
-ãšã³ãžãã¢ãšããŠã®éã®ããæããŠãã ããã ããŒã¿ãæ±ãåéã«æåã«æ¹ãããã®ã¯ãªãã§ããïŒãªã人æ°ã®ããé åçãªããŒã¿ãµã€ãšã³ãã£ã¹ãã®ä»£ããã«ãããŒã¿ãšã³ãžãã¢ã«ãªã£ãã®ã§ããïŒããŒã¿ãšã³ãžãã¢ã¯ããã®äŸ¡å€ã«ã€ããŠè©±ãå§ããæè²ããã°ã©ã ãäœæãå§ããã®ã§ããïŒ
ç§ã¯å€§åŠãããœãããŠã§ã¢ãšã³ãžãã¢ãšããŠåãå§ããé·ãéPythonã§ã³ãŒããæžããŸããã æ£çŽãªãšãããççŽã«èšã£ãŠãæåã¯ç§ã®åŠæ ¡ã§æ°åŠãåŠãã ããšã¯ããŸããããŸããã§ããã ãããŠãããŒã¿ãµã€ãšã³ã¹ãå¥ã®é åãšããŠåœ¢ã«ãªãå§ãããšããç§ã¯ãããã人ã ãæ¬åœã«ã³ã³ãã¥ãŒã¿ãŒãæå³ãããšããã«åäœãããé åã®1ã€ã§ããããšã«æ°ä»ããŸããã ã€ãŸããããå Žæããå¥ã®å Žæã«ãã€ãã転éããããçŸããã€ã³ã¿ãŒãã§ã€ã¹ãæç»ãããããªãã§ãã ããïŒç§ã¯äœããã®æ¹æ³ã§Webã¹ã¿ãžãªã§åããŠããŸããã䟿å©ã§èå³æ·±ãäœéšã§ããããã¹ãŠã®ãããžã§ã¯ãã«å°ãªããšãäœããã®å©ç¹ãããããã§ã¯ãããŸããïŒã
ãã®åéã«ã¯æ¬åœã«äžççãªæ®éçãªæå³ããããŸãããç§trickã¯æ°åŠãããç¥ãå¿ èŠããããšããããšã§ãã ããã¯ãããŒã¿ãµã€ãšã³ãã£ã¹ãã«çŽæ¥è¡ããªãããšã®éèŠãªçç±ã®1ã€ã§ãããéçºã³ãŒã¹ãå®å šã«å€æŽããå¿ èŠãããããã§ãã ããŒã¿ã¢ããªã¹ãã«ãšã£ãŠããã®Pythonããã®Sparkã¯åãªãããŒã«ã§ãããåºç€ã¯æ°åŠçãªè£ 眮ããã©ã¡ãŒã¿ãŒã®éžæãã¢ãã«ã®èª¿æŽã§ãã ç§ã¯ããã°ã©ãã³ã°ããããããŠãå¥ã®ããŒã«ã«çã£åããé£ã³èŸŒãã®ã奜ãã§ããã
ããããç§ã¯çªç¶ãæ°åŠã®åé¡ã解決ããã®ãåŸæãªäººã«ã¯å¥ã®åŒ±ç¹ãããããšã«æ°ã¥ããŸãã-圌ãã¯ãã°ãã°ç£æ¥çšã³ãŒãã£ã³ã°ã®çµéšããªããããçš®ã®å®æåãäœããŸãã ãããŠãç§ã¯ããã§æå©ã ãšæãåã£ãŠçµè«ä»ããŸããã
ããã§ãããŒã¿ãšã³ãžãã¢ãªã³ã°ã«æ¥ãŸããã ãªããªãã第äžã«ãããã¯ç§ã奜ããªããšãããããšãå¯èœã«ããããåæã«ç§ã«ãšã£ãŠããèå³æ·±ãåéã§ã 次ã«ãããã¯äººæ°ã®ãããšãªã¢ã§ãã å¿ãã楜ããã§ããããšã«ãéããããããšããã§ããã
