ãã®ã¹ããããã¯ãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ç 究ããŒã ã«ããæè¿ã®åºçç©ããåŒçšãããŠããŸãã ä»åŸæ°ãæã§ããã®é©ãã¹ãæè¡ãšãã®çŸç¶ã«ã€ããŠããã«åŠã³ãã人ã«æè²ãªãœãŒã¹ãæäŸããããã«ã人工ç¥èœã®åéã®ããŸããŸãªç 究ãããã¯ã«é¢ããäœåãããã®çµæžçãæè¡çã瀟äŒçå¿çšã«ã€ããŠå ¬éããŸãã ç§ãã¡ã®ãããžã§ã¯ãã¯ããã¹ãŠã®ç 究è ã«æå 端ã®AIéçºã«é¢ããæ å ±ãæäŸããæé·ããä»äºã«è²¢ç®ããããšèããŠããŸãã
ã¯ããã«
éåžžãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã¯ç§åŠçåéãšåŒã°ãããã·ã³ã«èŠèŠçãŸãã¯ããã«ã©ãã«ãªèœåãäžãããã·ã³ãåšå²ã®ç°å¢ãã€ã³ã»ã³ãã£ããèŠèŠçã«åæã§ããããã«ããŸãã ãã®ããã»ã¹ã«ã¯éåžžã1ã€ä»¥äžã®ç»åãŸãã¯ãããªã®è©äŸ¡ãå«ãŸããŸãã British Machine Vision AssociationïŒBMVAïŒ ã¯ãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ããç»åãŸãã¯ãã®ã·ãŒã±ã³ã¹ããæçšãªæ å ±ãèªåçã«æœåºãåæãããã³ç解ããããš å®çŸ© ããŠããŸã ã
ç解ãšããçšèªã¯ãèŠèŠã®æ©æ¢°çå®çŸ©ã®èæ¯ã«å¯ŸããŠèå³æ·±ãããšã«éç«ã£ãŠãããã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®åéã®éèŠæ§ãšè€éãã®äž¡æ¹ã瀺ããŠããŸãã ç§ãã¡ã®åšå²ã®çã®ç解ã¯ãèŠèŠçè¡šçŸãéããŠéæãããã ãã§ã¯ãããŸããã å®éãèŠèŠä¿¡å·ã¯èŠç¥çµãééããŠäžæ¬¡èŠèŠéã«å ¥ããé«åºŠã«å®ååãããæèŠã§è³ã«ãã£ãŠè§£éãããŸãã ãã®æèŠæ å ±ã®è§£éã¯ãç§ãã¡ã®èªç¶ãªçµã¿èŸŒã¿ããã°ã©ã ãšäž»èŠ³ççµéšã®ã»ãŒãã¹ãŠã®ã»ãããã€ãŸããé²åãã©ã®ããã«çãæ®ãããã«ããã°ã©ã ãããããããŠç§ãã¡ãç涯ãéããŠäžçã«ã€ããŠåŠãã ããšãã«ããŒããŸãã
ãã®ç¹ã§ã ããžã§ã³ãšã¯è§£éã®ããã®ç»åã®éä¿¡ã®ã¿ãæããŸãã ãŸãã ã³ã³ãã¥ãŒãã£ã³ã°ã¯ãç»åãæèãæèã«äŒŒãŠããããšã瀺ããè³ã®å€ãã®èœåã«äŸåããŠããŸãã ãããã£ãŠãå€ãã®äººã¯ãã³ã³ãã¥ãŒã¿ãŒç°å¢ãã€ãŸãèŠèŠç°å¢ãšãã®ã³ã³ããã¹ãã®çã®ç解ããã¯ãã¹ãã¡ã€ã³é åã§ã®å®ç§ãªç¿çã®ãããã§ã匷åãªäººå·¥ç¥èœã®å°æ¥ã®ããªãšãŒã·ã§ã³ã«éãéããšä¿¡ããŠããŸãã
