã¯ãªãã¬ãŒã¿ãŒã«ãã£ãŠè¡ãããã¡ãã»ãŒãžã®äž»é¡ã¯åžžã«ååã«æ£ç¢ºã§ãããšã¯éããŸããã
ããããããã°ããŒã¿äŒè°ã§3çªç®ã®è£œåã«ã€ããŠåŸã§èª¬æããŸãã
ããŒã ã¯éåžžã«ã¯ãŒã«ã§ãããç§ãã¡ã¯çãå¿«é©ã«éãããããã«åšå® å€åã®é°å²æ°ãç¶æããããšããŸãã ç§ã¯ããŒã ã®ãã¹ãŠã®ã¡ã³ããŒã®æèŠãèããå šå¡ãã¢ã€ãã¢ãå ±æããŸãã 補åãéçºããéã«ã¯ãããŒã ã®ã¢ã€ãã¢ãæãéèŠã ãšæããŸãã äžè¬çã«ãç§ãã¡ã¯æãã¯ã¬ã€ãžãŒãªã¢ã€ãã¢ãå®è£ ããããšããŠããŸãã
-ã¯ã¬ã€ãžãŒãªã¢ã€ãã¢ã®äŸãæããŠãã ããã
-ç§ã®å£°ã«ãã補åã¯ããå§ãŸã£ãããã§ãã NPSãå®è¡ãããµãã¹ã¯ã©ã€ããŒã®è©äŸ¡ãåæããåŸããã³ãŒã«ã»ã³ã¿ãŒãžã®é³å£°é話ãåæã§ããªãã®ã¯ãªãã§ããïŒããšå°ããããŸããã ãµãã¹ã¯ã©ã€ããŒã«ãèšé²ããã³åæã§ããããšãèŠåããŸãã ç§ãã¡èªèº«ã¯ãããã«è³ãåŸããŸããããæ©æ¢°å å·¥ã®ãããã§ãããããé»è©±ã®ãããã¯ãåŒãåºããŠé¡§å®¢ãµãŒãã¹ã®å質ãåäžãããããšãã§ããŸãã
å ·äœçãªäŸãæããã®ã¯é£ããã§ããå®éã«äœãããã¹ãããäœããå®è£ ããã©ããã§æé©åããããšããç¬éã§ãã ãŸããããŸããŸãªãœãªã¥ãŒã·ã§ã³ãè©Šããå€ãã®ãµãã©ã€ã€ãŒãç§ãã¡ã®ãšããã«æ¥ãŠãææ°ã®ãã¯ãããžãŒãæäŸããŠããŸãã ãã€ããããšäžç·ã«éãããçµæãèŠãŠãã ããã
-ããªãã¯ééããªãMTS以å€ã®ããã€ãã®ãªãã·ã§ã³ãæ€èšããŸããã éçšäž»ãéžã¶ãšããããªãã«ãšã£ãŠäœãéèŠã§ããïŒ
-äŒç€Ÿã®éæŸæ§ã¯ç§ã«ãšã£ãŠéèŠã§ãã ç§ã¯ååããªãŒããŒãšçžè«ããæããåãã¡åãããšãã§ãã圌ãç解ããå®è·µçãªã¢ããã€ã¹ãæäŸã§ããããšãç¥ã£ãŠããŸãã äŒç€Ÿã®è©å€ã¯ç§ã«ãšã£ãŠéèŠã§ãã ãã¡ãããèå³æ·±ãã¢ã€ãã¢ãããã°ã¹ã¿ãŒãã¢ããã«è¡ãæºåã¯ã§ããŠããŸãããäžè¬çã«ãäŒç€Ÿã®è©å€ã¯ç§ã«ãšã£ãŠéèŠã§ãã ç§ã¯MTSã§åãã®ã奜ãã§ããç§ãã¡ã¯ãã·ã¢æ倧ã®ãªãã¬ãŒã¿ãŒã§ãã éçºã®æ©äŒãéèŠã ãšæããŸããMTSã¯ãã¹ããŒã«ãŒãšããŠããªã¹ããŒãšããŠããããŸããŸãªäŒè°ãžã®åå ã奚å±ããŠããŸãã 瀟å ã³ãŒã¹ããããŸããããã¯éåžžã«ã¯ãŒã«ã§ããä»äºã®æåŸã®å Žæã§ãããååã«ãªãã£ãããã§ãã