ãããé·ãããã°ããã»ã©ãData Scienceã¯éåžžã«å€æ§ãªåéã§ããã誰ããããããèŠã€ããããšãã§ããããšãããããŸãã ç§ãæãå§ãããšããç§ã®ç®æšã¯ãã®ã¢ã€ãã¢ãçåŸã«äŒããããšã§ãããæ°åŠã解ããã³ãŒããæžãããšã®äž¡æ¹ãè¡ãããšãã§ãã人ã«åºãããããšã¯éåžžã«ãŸãã§ãã ãã®é åã«ã¯å€ãã®ã¿ã¹ã¯ããããŸãããããã¯ã¢ãã«ã ãã§ãªããã¢ãŒããã¯ãã£ã®æ§ç¯ãå±éããããã¿ã€ãããäœããã®å®æåãŸã§ã®ã¯ãŒã¯ãããŒã®å®å šãªãã§ãŒã³ã®ã»ããã¢ããã§ããããŸãã ãããã®æé ã¯ãã¹ãŠéèŠã§ãããããããã«å°é家ãå¿ èŠã§ãã
-è·æ¥äžã©ã®ãããªå°é£ã«çŽé¢ããŸãããïŒãã£ãªã¢ã®åããšå°æ¥ãã©ã®ãããªèª²é¡ã«çŽé¢ããŸãããïŒ
ä»ã®çã®ãããªå°é£-æåã¯çµéšã®æµ ããããŸããŸãªãã¯ãããžãŒã«å¯ŸåŠããããã«å€ãã®ããšããããŸããã ããªãã¯æ°ããäŒç€Ÿã«æ¥ãŠãããªãã®ã¹ã¿ãã¯ã¯å®å šã«å€åããŠããŸãã æ°å¹ŽåãMail.ru Groupã§Pythonãæžãããã«ãªã£ããšããPerlã§æžãããã¹ã¯ãªããããµããŒãããããã«24æé365æ¥éãããŸããïŒé«å質ã®ã³ãŒãã®äŸãšã¯èšããŸããïŒãããããŒãããåŠã³ãŸãã ãã®ãããªããšã¯ãã°ãã°èµ·ãããŸãããäžæ¹ã§ãããã¯ããªããç°ãªãåéã§çµéšãç©ãããšãã§ããŠãã¿ã¹ã¯ã§ç°ãªãèŠæ¹ãããããšãå¯èœã«ããŸãã
ãããã£ãŠãåæã«è¿ã¥ãããšããæ°åŠãäž»èŠãªåé¡ã®1ã€ã«ãªããŸããããããã§ã¯ã代æ°ãçµ±èšã確çè«ãªã©ãè²·ã£ãæ¬ã圹ç«ã¡ãŸããã 1幎以äžãæåŠããæãåºãããšã¯ã§ããŸããã§ããããæåã¯æ¯æ¥ç¡çããããã®åŸã¯ç¿æ £ã«ãªããŸããã ãããŠæçµçã«ã¯ãè¯ãçµæãåŸãããããã§ãã ããããç§ãå€æããã®ã¯ç§ã§ã¯ãªããšæããŸãã
-ããŒã¿ãµã€ãšã³ãã£ã¹ããšæ¯èŒããŠãããŒã¿ãšã³ãžãã¢ãšããŠåãããšã®é·æãšçæã¯äœã§ããïŒ
ããã¯ãã®ç©èªã®ãããªãã®ã§ããããŒã¿ãšã³ãžãã¢ã§ããããšã¯ãã©ã®ããŒã¿ç§åŠè ãããããã°ã©ãã³ã°ãããç解ããŠãããçµ±èšããã®éã§ãã ä»ã®äººã ãç 究ãæ°åŠãããã³ããªãããŒãªæ©èœã®éžæã«åŸäºããŠãããšããäºå®ãããå°ãæ²ããããšãããããŸãã ããããããã§ã®ããŒã¿ãšã³ãžãã¢ã®å©ç¹ã¯ããã®ãããã¿ã€ãã¢ãã«ã®äŸ¡å€ããããã»ãšãã©ã®å ŽåãPythonãã¡ã€ã«å ã®ã³ãŒãã§æ§æãããŠããããšã§ãïŒãããŠãRã§ã¯ãªããã²ã©ãå質ã§ããå Žåã¯è¯ãããšã§ãïŒãã¯ããŒã¿ãµã€ãšã³ãã£ã¹ãããæ¥ããã®ã§ãããå°ãªããšãäœããã®ææ°ãæäŸãããŒãã«ãªãåŸåããããŸãã ããŒã¿ãšã³ãžãã¢ã®äœæ¥ããªããã°ããã®ã³ãŒãã¯ãããžã§ã¯ãã«ãªãããšã¯ãªããããžãã¹ã¿ã¹ã¯ã¯è§£æ±ºãããŸããã ãããŸã§ã®ãšãããããã¯èã«å¯Ÿããåãªãå®éšã§ãã ããŒã¿ãšã³ãžãã¢ã¯ããã補åã«å€ããããšããŠããŸãã