ãããããã®é©ãã¹ãé åã®éçºã®åæ段éãå®è³ªçã«æ®ããŠããªãã®ã§ãæŠåšãã€ããŸãªãã§ãã ããã ãã®èšäºã§ã¯ã2016幎ã®ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®æãéèŠãªææã«ã€ããŠç°¡åã«èª¬æããŸãã ãããŠããããã®ææã®ããã€ãããäºæ³ãããçæã®ç€ŸäŒççžäºäœçšãšã該åœããå Žåãç§ãã¡ãç¥ã£ãŠããããã«äººçã®çµããã®ä»®èª¬çäºæž¬ã®åŒ·åºãªæ··åç©ã«åœãŠã¯ããããšãè©Šã¿ãããšãã§ããŸãã
ç§ãã¡ã®ä»äºã¯åžžã«å¯èœãªéãæãã¢ã¯ã»ã¹ããããæ¹æ³ã§æžãããŠããŸããããã®ç¹å®ã®èšäºã®ã»ã¯ã·ã§ã³ã¯è°è«ã®äž»é¡ã®ããã«å°ããããŸãã«èŠãããããããŸããã ç§ãã¡ã¯ã©ãã§ãåå§çãªã¬ãã«ã§å®çŸ©ãæäŸããŠããŸããããããã¯éèŠãªæŠå¿µã®è¡šé¢çãªç解ã®ã¿ãæäŸããŸãã 2016幎ã®äœåã«çŠç¹ãåœãŠãç°¡æœã«ããããã«çç¥ããŠããããšããããããŸãã
ãããã®æãããªçç¥ã®1ã€ã¯ãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®åéã§åºã䜿çšãããŠããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã®æ©èœã«é¢é£ããŠããŸãã ImageNetã³ã³ãã¹ãã§ç«¶åä»ç€Ÿãé©ããã2012幎ã®AlexNetã®æåãCNNã¢ãŒããã¯ãã£ã¯ããã®åéã§äºå®äžèµ·ãã£ãé©åœã®èšŒæ ã§ããã ãã®åŸãå€æ°ã®ç 究è ãCNNããŒã¹ã®ã·ã¹ãã ã®äœ¿çšãéå§ããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®äŒçµ±çãªæè¡ã«ãªããŸããã
4幎以äžãçµéããã³ã³ãã¥ãŒã¿ãŒããžã§ã³çšã®æ°ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®å€§éšåã¯CNNããªã¢ã³ãã«ãã£ãŠæ§æãããŠããŸãã ç 究è ã¯ããããããã¶ã€ããŒãã¥ãŒãã®ããã«äœãçŽããŸãã ããã¯ããªãŒãã³ãœãŒã¹ã®ç§åŠåºçç©ãšãã£ãŒãã©ãŒãã³ã°ã®äž¡æ¹ã®åã®çã®èšŒæ ã§ãã ãã ããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èª¬æã¯ããã€ãã®èšäºã«ç°¡åã«æ¡åŒµããããããäž»é¡ãããæ·±ãç解ããè€éãªãã®ãæ確ãªèšèªã§èª¬æããã人ã«ä»»ããã»ããããã§ãããã
ãã®èšäºãç¶ããåã«ãããã¯ããã°ããç解ãããäžè¬ã®èªè ã«ã¯ã以äžã®æåã®2ã€ã®æ å ±æºããå§ãããŸãã äž»é¡ãããã«æ·±ãæãäžãããå Žåã¯ãä»ã®ãœãŒã¹ãæäŸããŸãã
- Andrey Karpatyã«ããã ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ãèªåã®ã»ã«ãã£ãŒãã©ãæãã ãã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¢ããªã±ãŒã·ã§ã³ãšæ©èœãç解ããã®ã«åœ¹ç«ã€æé«ã®èšäºã®1ã€ã§ãã
- QuoraïŒãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšã¯ããã°ããããªã³ã¯ãšèª¬æãæºèŒã§ãã ãã®åéã§äºåã«ç解ããŠããªã人ã«ç¹ã«é©ããŠããŸãã
