äž¡æ¹ã®ã¢ã«ãŽãªãºã ã«ã¯å€ãã®ä¿®æ£ãšå€ãã®æœåšçãªä¿®æ£ãããããããã®èšäºã§ã¯ã©ã¡ãã®æ¹æ³ãäžè¬çã«åªããŠãããã蚌æããŸããã ããã§ãåè ã¯ç¹å®ã®ä¿®æ£ãšç¹å®ã®ãã©ã¡ãŒã¿ãŒã§ã®ã¿æ±ºå®ãããŸãã ãã®èšäºã®ç®çã¯ãé¢æ£çæé©åã®åéã§èªè ã®èŠéãåºããããšã§ãããäž¡æ¹ã®ã¢ã«ãŽãªãºã ã®åäœãæ¹åããããã®ææ¡ã§ãã
Antã¢ã«ãŽãªãºã ã®ä¿®æ£çã¯ã1997幎ã«Marco DorigoãšLuca Gambardellaã«ãã£ãŠææ¡ãããACSïŒAnt Colony SystemïŒã«ãã£ãŠéžæãããŸããã ASïŒAnt SystemïŒãšã®äž»ãªéãã¯æ¬¡ã®ãšããã§ãã
1ïŒæãé åçãªéœåžãšéåžžã®ASã®ããã«éžæè¢ãšã®ãã©ã³ã¹ãèšå®ãããŸã
arg max {[ÏïŒrãuïŒ] ^α* [ÏïŒrãuïŒ] ^β} if q <= q0ïŒåŒ1ïŒ
u ϵ Jkâ râ
ãã以å€ã®å Žåã¯ãASã«æ²¿ã£ãŠãã©ã³ãžã·ã§ã³ãéžæããŸã
ããã§ã[ÏïŒrãuïŒ]ã¯ãšããžäžã®ãã§ãã¢ã³ã¬ãã«ïŒrãuïŒã[ÏïŒrãuïŒ]ã¯ãšããžäžã®è·é¢ã«åæ¯äŸããéã¿ïŒrãuïŒãβã¯èª¿æŽå¯èœãªãã©ã¡ãŒã¿ãŒãã¢ã«ãŽãªãºã ã¯ãããçãè·é¢ã®éœåžãéžæããåŸåããããŸããα-1ã«çãããq-ã©ã³ãã ã«éžæãããæ°å€ãq0-1ã€ã®é ç¹ããå¥ã®é ç¹ãžã®é·ç§»ãåŒ1ã«åŸã£ãŠé²ãããšãéžæãã確çãu-ãŸã 蚪ããŠããªãéœåž
2ïŒãã§ãã¢ã³ã®ã°ããŒãã«æŽæ°ã«å ããŠãããŒã«ã«æŽæ°ãçºçããŸãã ãã§ãã¢ã³ã®ã¬ãã«ã¯ãã¢ãªãå埩ãééãããã³ã«å€åããŸãïŒããã§ã¯ãã¢ãªã®èªç¶ã®çæ¯å°ã«ããè¿ããªããŸãïŒã
ÏïŒrãsïŒ=ïŒ1-pïŒ*ÏïŒrãsïŒ+ p *Ï0ïŒåŒ2ïŒ
ããã§ãpã¯ããŒã«ã«æŽæ°ã¬ãã«ãÏ0=åæãã§ãã¢ã³ã®å€ã¯æ¬¡ã®ããã«èšç®ãããŸãïŒÏ0=ïŒn * LnnïŒ^-1ãLnnã¯å¥ã®æé©åæ¹æ³ã§ååŸã§ããè¿äŒŒæé©å€ã§ãã
3ïŒãã§ãã¢ã³ã®ã°ããŒãã«æŽæ°äžã«ãã¢ã«ãŽãªãºã ã®éå§ä»¥éã®æé©ãªãšããžïŒã°ããŒãã«ãã¹ãïŒããŸãã¯å埩æã®æé©ãªãšããžïŒããŒã«ã«ãã¹ãïŒã®ããããã®ã¿ããšããžã«è¿œå ãããŸãã äžçæé«ã®rib骚ã«é©çšããŸããã
ÏïŒrãsïŒ=ïŒ1-eïŒ*ÏïŒrãsïŒ+ e *ïŒLbest ^ -1ïŒïŒåŒ3ïŒ
ããã§ãeã¯ã°ããŒãã«æŽæ°ã¬ãã«ãLbestã¯kçªç®ã®å埩ãŸãã¯ã°ããŒãã«ãã¹ãã§ã®æé©ãªã«ãŒãé·ïŒæçïŒã§ãã
ãããã®å€æŽã«ãããã¢ã«ãŽãªãºã ã®ããã©ãŒãã³ã¹ãå€§å¹ ã«åäžããŸããã ã¢ããŒãªã³ã°æ¹æ³ã¯ãé床ã®åäžãé€ããŠãåã®èšäºãšåããŸãŸã§ãã èªè ã®zartdinovã«ãé床ãäžããããã®ã·ã³ãã«ã§éåžžã«å¹æçãªææ¡ãããããšãã
次ã«ãOliver30ãEli51ãEli101ãªã©ã®æ¢ç¥ã®åº§æšäžã®ã¿ã¹ã¯ãæ¯èŒããŸããæé©ãªãœãªã¥ãŒã·ã§ã³ãèŠã€ãããŸããã ãŸãã2ã€ã®ã¢ã«ãŽãªãºã ã®éœåžæ°ã«å¯ŸããæéäŸåæ§ã®è¿äŒŒåŒãå°ãåºããæåŸã«ãããããã¹ãŠã®èŠå ãèæ ®ããŠãä»æ¥ã®åè ã決å®ããããšããŸãã