æè»ãªå€åã¹ã±ãžã¥ãŒã«ãšæå°éã®å®å䞻矩ãç§ã«ãšã£ãŠéèŠã§ãã MTSã«ã¯ãå®å䞻矩ã¯ã»ãšãã©ãªãã倧éã®çŽãæžããŠããããConfluenceãšJiraãéããŠãã¹ãŠã®ããã¥ã¡ã³ããç¶æããŠããŸãã çç£æ®µéã§ã¯ãäœããã®æè¡ä»æ§ãäœæããå¿ èŠãããããšãç解ããŠããŸãããäžè¬çã«ã¯ãããã¥ã¡ã³ããäœæããæ¿èªããã»ã¹ãäœæããŸãã å¿«é©ãã奜ãã§ãããžã£ã±ãããšã¿ã€ããªéŽãå±¥ãå¿ èŠããªãããã«ãå¿«é©ãªæè£ ãéèŠã§ãã
-ãããã°ããŒã¿ã¹ãã·ã£ãªã¹ããã§ã¯ããã°ã©ã ã®1äœãããã£ãŒãã©ãŒãã³ã°ãã§ã¯ãããžã§ã¯ãã®3äœã«ãªããŸããã 質åïŒããã¯ããªãã®å¿èå/ããããåªç§ãªåŠçã®è€åäœã§ããããªãããããæã£ãŠãããã©ãããç¥ããŸãã/åŠç¿ãžã®çå£ãªã¢ãããŒã/åãªãäºæ ã§ããïŒ
ãããããããã¯ãã¹ãŠäžç·ã§ããã ç§ã«ã¯ç®æšããããããã«è¡ããŸããã ã§ããã ãæ©ãæ©æ¢°åŠç¿ã«é£ã³èŸŒã¿ããã£ãã®ã§ãã ãã¡ãããä»äºãšçµã¿åãããããšã¯å°é£ã§ãããç¹ã«ãå®éšå®€ã§ã®äœæ¥ãã³ãŒã¹ãããžã§ã¯ããè¡ããåã¬ãã¹ã³ã«æééãã«è¡ã£ãŠãã¹ããæžãããã€ã³ããå°ãå¢ãããŸããã ãããããç§ã¯åªç§ãªåŠçã®å°ããªè€åäœãæã£ãŠããŸãããäœããããŸããããªããŠãå¿é ããããšã¯ãããŸããã ä»äºããããšãã¯ããŸãããããšããŸãããããŸããããªããŠãåæºããŸããïŒå°ãªããšãæåãå°œãããŸããïŒã ç§ãã¡ã«ã¯éåžžã«ã¯ãŒã«ã§åå¿ã®è¯ãã°ã«ãŒãããããããã°ã©ã ã®ã·ãã¯ãªã³ãŒãã£ããŒã¿ãŒããã¹ãŠã®è³ªåã«çããŠãã³ããäžããã®ã§ãçå£ãªæå³ãšå°ãã®å¹žéãå©ãããšæããŸãã 圌ã¯äœããã¹ãããçŽæ¥æžããŸããã§ãããã圌ã¯ç§ãæ£ããæ¹åã«æ£ããå°ããŸããã æéããªãã£ãããã«æéãå€æŽããããšããããããã¯æ¬¡ã®ç 究宀ãééããã®ã«åœ¹ç«ã¡ãŸããã誰ãåŒãç¶ããªããšãã§ã«æã£ãŠããŸããïŒæãé£ããïŒã