- CS231nïŒã¹ã¿ã³ãã©ãŒã倧åŠã®ãèŠèŠèªèã®ããã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãã¯ããã®ãããã¯ãããæ·±ãç 究ããããã®åªãããªãœãŒã¹ã§ãã
- ãã£ãŒãã©ãŒãã³ã° ïŒGoodfellowãBengioïŒCourvilleã2016ïŒã¯ã 第9ç« ã§ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ©èœãšæ©èœã®è©³çŽ°ãªèª¬æãæäŸããŠããŸãã èè ã¯ããã®ãã¥ãŒããªã¢ã«ãHTML圢åŒã§ç¡æã§å ¬éããŠããŸãã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšãã£ãŒãã©ãŒãã³ã°å šè¬ãããå®å šã«ç解ããã«ã¯ã以äžããå§ãããŸãã
- ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšãã£ãŒãã©ãŒãã³ã° ïŒNielsenã2017幎ïŒã¯ã ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšãã£ãŒãã©ãŒãã³ã°ã®ãã¹ãŠã®è€éããçã«çŽæçã«ç解ã§ããç¡æã®ãªã³ã©ã€ã³ãã¥ãŒããªã¢ã«ã§ãã æåã®ããŒããèªãã§ããåå¿è åãã«ãã®èšäºã®ãããã¯ã倧ããç §ããã¯ãã§ãã
äžè¬ã«ããã®èšäºã¯æççã§ããããçã§ãããèè ã®è³è³ãšãããã©ã®ããã«äœ¿çšãããã¹ããã®ç²Ÿç¥ãã»ã¯ã·ã§ã³ããšã«åæ ããŠããŸãã æ å ±ã¯ãç§ãã¡èªèº«ã®çºèŠçææ³ãšå€æã«åŸã£ãŠéšåã«åå²ãããŸããããã¯ããã®ãããªå€æ°ã®ç§åŠè«æã®ã¯ãã¹ãã¡ã€ã³ã®åœ±é¿ã«ããå¿ èŠãªåŠ¥åã§ãã
èªè ãæ å ±ã®äžè¬åããå©çãåŸãŠã以åã®è·ç©ã«é¢ä¿ãªãç¥èãåäžãããããšãé¡ã£ãŠããŸãã
ãã¹ãŠã®åå è ã代衚ããŠã
Mã¿ã³ã¯

åé¡/ããŒã«ãªãŒãŒã·ã§ã³
ç»åã«é¢ããåé¡ã¿ã¹ã¯ã¯ãéåžžãç»åå šäœã«ã©ãã«ãä»ããããšã§ãïŒããšãã°ããç«ãïŒã ããã念é ã«çœ®ããŠãããŒã«ã©ã€ãºãšã¯ããã®ç»åå ã®ãªããžã§ã¯ãã®å Žæãç¹å®ããããšãæå³ããŸãã éåžžããªããžã§ã¯ãã®åšå²ã®ç¹å®ã®å¢çããã¯ã¹ã§ç€ºãããŸãã ImageNetã®çŸåšã®åé¡æ¹æ³ã¯ ããªããžã§ã¯ãåé¡ã®ç²ŸåºŠã«ãããŠã ç¹å¥ã«èšç·Žããã人ã ã®ã°ã«ãŒããã ããã§ã«åªããŠããŸãã
å³ 1 ïŒã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã¿ã¹ã¯

åºå ž ïŒãã§ã€ãã§ã€ãã¢ã³ãã¬ã€ã«ã«ãã·ãŒïŒãžã£ã¹ãã£ã³ãžã§ã³ãœã³ïŒ2016ïŒcs231nãã¬ã¯ãã£ãŒ8-ã¹ã©ã€ã8ã空éçäœçœ®ç¢ºèªãšæ€åºïŒ2016幎1æ2æ¥ïŒã pdf