-ä»æ¥ããã®åéã®æèœãªå°é家ã®èšå€§ãªæ°ãæµ·å€ã«è¡ããŸãã ãã·ã¢ã®äŒæ¥ã¯äººå¡ã®æµåºãé²ãããã«äœãããå¿ èŠããããšæããŸããïŒ
ä»ã®å Žæãšåãããã«ãããã«ã¬ã·ãããããŸãïŒç«¶äºåã®ãã絊äžã瀟äŒçãªãã°ããºãããã¹ãŠã¯ãã€ãã®ããã§ãã çŸåšãå±æ©ã«äŒŽããéåžžã«å€ãã®äººã ãå€åœã®ãªãã£ã¹ã§ãªã¢ãŒãã§åãããšã§ããåçæ§ãé«ããªã£ãŠããããšãå€æããŸããã絊äžãé«ããæ©äŒãå¢ããŠããŸãã ç§ãã¡ã®äŒç€Ÿã¯å°é£ãªç¶æ³ã«ãããç§ã®æèŠã§ã¯ãã§ããããšã¯æ éã«åè£è ãéžæããè³¢æãªäººã«æè³ããããšãæããªãããšã§ãã æšæ¥ç·åœ¢ä»£æ°ãå匷ããåŠçãéã䟡å€ã¯ãªããããããŸããããäºç®ãå¢ãããŠãç¹å®ã®ããžãã¹äžã®åé¡ã解決ã§ããåªç§ãªã¹ãã·ã£ãªã¹ããéãæ¹ãè¯ãã§ãããã äŸïŒã¹ãã¢ãããããµã€ãã®æšå¥šã·ã¹ãã ãæ§ç¯ãããšããŸãã ãã®åŸããã®ã·ãªãŒãºããæå³çã«å°é家ãæ¢ãã®ãè³¢æã§ãã ããŒã¿ãµã€ãšã³ã¹ãçŸåšæµè¡ããŠãããšèããŠãä»äºã«è¡ããããšæã£ãŠãã人ãã¡ãšãéã亀æãã代ããã«ãå®éã«ã¯åœŒãã¯åžžã«ãžã¥ãã¢ã§ããåŒã£åŒµãããã§ã¯ãããŸããã

-ãªãããªãã¯æããããšã«æ±ºããã®ã§ããïŒ
ç§ã¯ãã€ãèšäºãæžãã®ã奜ãã§ããã ããã«ãç§ã¯æŽå²çã«å®¶æã®ãã¹ãŠã®ç§åŠè ãæåž«ãäœãšãããŠããããè¡ã«ããããšãå€æããŸããã ç§ãå²åŠã®ååã奜ãã§ãïŒããªããèªåã§åé¡ãç解ããããªããæãæ£ããæ¹æ³ã¯ããã«ã€ããŠæ·±å»ãªèšäºãåããæžãããšã§ãããããŠããªãããã§ã«æ·±å»ãªã¬ãã«ã«éããŠããããããªãã®æ¯ããè·³ãè¿ãããã«ãããä¿®æ£ããããªãããã®åŸãæãã«è¡ãããšãã§ããŸãã
æè²ã®æ çµã¿ã«ãããNewprolabã®ã¡ã³ããŒãšã®ã³ã©ãã¬ãŒã·ã§ã³ã¯ãç§ãã³ãŒã¹ãããã°ããŒã¿ã¹ãã·ã£ãªã¹ããã®æåã®ã»ããã«ãããšããäºå®ããå§ãŸããŸããããã®åŸãããã°ã©ãã³ã°ãæããæ¹æ³ãããŸã奜ãã§ã¯ãªãããšã³ãžãã¢ãªã³ã°ã®è©³çŽ°ããããããããŸããã ç§ã¯ã¿ããªã«è¡ããå©ããç³ãåºãŠãç§ãã¡ã¯å»ããŸãã ä»ãç§ã¯PythonãæããŠããŸãã
-æãæ¹ã«ã€ããŠæããŠãã ããã ããªãã®æèŠã§ã¯ãããã°ã©ãã³ã°ãšããŒã¿åæãæããããã»ã¹ã§æãéèŠãªããšã¯äœã§ããïŒ