ãããŠããDeep Learningãã§ã¯ããããã幞éã§ãããã ã³ãŒã¹ã¯1é±éã®ã¿ã§ãéææ¥ã«ã¯æåŸãã2çªç®ã®ã¬ãã¹ã³ããããåææ¥ã«ã¯æåŸã®ã¬ãã¹ã³ããããŸããã ãããŠãä»é±ã®éææ¥ã®è¬çŸ©ã§ãç§ã¯ãææ°ã®ã°ãªããã®1ã€ãè©ŠããŠã¿ãããšã«ããŸããã Kerasã§å©çšå¯èœãªãã¬ãŒãã³ã°æžã¿ã°ãªããã®æ¯èŒåæãèŠãŠãæé©ãªãã®ãéžæããå°ãè©ŠããŠã¿ãŸããã å šå¡ãå匷ããŠããéã«ãç§ã¯Xceptionãèµ·åããŸãããããã«ãããæ倧ã®çµæãåŸããã2人ã®ç·ã®åã«äžæ©äžãã®çµæãç ŽãããŸããã ãã®ã¡ãã·ã¥ã®ã€ã³ã¹ããŒã«ã«ã¯ããã€ãã®åé¡ããããŸããããããã«è§£æ±ºãããç§ãã¡ãåŠãã§ããPythonã§ã¯åäœããªããšæããŸããã ããããç§ã¯ãããããŸããããããŠãã¿ããªã¯ç§ã®çµæã殺ãããã«äžæ©äžããããšããã®ã§ãç§ã¯3äœã«ããŸãããããŠãæåã§ã¯ãããŸããã ããããç§ã¯ããç ããæ°åãã蚌ææžã®æ瀺ã«æ¥ãŸããã
-å°æ¥ã®ããªãã®èããèšç»ã¯äœã§ããïŒ ããã«äœãåŠã³ããã§ããïŒ ã©ã®ãããªã¹ãã«ãšç¥èãäžè¶³ããŠããŸããïŒ
-ç§ã¯çŸåšããããã¯ããªãŒããŒã§ãããã®æ¹åã§ããã«çºå±ããããšèããŠããŸãã ãŸãã人åã§è©±ãã¹ãã«ãå€ãã®èŽè¡ã«äŒãããã§ãã ã¿ããªãç§ãèŠããšå¿é ã«ãªãããããã¹ããå¿ããŠããŸãã®ã§ãæåã«ãã®ã¹ãã«ãé«ãããã§ãã ç§ã¯8æã«ãœãã§éå¬ãããMTSäŒè°ã§è©±ãããŸããã ããã¯å€ãã®èŽè¡ã«å¯Ÿããç§ã®æåã®ã¹ããŒãã§ããã ç§ã¯ããã¹ããæžãããããæããçŽçã§è©±ãã«åºãããããããäœããèªã¿ãäœããèšã£ãŠããšãŠãå¿é ããŠããŸããã ç§ã¯çæã«ãã€ã¯ãããçæ¹ã«ãã¬ãŒã³ã¿ãŒããããŠçŽçãæã£ãŠããŸããã ãã®çµæãçŽã¯èœã¡ã誀ã£ãŠãã¬ãŒã³ããŒã·ã§ã³ããªãã«ããŸããã å°ãããã¡ãªãã£ãããã¿ããªç§ãšäžç·ã«ç¬ã£ãã
第äºã«ã人æ管çã®åéã§ç®¡çèœåãéçºããäºå®ã§ãã ãã®åéã§åŠã¶ã¹ãããšãåžžã«ããããšã¯ééããããŸããã
Newprolab ã§ã¯ ãã ããŒã¿ãšã³ãžãã¢ã ãããã£ãŒãã©ãŒãã³ã°ãããããã°ããŒã¿ã¹ãã·ã£ãªã¹ããã®3ã€ã®ã³ãŒã¹ãåè¬ããŸããã ã¢ããªã¹ããšããŠåããçµéšã®ããããå«ããŠãããŒã å ã®ãã¹ãŠã®äººãäœãããŠããã®ããããããŸããã ã¿ã¹ã¯ãæ£ããèšå®ã§ããŸãã ããã€ã®ã¿ã¹ã¯ãå®è¡ãããããç解ããŠããŸãã ããã¯å€§ããªãã©ã¹ã§ããè¯ãçµæãéæã§ãããšç¢ºä¿¡ããŠããŸãã
-äŒçµ±çã«ã質åã¯ãã·ã¢ã ãã§ãªãäžçã®ããã°ããŒã¿/ããŒã¿ãµã€ãšã³ã¹æ¥çã®ããŒã ãå人ã«é¢ãããã®ã§ãã ããªãã«ã€ã³ã¹ãã¬ãŒã·ã§ã³ãäžããŠããã人ãããªãã®ä»äºããã©ããŒããŠãã人ã¯ããŸããïŒ