ãã ããã¯ã©ã¹ã®æ°ãå¢ãããšãè¿ãå°æ¥ã®é²æã枬å®ããããã®æ°ããã¡ããªãã¯ãæäŸãããå¯èœæ§ããããŸãã ç¹ã«ãKerasã®äœæè ã§ããFrançoisScholletã¯ã人æ°ã®ããXceptionã¢ãŒããã¯ãã£ãªã©ã®æ°ããã¡ãœããã ã17,000ã¯ã©ã¹ãå«ãè€æ°ã®ã©ãã«ãæã€3å5,000äžæ以äžã®ç»åãå«ãGoogleã®å éšããŒã¿ã»ããã«é©çšããŸããã
å³ 2 ïŒILSVRCã³ã³ãã¹ãïŒ2010ã2016幎ïŒã®åé¡/ããŒã«ãªãŒãŒã·ã§ã³çµæ

泚 ïŒImageNet倧èŠæš¡èŠèŠèªèãã£ã¬ã³ãžïŒILSVRCïŒã 2011-2012以éã®æ¹åã¯ãAlexNetã®ç»å Žã«ãããã®ã§ãã åé¡ãšããŒã«ãªãŒãŒã·ã§ã³ã®ç«¶åèŠä»¶ã®æŠèŠãã芧ãã ããã
åºå ž ïŒJia DengïŒ2016ïŒã ILSVRC2016ãªããžã§ã¯ãã®ããŒã«ã©ã€ãºïŒçŽ¹ä»ãçµæã ã¹ã©ã€ã2ã pdf
ImageNet LSVRCïŒ2016ïŒã®èå³æ·±ãæç²ïŒ
- ã·ãŒã³ã®åé¡ãšã¯ ã枩宀ãã¹ã¿ãžã¢ã ã倧èå ãªã©ãç¹å®ã®ã¯ã©ã¹ã®ã·ãŒã³ã§ç»åã«ã©ãã«ãä»ããã¿ã¹ã¯ã®ããšã§ãã ImageNetã¯ã Places2ããŒã¿ã»ããã®ãµã³ãã«ã®ã·ãŒã³ãåé¡ããããã®ã³ã³ãã¹ããæšå¹Žéå¬ããŸããã365åã®ã·ãŒã³ã«ããŽãªã§ãã¬ãŒãã³ã°ããããã®800äžæã®ç»åã§ãã
Hikvisionã¯ãäžäœ5ã€ã®ãšã©ãŒã®9ïŒ ã§åã¡ãŸããã ãã®ã·ã¹ãã ã¯ãã€ã³ã»ãã·ã§ã³ã¹ã¿ã€ã«ã®ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ãšããã»ã©æ·±ããªãæ®å·®ãããã¯ãŒã¯ã®ã»ããããæ§ç¯ãããŸãã - Trimps-Soushenã¯2.99ïŒ ã®ããã5ã®åé¡ãšã©ãŒãš7.71ïŒ ã®ããŒã«ãªãŒãŒã·ã§ã³ãšã©ãŒã§ImageNetåé¡ãã£ã¬ã³ãžãç²åŸããŸããã éçºè ã¯ãããã€ãã®ã¢ãã«ïŒInceptionãInception-ResnetãResNetãããã³Wide Residual Networksã¢ãã«ã®çµæãå¹³ååããïŒã®ã·ã¹ãã ãã³ã³ãã€ã«ããã¿ã°ã«ããããŒã«ãªãŒãŒã·ã§ã³ã§Faster R-CNNãåã¡ãŸããã ããŒã¿ã»ããã¯ããã¬ãŒãã³ã°çšã«120äžã®ç»åãå«ã1000ã®ç»åã¯ã©ã¹ã«åæ£ãããŸããã ãã¹ãããŒã¿ã»ããã«ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ããããŸã§èŠãããšã®ãªãå¥ã®10äžæã®ç»åãå«ãŸããŠããŸããã
- Facebookã®ResNeXtãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ã3.03ïŒ ã®ããã5ã®åé¡ãšã©ãŒã§2çªç®ã«ããããªããŒãžã³ã§çµäºããŸããã å ã®ResNetã¢ãŒããã¯ãã£ãæ¡åŒµããæ°ããã¢ãŒããã¯ãã£ã䜿çšããŸããã
ç©äœæ€åº