ç§ã®ã¢ãããŒãã¯ã人ã ã«èå³ãæã¡ããšãã«ã®ãŒã«ææãããããšã§ãã 圌ããå¿ããæãäžããŠè³ªåãããšããç§ã¯ããã奜ãã§ãããããŠãç§ã«ãšã£ãŠããã§ã«ããã«ãããã®ã¯ãããã¯ç§ãšä»ã®äººã«èå³ããããããã¯ã§ãã£ããããããäžã€ã®æ©äŒã§ãã ç§ã«ãšã£ãŠæãéèŠãªããšã¯ã奜å¥å¿ãèªåèªèº«ã«è²ãŠãããšã§ããããããªãã§ã¯ã¯ã©ã¹ããå©çãåŸãããšã¯å°é£ã§ãã
ç¹å®ã®ããšã«ã€ããŠè©±ãå Žåã¯ãããšãã°ãçŸããåçã ãã§ãªããã¬ãŒã³ããŒã·ã§ã³ãäœæããããšããŸãããèªåã§ä¿æããããã«ããã¹ãŠã®ãªã³ã¯ãã¯ãªãã¯ã§ããŸããæçµçã«äººã ãäœããã®çš®é¡ãæã€ããã«ããã®èšäºãŸãã¯ãã®èšäºãèªãããšãã§ããŸã次ã«ãããããæ§ç¯ã§ããããŒã¹ã
-ããªãã®æè²çµéšã«åºã¥ããŠãããã°ã©ãã³ã°ã®ã©ã®åŽé¢ãç¹ã«ããŒã¿åæãæãé£ããçåŸã«äžããããŸããïŒ ãã®çç±ã¯äœã§ããïŒ
é£ãã質åã ä»ãç§ã¯éåžžã«å€æ§ãªèŽè¡ãšä»äºãããŠããŸãïŒæ©æ¢°åŠç¿ã®çš®é¡ãšããžãã¹ãžã®å¿çšæ¹æ³ãç解ããããšãããããïŒãããŠããã§ã¯ãªãïŒçµå¶é£ã®äººã ãããã³ããŒã¿åæã³ãŒã¹ã«åå ããæ¹æ³ããã§ã«ç¥ã£ãŠããçµéšã®ãããšã³ãžãã¢ã³ãŒãã£ã³ã°ã¯ã§ããŸããããããã®ã¹ãã«ãããŒã¿åæã§100ïŒ ã«é©çšããæ¹æ³ã¯ãŸã ããããŸããã ãã®çµæãæåã¯ããã°ã©ãã³ã°ãéåžžã«å°é£ã§ããããšãããããŸããã圌ãã¯äººçã§ããããã£ãããšããªãã®ã§ã2çªç®ã¯æåéã倧åŠã®1幎ç®ããæ°åŠãèŠããŠããå¿ èŠããããŸãã ãŸããããŒã¿åæçšã®ããŒã«ã»ããã¯ãåžå Žã®å žåçãªITäŒæ¥ã®æšæºã»ãããšã¯ããªãç°ãªãå Žåãå€ããã³ãŒã¹ã®åŠçã«ãšã£ãŠãããã¯èª²é¡ã§ãã
-ç°ãªãããã¯ã°ã©ãŠã³ããæã€ãããã®ã°ã«ãŒãéã§ã©ã®ããã«ãã©ã³ã¹ã®åããæå°ãç¶æããŠããŸããïŒ
ç§ãã¡ã¯ãªãŒã¬ãã€ã¶ãŒã«æ¬æãè¡šããªããã°ãªããŸããã人ã ãããŒã ã§åãå§ãããšãä»ã®äººãä»ã®äººãå©ããŸãããããŠãå€ãã®å ŽåãããŸãããã®ã¯ãããã®éå€ãªããŒã ã§ãïŒäººã ã¯ããŸããŸãªåéã®åé¡ã解決ããäºãã«å¹³åã¬ãã«ãŸã§åŒãåããŸãã ãããããPythonã§ããã€ãã®åºæ¬çãªããšãæžããŠãããã€ãã®ã©ããäžç·ã«æ±ºããåŸã人ã ã¯çµéããããèªä¿¡ãæã¡ãŸããã ãŸãããã®åœ¹å²ã¯ã倧åŠãšã¯ç°ãªããããã«éãŸã£ã人ã ãç¹å®ã®åé¡ãçããŠç 