-èšãã®ã¯é£ããã§ãã ç§ã«ã¯ããçš®ã®ã¡ã³ã¿ãªãã£ãæ§æ Œããããããå®çšçãªäººã§ããããã«æããŸããåé¡ããããããã解決ããããšããŠããŸãã 補åã®å®è£ ã«ã€ããŠè³ªåãããå Žåã¯ãã€ã³ã¿ãŒããããŸãã¯arxiv.orgã§èšäºãèŠã€ããæãèå³æ·±ãèšäºãããŒã ãšå ±æããŸãã ãŸããæé£ã®ããã«ããŒã¿ãµã€ãšã³ã¹ã«è¡ããçµéšã亀æããäŒè°ãã³ãŒã¹ãèŽããå€ãã®å°éçãªæç®ãèªã¿ãŸãã ç§ããã©ããŒããŠããããŸãã¯æŽæ°ãåžžã«ãã©ããŒããŠããç¹å®ã®äººã¯ããŸããããç§ã«èå³ããããããã¯ããããããããè°è«ããæºåãã§ããŠããŸãã Newprolabã®ã¯ã©ã¹ã¡ãŒããäŒè°ã§åºäŒã£ã人ã ãè·å Žã§ã話ãããããšãã§ããŸãããããŒã¿ãµã€ãšã³ãã£ã¹ããšããŒã¿ãšã³ãžãã¢ã®å€§èŠæš¡ãªããŒã ããããŸãã
-ããã®å€¢ã¯ãããŸããïŒ
-ç§ã¯5幎éå¿çåŠã«èå³ããããå°éã³ãŒã¹ãåæ¥ããå¿çåŠã°ã«ãŒãã§ç 究ããå人çæ³ãåããŸããã ç§ã¯å¿çåŠãšæ©æ¢°åŠç¿ã®äº€å·®ç¹ã«èå³ããããŸãã ããããå°æ¥ãæéãããã°ã人ã ãèªåã®ææ ãããããç解ããé©åãªå€æãäžãããã®ã¿ã€ã ãªãŒãªã¢ããã€ã¹ãæäŸã§ãããããªè£œåãäœæã§ããã§ãããã äžè¬ã«ã人éã®å¿çåŠã«åºã¥ããŠãæ¥åžžç掻ã®äžã§äººã ãå©ããã¢ãã«ãäœæããããšã¯ãå°æ¥çã«ã¯èå³æ·±ãã§ãããã ãããã©ãã»ã©çŸå®çãããããŸããããæ¬åœã«ããããã§ãã
-ãããã ããªãã¯ãã§ã«1ã€ã®ãªãœãŒã¹ã«ã€ããŠèšåããŸããããå€åããªããããªãã®äœæã«èªãä»ã®ããã€ãã®èå³æ·±ãå°éã®ããã°ãé»å ±ãã£ã³ãã«ããããŸããïŒ
-ç§ã¯é»å ±ã§ããŒã¿ãµã€ãšã³ã¹ãã£ããã«ãŒã ã«åº§ã£ãŠããŸãããå€ãã®æ°äººããåãäžããããŠããªãæ·±ããããã¯ããããŸãã Slackã®ããã«ãé»å ±ã«ã¯ODSãã£ãã«ãããããã¹ãŠã®ãã¥ãŒã¹ãèªãããšãã§ããŸãã å人ãçããããã€ãã®ãã£ã³ãã«ãšãã¥ãŒã¹ãã£ãŒãã«ç»é²ããŸãã-ã°ãªã·ã£ãµããããã³ãªã£ãã«ã³ããããã£ã¢ãšã«ãã³ããªã©ã ãããŠãç§ã¯æ¬åœã«ãã£ã³ãã«ããã©ããŒããŠããŸããã äœãå¿ èŠãªå Žåã¯ãarxiv.orgã®githubã stackoverflowã§æ€çŽ¢ããŸãã