ãæ³åã®ãšããããªããžã§ã¯ããæ€åºããããã»ã¹ã¯ãæ¬æ¥è¡ãã¹ãããšãæ£ç¢ºã«å®è¡ããŸããç»åå ã®ãªããžã§ã¯ããæ€åºããŸãã ILSVRC 2016ãªããžã§ã¯ãæ€åºå®çŸ©ã«ã¯ãåã ã®ãªããžã§ã¯ãã®å¢çããã¯ã¹ãšã©ãã«ã®çºè¡ãå«ãŸããŸãã ããã¯ãåé¡ãšããŒã«ãªãŒãŒã·ã§ã³ã1ã€ã®æ¯é çãªãªããžã§ã¯ãã§ã¯ãªããå€ãã®ãªããžã§ã¯ãã«é©çšããããããåé¡/ããŒã«ãªãŒãŒã·ã§ã³ã¿ã¹ã¯ãšã¯ç°ãªããŸãã
å³ 3 ïŒé¡ãå¯äžã®ã¯ã©ã¹ã§ãããªããžã§ã¯ãã®æ€åº

泚 ïŒåçã¯ãåãã¯ã©ã¹ã®ãªããžã§ã¯ãã®æ€åºãšããŠã®é¡æ€åºã®äŸã§ãã èè ã¯ããã®åéã§çµ¶ãéãªãåââé¡ã®1ã€ãå°ããªç©äœã®æ€åºãšåŒãã§ããŸãã ãã¹ãã¯ã©ã¹ãšããŠå°ããªé¡ã䜿çšããŠã圌ãã¯ãµã€ãºãç»å解å床ãããã³ã³ã³ããã¹ãã®æ£åœåã«ãããäžå€æ§ã®åœ¹å²ã調æ»ããŸããã
åºå ž ïŒ HuãRamananïŒ2016ãpã1ïŒ
2016幎ã®ãªããžã§ã¯ãæ€åºã®åéã«ãããäž»ãªåŸåã®1ã€ã¯ãããé«éã§å¹ççãªæ€åºã·ã¹ãã ãžã®ç§»è¡ã§ããã ããã¯ãYOLOãSSDãR-FCNãªã©ã®ã¢ãããŒãã§ãã€ã¡ãŒãžå šäœã®å ±åã³ã³ãã¥ãŒãã£ã³ã°ãžã®ã¹ããããšããŠèŠãããšãã§ããŸãã ããã¯ãFast / Faster R-CNNãã¯ããã¯ã«é¢é£ãããªãœãŒã¹éçŽåãµãããããšã¯ç°ãªããŸãã ãã®ææ³ã¯ãäžè¬çã«ãšã³ãããŒãšã³ãã®ãã¬ãŒãã³ã°/åŠç¿ãšåŒã°ããŸãã
æ¬è³ªçã«ãã¢ã€ãã¢ã¯äºãã«ç¬ç«ããåãµãåé¡ã®åå¥ã®ã¢ã«ãŽãªãºã ã®äœ¿çšãé¿ããããšã§ããããã¯éåžžããã¬ãŒãã³ã°æéãå¢å ããããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ç²ŸåºŠãäœäžãããããã§ãã ãã®ãããªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æåããæåŸãŸã§æ©èœããé©å¿ã¯ãéåžžãæåã®ãµãããããæ©èœããåŸã«çºçãããããé¡åçãªæé©åãè¡šããšèšãããŠããŸãã ãã ããé«é/é«éR-CNNæè¡ã¯äŸç¶ãšããŠéåžžã«å¹ççã§ããããªããžã§ã¯ãæ€åºã«åºã䜿çšãããŠããŸãã
- SSDïŒã·ã³ã°ã«ã·ã§ããMultiBox Detectorã¯ãå¿ èŠãªãã¹ãŠã®èšç®ãå®è¡ããåäžã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããåäžä»£ã®ãªãœãŒã¹ãéäžçã«äœ¿çšããæ¹æ³ãäžèŠã«ããŸãã ã75.1ïŒ mAPãåçã®æå 端ã®Faster R-CNNãäžåãããå®èšŒããŠããŸãã
- 2016幎ã®æãå°è±¡çãªéçºã®1ã€ã¯ã YOLO9000ãšããé©åãªååã®ã·ã¹ãã ã§ããBetterãFasterãStrongerã§ãYOLOv2ããã³YOLO9000æ€åºã·ã¹ãã ã䜿çšããŸãïŒYOLOã¯You Only Look Onceãæå³ããŸãïŒã YOLOv2ã¯2015幎åã°ãã倧å¹