究ãããã®åé¡ã«å€ãã®æéãè²»ãããŠãããšããäºå®ã«ãã£ãŠæŒããããŠããŸãã ãããŠãããªããäœãã«å€ãã®æéãšåªåãè²»ãããšããããã¯éèŠã«ãªããŸãããããŠãããªãã¯å¿ãããããæãäžããŠããããæŒããŠãã ãããããšãæã¿ãŸãã ãã¡ãããææ¥æã¯å匷ããããã®è¿œå ã®ã€ã³ã»ã³ãã£ãã§ããããšæããŸãã ç¡æã®åªããã³ãŒã¹ããããŸãããå°ãªããšãODSããåãã³ãŒã¹ãåè¬ããŠãã ããïŒããã«ã€ããŠã¯åŸã»ã©èª¬æããŸãïŒã

-ããªãã®èŠ³å¯ããïŒåå¿è ãšçµéšè±å¯ãªããŒã¿ãµã€ãšã³ãã£ã¹ããšããŒã¿ãšã³ãžãã¢ã®äž¡æ¹ãçã®ãã€ã¯ã©ã¹ã¹ãã·ã£ãªã¹ãã«ãªãã«ã¯ãå€ãã®å Žåãã©ã®ãœããã¹ãã«ãšããŒãã¹ãã«ãäžååã§ããïŒ
ç§ã¯ãããŒã¿ç§åŠè ã¯ããŸãããŸãããã°ã©ã ã§ããªãã¯ãã§ãããšããäºå®ã«ãã§ã«åæããŠããããã«æããŸãããããã¯åœŒãã®ä»äºã§ã¯ãããŸããã ããŒã¿ãµã€ãšã³ãã£ã¹ãã¯ã¢ãã«ããã¬ãŒãã³ã°ããã ãã§ãªããã³ãŒããå®å šã«èšè¿°ããèŠèŠåãæç»ãããã€ãã©ã€ã³ãæ§ç¯ãããã¬ãŒã³ããŒã·ã§ã³ãè¡ãããšãã§ãããšä¿¡ãã人ã ãã³ãŒã¹ããŸã ãããŸããã å®éãã¹ãã«ããšã«ç°ãªãã¿ã¹ã¯ããããŸãã ãã¡ãããããŒã«ãŒä»ãããŒããããŒãããã¯ã«æžãããã¢ãã«ã¯ããŸã圹ã«ç«ã¡ãŸããããExcelã®ãã¯ããã¬ãŒããããåªããäœããã®ã³ãŒãã§ããå¿ èŠããããŸãã
ãšã³ãžãã¢ã®ç¶æ³ã§ã¯ãæ°åŠãšãããã®ã¢ãã«ãã©ã®ããã«æ©èœããããæ·±ãç解ããå¿ èŠã¯ãããŸããã ããããããŒã¿ãšã³ãžãã¢ããããã®ã¢ãã«ãå¹ççã«è£œåã«å€ããããã«ã¯ãæè¡äŒç€Ÿã§ã®çµéšãå¿ èŠã ãšæããŸãã ç§ã«ãšã£ãŠãç§åŠè ãè¥æãšã³ãžãã¢ã®æãåºæ¬çãªåé¡ã®1ã€ã¯ãã¯ãŒã¯ãããŒãéåžžã©ã®ããã«é 眮ãããŠãããããŸã£ããç¥ããªãããšã§ãã è¯ãæ¹æ³ã§ã¯ãã³ãŒãã®ã¬ãã¥ãŒãå¿ èŠã§ããã³ãŒãã¯ããŒãžã§ã³ç®¡çã·ã¹ãã ãç¶ç¶çã€ã³ãã°ã¬ãŒã·ã§ã³ãªã©ã«ä¿åããå¿ èŠããããŸãã ãã¡ãããäžã§èšã£ãããã«ãããŒã¿ç§åŠè ããã®ãã¹ãŠãããç¥ã£ãŠãããšæåŸ ããããšã¯äŸ¡å€ããããŸããã ããããããã®ãšã³ãžãã¢ã¯å·ã€ããŸããã ãã¯ãããžãŒäŒæ¥ã§åãã€ã³ããªãžã§ã³ããšã³ãžãã¢ã§ããããã®ã€ã³ãã©ã¹ãã©ã¯ãã£ããŒãããæ§ç¯ããããã誰ãã«çŠç¹ãåãããã«ããŸãã¯é©åãªäººãããªãããã«ãå¿ ããããããã®ã¹ãã«ãæã£ãŠããããã§ã¯ãããŸãããããªããããã䟡å€ãããã®ãââã説æããŸãã
-é åãæ¢çŽ¢ãããšãã芳ç¹ãšããã£ãªã¢ãæ§ç¯ãããšãã芳ç¹ã®äž¡æ¹ã§ãããŒã¿ãæ±ãéã«åå¿è ãšã©ã®ãããªã©ã€ãããã¯ãå ±æã§ããŸããïŒ ããŒã¿ãåæããæè¯ã®æ¹æ³ã®ããžã§ã³ã«ã€ããŠãèãããã ããã
ãã®å°åãæ¢çŽ¢ããããã«ãç§ã¯å°ãç¡é çãªPRãæããããšãã§ããŸãïŒãã·ã¢ã«ã¯éåžžã«è¯ãããŒã¿ãµã€ãšã³ã¹ã³ãã¥ããã£ããããŸã- ãªãŒãã³ããŒã¿ãµã€ãšã³ã¹ ã6500人ã®ã¹ã©ãã¯ã«ãã£ã³ãã«ãããããã®å€ãã¯åžžã«å©ããŠãããã®ã§ãç¹ã«æåã¯ããã䜿çšããå¿ èŠããããŸãã ãã¡ãããå¿ èŠãªã¹ãã«ã¯è±èªã§ããããããäžèªç±ãªå Žåãæåã«ããããšã¯ãããåŒãäžããããšã§ããåºç瀟ã®åªåã«ãããããããããŒã¿åæã«é¢ããæé«ã®æ¬ã¯ãŸã è±èªã§ãã
ããŒã¿ãµã€ãšã³ã¹ã ãã§ãªããããããåéã§ãã£ãªã¢ãæ§ç¯ãããšããç¹ã§ã¯ãä»ãéåžžã«éèŠãªã¹ãã«ããããŸã-ããªããããããšãã©ã®ããã«æ©èœããããã人ã ã«èª¬æããèœåã§ãã ç¹ã«ããŒã¿ãµã€ãšã³ãã£ã¹ãã«ãšã£ãŠãäœæ¥å 容ãæ瀺ããèœåã¯éåžžã«éèŠã§ãã ãã§ã«è¿°ã¹ãããã«ã誰ãçŽã«æžãããã¢ãã«ãç解ããããšã¯ã§ããŸãããå¥ã®ããšã¯ãæç»ãããã°ã©ããèŠèŠçãªãã¬ãŒã³ããŒã·ã§ã³ããããšãã§ãã ã³ãŒããŒã«åº§ã£ãŠäœããã³ãŒãã£ã³ã°ãããèšç®ãããããå åçãªäººãããããšã¯ç解ããŠããŸãããå°ãªããšãèªåèªèº«ãå§åããæ¹æ³ãåŠã¶æ¹ãè¯ãã§ãããã
ããŒã¿ãšã³ãžãã¢ãªã³ã°ã«é¢ããŠã¯ãä»ã§ãè€éã§ããçŸåšãç¬èªã®ããŒã¿ãµã€ãšã³ã¹ãŠãããã®æ§ç¯ãéå§ããŠããäŒæ¥ã¯ãäœããã®æ¹åã§èšå®ãããITããã»ã¹ãæ¢ã«å éšã«æã£ãŠããããã§ãã 圌ãã¯é·ãéããŠã§ããµã€ã/ãµãŒãã¹ãç¶æããäœãèœã¡ãªãããã«å®æçã«æ°ããæ©èœãããããããITéšéãšãã補åãæã£ãŠããŸããã ããã«ãäŒç€Ÿãå€ããã°å€ãã»ã©ãITããã»ã¹ã麻çºããã¬ã¬ã·ãŒãããå€ãããã¹ãŠã®ã³ãŒãã¯å³å¯ã«10段éã®ã³ãŒãã¬ãã¥ãŒãééããã¢ããããŒãåŸ10æ¥ä»¥å ã«ç¹æ» ããŸãã ãããã¯ãå®å®ãã補åãæ§ç¯ããããã®åªãããã©ã¯ãã£ã¹ã§ãããããŒã¿ãµã€ãšã³ã¹ã€ã³ãã©ã¹ãã©ã¯ãã£ãæ§ç¯ããããã«ã¯äžé©åã§ãã ããŒã¿åæã¯æŽ»çºã«å€åããŠããããããã®åéã§ã¯å®éšãå¿ èŠã§ããã¢ãã«ãèã®äžã§ãã°ããçµã¿ç«ãŠããããžã§ã¯ããç«ã¡äžããããã§ã©ã®ããã«åå¿ããããèŠãŠãäœããä¿®æ£ãããŸããã