ã«æ¹è¯ãããYOLOã¢ãã«ã§ãããéåžžã«é«ããã¬ãŒã ã¬ãŒãïŒéåžžã®GTX Titan Xã䜿çšããå Žåã®äœè§£å床ç»åã§æ倧90 FPSïŒã®ãããªã§ããè¯ãçµæã衚瀺ã§ããŸãã ã·ã¹ãã ã¯ãé床ã®åäžã«å ããŠããªããžã§ã¯ããèå¥ããããã®ç¹å®ã®ããŒã¿ã»ããã§ResNetããã³SSDã䜿çšããFaster RCNNãè¶
ããŠããŸãã
YOLO9000ã¯ããªããžã§ã¯ããæ€åºããã³åé¡ããããã®è€ååŠç¿æ¹æ³ãå®è£ ããå©çšå¯èœãªã©ãã«ä»ãæ€åºããŒã¿ãè¶ ããŠäºæž¬æ©èœãæ¡åŒµããŸãã ã€ãŸããã¿ã°ä»ãããŒã¿ã§æ€åºãããããšã®ãªããªããžã§ã¯ããæ€åºã§ããŸãã YOLO9000ã¢ãã«ã¯ã9000ãè¶ ããã«ããŽãªéã§ãªã¢ã«ã¿ã€ã ã®ãªããžã§ã¯ãæ€åºãæäŸããŸããããã«ãããåé¡ãšæ€åºã®ããŒã¿ã»ããã®ãµã€ãºã®éãããªããªããŸãã 詳现ãäºåãã¬ãŒãã³ã°æžã¿ã¢ãã«ãããã³ãããªãã¢ã«ã€ããŠã¯ããã¡ããã芧ãã ããã
ãªããžã§ã¯ãæ€åºYOLOv2ã¯ãJames Bondã®ã ãŒããŒãã¬ãŒã ã§å®è¡ãããŸã
- ãªããžã§ã¯ãæ€åºçšã®æ©èœãã©ããããããã¯ãŒã¯ã¯ ãFAIRïŒFacebook Artificial Intelligence ResearchïŒã«ãã£ãŠéçºãããŸããã ã深局ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®çåŸçãªãã«ãã¹ã±ãŒã«ãã©ãããéå±€ã䜿çšããŠã æå°éã®è¿œå ã³ã¹ãã§ãã£ãŒãã£ãã©ããããæ§ç¯ããŸã ã ã ããã¯ãé床ãè¿œå ã®ã¡ã¢ãªãªãŒããŒããããç ç²ã«ããããšãªãã匷åãªè¡šçŸãç¶æããããšãæå³ããŸãã éçºè ã¯ãCOCOïŒã³ã³ããã¹ãå ã®å ±éãªããžã§ã¯ãïŒããŒã¿ã»ããã§ã¬ã³ãŒãã¬ãã«ãéæããŠããŸãã Faster R-CNNããŒã¹ã·ã¹ãã ãšçµã¿åããããšã2016幎ã®åè ãããåªããŠããŸãã
- R-FCNïŒé åããŒã¹ã®å®å
šç³ã¿èŸŒã¿ãããã¯ãŒã¯ã«ãããªããžã§ã¯ãæ€åº ã éçºè
ããåç»åã§äœçŸåãç»åã®åã
ã®é åã«ãªãœãŒã¹ãéäžçã«äœ¿çšãããµããããã®äœ¿çšãæŸæ£ããå¥ã®æ¹æ³ã ããã§ãé åæ€åºåšã¯å®å
šã«ç³ã¿èŸŒã¿åŒã§ãããç»åå
šäœã«å¯ŸããŠå
±åèšç®ãå®è¡ããŸãã ããã¹ãäžãåäœé床ã¯ã€ã¡ãŒãžããšã«170ããªç§ã§ãããããã¯ãé«éR-CNNããã2.5ã20åé«éã§ãããšèè
ã¯æžããŠããŸãã
å³ 4 ïŒç°ãªãã¢ãŒããã¯ãã£äžã®ãªããžã§ã¯ããæ€åºããå Žåã®ãªããžã§ã¯ãã®ç²ŸåºŠãšãµã€ãºã®ãã¬ãŒããªã