ãšã³ãžãã¢ã®èŠ³ç¹ãããå¿ èŠãªã¢ã€ãã¢ãæšãé²ããèœåã«å ããŠãæ¢åã®ã€ã³ãã©ã¹ãã©ã¯ãã£ã«çµ±åããèœåãå¿ èŠã§ããããšãããããŸãã ããšãã°ãç§ãåããŠããäŒç€Ÿã§ã¯ãéåžžã®ããŒã¿ãšã³ãžãã¢ãªã³ã°ãè¡ãããåã¯ãããŒã¿ãµã€ãšã³ã¹ãšãªãã¬ãŒã·ã§ã³ã®éã®é©åãªå¯Ÿè©±ããããŸããã§ããã ããã«ãããŒã¿åæçšã®éåžžã«å€ãã€ã³ãã©ã¹ãã©ã¯ãã£ãšãé·å¹Žã«ããã£ãŠäœæãããç¬èªã®ãã«ãã·ã¹ãã ããããŸããã ãããŠããããäžå¿ã«ããŒã¿ãµã€ãšã³ã¹ãæ§ç¯ããããšãããšãç°å¢ãç§ãã¡ã劚ããŠããããšã«æ°ä»ããŸããã ãã®çµæãããªãå°ããªããŒã ã®åãã€ãŸãç§ãã¡èªèº«ã®å°ããªãµãã€ã³ãã©ã¹ãã©ã¯ãã£ã«ãã£ãŠã瀟å ã«äŒç€Ÿãæ§ç¯ããå¿ èŠããããŸããã ãããŠãç§ã«ã¯ãããã¯å°å ã®åé¡ã ãã§ãªããããããã®ãããªããšãå°å ¥ãå§ãããã¹ãŠã®äŒæ¥ã§èµ·ãã£ãŠããããšã§ãã
ãŸããå¹çã®ããã«ãããªãã¯äººã ãšè©±ãããšãåŠã¶å¿ èŠããããŸãã ãã¡ããããããã®ã¹ãã«ã¯ç®¡çã«åããŠå°ãã§ããããããã®ãã®ã¯äœããã®æ¹æ³ã§å¯ŸåŠããå¿ èŠããããŸãã ãã®åéã¯ãŸã£ããæ°ãããã®ã§ãããæ°ãããã©ã¯ãã£ã¹ãžã®ç§»è¡ããããšããã¯ã©ãã§ããã¬ã¬ã·ãŒããããŒã¿é§ååã®æŽå¯ãžã®ç§»è¡ãæ§ç¯ã§ãã人ã ã¯ããã®éªšåãçªç Žããåžžã«äŸ¡æ ŒãšåèªãåŸãã§ãããã
Nikolai Markovã®ããŒã¿ãšã³ãžãã¢åãã®æçšãªãªãœãŒã¹
æ¬
- Scratchã®Data Science ïŒJoel GrasïŒã¯ãPythonãæ¢ã«äœæã§ãã人ã察象ãšããåºæ¬çãªData Scienceã®çŽ¹ä»ã§ãã æ¬ã®ç¹å¥ãªããªãã¯ã¯ãç解ãäžããããšã§ãããå žåçãªããŒã«ã®ã»ããïŒPandasãNumpyãTensorflowïŒã䜿çšãããçŽ ã®Pythonã³ãŒãã§æ°åŠçæŠå¿µã«ã€ããŠæ°åŠããŸãã ã¯ããåäœã¯é ããªããŸãããèšè¿°ãšããžãã¯ã®é¢ã§æé«å質ã®ã³ãŒãããããŸãã ãã·ã¢èªããããŸãããè±èªã§èªãã»ããè¯ãã§ãã
- Programming Collective Intelligence ïŒToby SegaranïŒã¯éåžžã«èå³æ·±ããã®ã§ãåºæ¬çãªããšã®æŠèŠã瀺ããŸãããåã®ãã®ãšã¯ç°ãªããPythonã³ãŒãã®å質ã¯éåžžã«å£ã£ãŠããŸãã ã€ã³ã¹ãã¬ãŒã·ã§ã³ã«é©ããŠããŸãã