泚 ïŒmAPïŒå¹³åå¹³å粟床ïŒã¯åçŽè»žã«ãããããããåç¹åŸŽæœåºãããã¯ã®ããŸããŸãªã¡ã¿ã¢ãŒããã¯ãã£ã氎平軞ïŒVGGãMobileNet ... Inception ResNet V2ïŒã«ãããããããŸãã ãŸããå°ãäžã倧ã®mAPã¯ãããããå°ãäžã倧ã®ãªããžã§ã¯ãã®å¹³å粟床ã瀺ããŸãã åºæ¬çã«ã粟床ã¯ãªããžã§ã¯ãã®ãµã€ãºãã¡ã¿ã¢ãŒããã¯ãã£ãããã³ç¹åŸŽæœåºãŠãããã«äŸåããŸãã ãã®å Žåããç»åãµã€ãºã¯300ãã¯ã»ã«ã«åºå®ãããŸããã ãã®äŸã§ã¯ãR-CNNã®é«éã¢ãã«ã¯æ¯èŒçè¯å¥œã«æ©èœããŸãããããã®ã¡ã¿ã¢ãŒããã¯ãã£ã¯ãR-FCNãªã©ã®ææ°ã®ã¢ãããŒããããå€§å¹ ã«é ãããšã«æ³šæããããšãéèŠã§ãã
åºå ž ïŒ Huang et alã ïŒ2016幎ã9ããŒãžïŒ
äžèšã®ç§åŠèšäºã¯ãR-FCNãSSDãããã³é«éR-CNNã®ããã©ãŒãã³ã¹ã®è©³çŽ°ãªæ¯èŒãæäŸããŸãã æ©æ¢°åŠç¿ã®ææ³ãæ£ç¢ºã«æ¯èŒããã®ã¯é£ãããããèè ã説æããæšæºåãããã¢ãããŒããäœæããã¡ãªãããææããããšæããŸãã 圌ãã¯ããããã®ã¢ãŒããã¯ãã£ãResmetãInceptionãªã©ã®ããŸããŸãªç¹åŸŽæœåºãŠããããšçµã¿åãããããšãã§ããããããã¡ã¿ã¢ãŒããã¯ãã£ããšèŠãªããŠããŸãã
èè ã¯ãããŸããŸãªã¡ã¿ã¢ãŒããã¯ãã£ãç¹åŸŽæœåºãããã¯ãããã³è§£å床ã«ããã粟床ãšé床ã®ãã¬ãŒããªããç 究ããŠããŸãã ããšãã°ãç¹åŸŽæœåºãŠããããéžæãããšãããŸããŸãªã¡ã¿ã¢ãŒããã¯ãã£ã®äœæ¥çµæã倧ããå€ãããŸãã
SqueezeDetãšPVANetã説æããŠããç§åŠèšäºã¯ãæ¶è²»ãããã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ãåæžããªãããã¢ããªã±ãŒã·ã§ã³ã®é床ãäžããåŸåãšãç¹ã«ç¡äººè»äž¡ã¢ããªã±ãŒã·ã§ã³ã§åçšãªã¢ã«ã¿ã€ã ã¢ããªã±ãŒã·ã§ã³ã«å¿ èŠãªç²ŸåºŠãç¶æããåŸåãšã®éã®åŠ¥åã®å¿ èŠæ§ãå床匷調ããŠããŸãã äžåœäŒæ¥ã®DeepGlintã¯ãç£èŠã«ã¡ã©ããã®ã¹ããªãŒã ã§ãªã¢ã«ã¿ã€ã ã«ãªããžã§ã¯ããæ€åºããè¯ãäŸã瀺ããŸããã
DeepGlintã§ã®ãªããžã§ã¯ãæ€åºããªããžã§ã¯ã远跡ãé¡èªè
ILSVRCããã³COCOæ€åºãã£ã¬ã³ãžã®çµæ
COCO ïŒã³ã³ããã¹ãå ã®å ±éãªããžã§ã¯ãïŒã¯ãå¥ã®äžè¬çãªç»åããŒã¿ã®ã»ããã§ãã ãã ããImageNetãªã©ã®ä»£æ¿è£œåãããæ¯èŒçå°ãããæ éã«ãã¥ã¬ãŒã·ã§ã³ãããŠããŸãã ã·ãŒã³ãç解ããããã®ããåºãã³ã³ããã¹ãã§ãªããžã§ã¯ããèªèããããšãç®çãšããŠããŸãã äž»å¬è ã¯ããªããžã§ã¯ãã®æ€åºãã»ã°ã¡ã³ããŒã·ã§ã³ãããã³ããŒãã€ã³ããããã£ãŠæ¯å¹Žã³ã³ãã¹ããéå¬ããŠããŸãã ãªããžã§ã¯ãæ€åºã«é¢ããILSVRCããã³COCOã³ã³ãã¹ãã®çµæã¯æ¬¡ã®ãšããã§ãã
- ImageNet LSVRCãç»åæ€åºïŒDETïŒ ïŒCUImageã¯66ïŒ meanAPã瀺ããŸããã ãªããžã§ã¯ãã®200ã®ã«ããŽãªã®ãã¡109ã§åã¡ãŸããã
- ImageNet LSVRCããããªäžã®ãªããžã§ã¯ãæ€åºïŒVIDïŒ ïŒNUIST 80.8ïŒ meanAP
- ImageNet LSVRCã远跡ãããªã®ãªããžã§ã¯ãæ€åº ïŒCUvideo 55.8ïŒ meanAP
- COCO 2016ããªããžã§ã¯ãæ€åºïŒå¢çããã¯ã¹ïŒ ïŒG-RMIïŒGoogleïŒ41.5ïŒ APïŒ2015幎ã®åè³è ãšæ¯èŒããŠ4.2ããŒã»ã³ããã€ã³ãã®çµ¶å¯Ÿçãªå¢å -MSRAVCïŒ
ImageNet 㯠ã2016幎ã®ãªããžã§ã¯ãæ€åºã·ã¹ãã ã«ãã£ãŠç€ºãããçµæã®ã¬ãã¥ãŒã§ãMSRAVC 2015ãéåžžã«é«ãããã©ãŒãã³ã¹ããŒãèšå®ãããšæžããŠããŸãïŒãã®ã³ã³ãã¹ãã§ResNetãããã¯ãŒã¯ãåããŠç»å ŽããŸããïŒã ã·ã¹ãã ã®ããã©ãŒãã³ã¹ã¯ãã¹ãŠã®ã¯ã©ã¹ã§æ¹åãããŸããã ã©ã¡ãã®ã³ã³ãã¹ãã§ããããŒã«ã©ã€ãºã¯å€§å¹ ã«æ¹åãããŸããã å°ããªãªããžã§ã¯ãã§å€§å¹ ãªæ¹åãéæãããŸããã
å³ 5 ïŒILSVRCã³ã³ããã£ã·ã§ã³ã«ãããç»åæ€åºã·ã¹ãã ã®çµæïŒ2013â2016ïŒ
泚 ïŒILSVRCã³ã³ããã£ã·ã§ã³ïŒ2013â2016ïŒã®ç»åæ€åºã·ã¹ãã ã®çµæã åºå ž ïŒImageNet 2016ããªã³ã©ã€ã³ãã¬ãŒã³ããŒã·ã§ã³ãã¹ã©ã€ã2ã pdf
ãªããžã§ã¯ã远跡
ç¹å®ã®å¯Ÿè±¡ãªããžã§ã¯ããŸãã¯ç¹å®ã®ã·ãŒã³äžã®è€æ°ã®ãªããžã§ã¯ãã远跡ããããã»ã¹ãæããŸãã åŸæ¥ããã®ããã»ã¹ã¯ããããªã¢ããªã±ãŒã·ã§ã³ããã³å®äžçãšã®çžäºäœçšã®ã·ã¹ãã ã§äœ¿çšããããœãŒã¹ãªããžã§ã¯ãã®çºèŠåŸã«èŠ³å¯ãè¡ãããŸãã ããšãã°ããã®ããã»ã¹ã¯ç¡äººè»äž¡ã·ã¹ãã ã«ãšã£ãŠéèŠã§ãã
- « » , , , . , .
- « 100 FPS » â , . , (feed-forward network) , . . , « 100 FPS».
GOTURN (Generic Object Tracking Using Regression Networks)
- « » , RGB/ ( CNN), ( ), . , , . ICPR 2016, « ».
« . , , RGB . , . , , ». - « » . , , , . , . , , .
- ãå®å šãªç³ã¿èŸŒã¿ãããã¯ãŒã¯ãšãªããžã§ã¯ãã®ã°ããŒãã«æé©è¿œè·¡ãããªããžã§ã¯ã远跡ã·ã¹ãã ã®å¶éã®2ã€ã®æ ¹æ¬åå ãšããŠããªããžã§ã¯ãã®å€æ§æ§ãšå¹²æžã«ã€ããŠèª¬æããŸãããææ¡ãããæ¹æ³ã¯ãå®å šãªç³ã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšããŠãªããžã§ã¯ãã®å€èŠ³ã®å€æ§æ§ã®åé¡ã解決ããåçããã°ã©ãã³ã°ãéããŠå¹²æžã®åé¡ãšãé£æºããŸããã