- ããã°ããŒã¿ ïŒNathan MarzïŒ-èè ã¯Twitterãªã©ã®å€§äŒæ¥ã§åæã·ã¹ãã ãæ§ç¯ããApache StormãäœæããŸããã å®éããã®æ¬ã¯ãããŒã¿ãšã³ãžãã¢ãšããŒã¿ã¢ãŒããã¯ãã«çŸåšæåŸ ãããŠããå€ãã®ããšã説æããŠããŸãã ãããããŒã¿åŠçãšãªã¢ã«ã¿ã€ã åŠçãçµã¿åãããã©ã ãã¢ãŒããã¯ãã£ã®æŠå¿µãçºæããã®ã¯åœŒã§ããã ãã®æ¬ã¯ããã¹ãŠããŒãããæ§ç¯ããæ¹æ³ã説æããŠããŸãã Javaã³ãŒãã§ãããããã§ãéåžžã«äŸ¿å©ã§ãã
- Python Machine Learning ïŒSebastian RaschkaïŒ-æåã®æ¬ãšã¯ç°ãªããæšæºããŒã«-NumpyãPandasã§ã®ããŒã¿åæã«ã€ããŠèª¬æããŠããŸãã ããæ·±å»ãªã¬ãã«ã§ç©äºãã©ã®ããã«è¡ãããããšããç¹ã§éåžžã«è¯ãæ¬ã§ãã
- èŠèŠçãªæ°åŠççµ±èš ïŒMikhail LagutinïŒ-çŽç²ã«ã³ãŒããæžãããšã«å ããŠããšã³ãžãã¢ã¯ããŒã¿ç§åŠè ã®æ°ãæ£ãããªãããã«ç°¡åãªçµ±èšåæãããªããã°ãªããŸããã æ°åŠã®åºç€ãšã¯äœããçµ±èšã¯äœãã«ã€ããŠã®åºæ¬çãªç解ã®ããã®çŽ æŽãããæ¬ã
ã³ãŒã¹
- Andrew Ngã®æ©æ¢°åŠç¿ã¯ãAndrew Ngã®æåãªCourseraã³ãŒã¹ã§ã誰ããä¿®äºããå¿ èŠããããŸãã 確ãã«ãããšãã°ãMatlabïŒå®éã®éçºã§ã¯ã»ãšãã©èŠãããªãïŒã䜿çšããŠãããšããäºå®ãããã³å®¿é¡ãéåžžã«ãããããããªã©ããã®äžã®ããã€ãã®ããšã¯ããŸã奜ãã§ã¯ãããŸããã
- Konstantin Vorontsovã®æ©æ¢°åŠç¿å ¥éã¯ãããŒã¿åæã®åªããã³ãŒã¹ã§ãããã®åéã«ã¯ããã»ã©æ·±ãã¯ãªããããXGBoostã®åŸ®èª¿æŽã«ã€ããŠã§ã¯ãªããæ©æ¢°åŠç¿ã®ããã€ãã®åºæ¬ååã¯ãããŒã¿ãšã³ãžãã¢ã«ãšã£ãŠãæçšã§ãã
- Habréã®ã³ãã¥ããã£ã®ã³ãŒã¹ã§ããOpen Data Scienceã®ãªãŒãã³ãã·ã³ã©ãŒãã³ã°ã³ãŒã¹ã¯éåžžã«åªããŠãããããã«ãã©ã¹ã§ã-ãã®ã³ãŒã¹ãäœæãããããç解ããŠãããã¹ãŠã®äººã¯Slackã§ç°¡åã«èŠã€ããããšãã§ããæžã蟌ã¿ã質åãã§ãããããåŠç¿ãå€§å¹ ã«ä¿é²ãããŸãã
- Newprolabã®ã¡ã³ããŒããããŒã¿ãšã³ãžãã¢ãªã³ã°ãåŠã¶ -ããã§ãå°ãæããŸãã ããªãé¢çœããŠäŸ¿å©ã«ãªããšæããŸãã
ããã§ããç§ã¯å¿ããŠããŸãã-ã¿ããªãšããŒã¿ãµã€ãšã³ã¹ãã¬ãã¯ãã¡ãŒã¹ããéå¬ããŸã-ããã¯ãããã¹ãã¯ããã©ã®ã«ãã§ã«ããäŒç€Ÿãé±ã«1åéãŸããŸãã #data_breakfast ODS, !