Oliver30ãã£ã¬ã³ãžããå§ããŸããããæé«ã®ãœãªã¥ãŒã·ã§ã³-423.7406
ACSãã©ã¡ãŒã¿ãŒïŒ
- å埩æ°ïŒäžä»£ïŒ-2500 *
- äžä»£å ã®ã¢ãªã®æ°ã¯7ã§ã*
- éœåžã®æ°-30 *
- ã¢ã«ãã¡ïŒä¿æ°ããã§ãã¢ã³ã®æ¹åïŒ-1
- ããŒã¿ïŒçµè·¯é·ã®æ¹åä¿æ°ïŒ-2
- pïŒããŒã«ã«æŽæ°ãã§ãã¢ã³ä¿æ°ïŒ-0.09
- eïŒã°ããŒãã«æŽæ°ãã§ãã¢ã³ä¿æ°ïŒ-0.09
- qïŒæãé åçãªéœåžãéžæããä¿æ°ïŒ-0.9
- ã¢ãªã®åæäœçœ®-ã©ã³ãã
*-ã¿ã¹ã¯ã®ãã£ã¡ã³ã·ã§ã³ããã®å€æ°ãã©ã¡ãŒã¿ãŒ
ã¢ãªã®æ°ã«ã€ããŠäžèšã ã¢ãªãå€ããã°å€ãã»ã©è¯ããšä¿¡ããã®ã¯ééãã§ãã ã³ãããŒå ã«å€æ°ã®ã¢ãªããããšãçç£æ§ãèããäœäžããŸãã ãŸããã¢ã«ãŽãªãºã ã®å®è¡æéãå€§å¹ ã«å¢å ããŸãã 第äºã«ãéå°ãªãã§ãã¢ã³ãååšãããããã¢ãªã®æ»ã®èŒªãšåŒã°ããèªç¶ç°å¢ã§ã®é¡æšã«ã€ãªãããŸãã ãããã£ãŠãã¢ã«ãŽãªãºã ã¯ããŒã«ã«ã®æé©ãªç¶æ ã«çãŸããŸãã
ã³ãããŒå ã®ã¢ãªã®æ°ã®æ£ç¢ºãªæ±ºå®ã¯ãŸã ãããŸãã; [1]ã®ãããªè¿äŒŒèšç®ããããŸãã ããã«ãã¢ãªã®æ°ãå¢ãããŠã解ãæ¹åãããªãæé©ãªãã€ã³ããèŠã€ããããšããŸãããããããã®æžå°ã¯çµæãæžå°ãããŸããã ãŸããåçŽåãããå Žåãç¹å®ã®å埩ã§ã¢ãªã®1ã€ã®ã³ãããŒãå®éšããŸããã å¹³åãã§ãã¢ã³ã¬ãã«ãäžæãå§ãããšããã«ããããã¢ãªã®æé©ãªæ°ã®åºç€ãšããŸããã
Oliver30ã¿ã¹ã¯ã®çµæïŒ
ããã€ãã®ã°ã©ãïŒ
4çªç®ã®ã°ã©ãã¯ãã¢ã«ãŽãªãºã ãããã§åæ¢ããã®ã§ã¯ãªããå¥ã®æ¹æ³ãæ¢ãç¶ããŠããããšã瀺ããŠããŸãã ã¢ãªã®æ°ã50ã100ã«å¢å ãããšãå¹³åçæè·é¢ã®åºããã¯20ã30ã®ç¯å²ã§æžå°ãããžã£ã ãçºçããŸãã
察称巡åã»ãŒã«ã¹ãã³åé¡ã®ãªãã·ã§ã³ã®å®å šãªåæã¯ãïŒn-1ïŒïŒ/ 2ãŸãã¯
ãã®ã¿ã¹ã¯ã«ã¯4 420880996 869850 977 271 808 000 000
100ïŒ ã®çµæãåªããACSããã©ãŒãã³ã¹
ã¢ããŒãªã³ã°æ¹æ³ãèŠãŠã¿ãŸãããã
ãã©ã¡ãŒã¿ïŒ
- éœåžã®æ°-30 *
- åæ枩床-35,000 *
- æçµæž©åºŠ-0.1
- 枩床åŒ-åæ枩床/ kåç®ã®å埩
- å埩åæ°-350 000 *
- åå ¥ç¢ºçé¢æ°-expïŒ-ÎE/ TïŒ
- æœåšçãªã«ãŒãïŒçæãã¡ããªïŒã®æ±ºå®-ãã¯ãã«ã®äžéšïŒçŸåšã®ã«ãŒãïŒã¯ãäžæ§ååžã«ãã£ãŠã©ã³ãã ã«éžæããã2ã€ã®çªå·ããå€æãããŸãã
*-ã¿ã¹ã¯ã®ãã£ã¡ã³ã·ã§ã³ããã®å€æ°ãã©ã¡ãŒã¿ãŒ
çµæïŒ
30éœåžã®æéãšå質ã®äž¡æ¹ã§ãACSã¯å€§ããªå·®ã§åã¡ãŸããã ãã®ã¿ã¹ã¯ã ãã§ãªããä»ã®30ã§ã2ã€ã®ã¢ã«ãŽãªãºã ããã¹ãããŸãã-ACSã¯ç¢ºãã«åçŽãªã¢ããŒãªã³ã°ã¡ãœãããç¡å¹ã«ããŸãã
çŸåšãã¿ã¹ã¯ã¯51éœåžã®Eil51ã«ãããæé©ãªãœãªã¥ãŒã·ã§ã³ã¯426ã7000å埩ãã¢ãªã®æ°9ã§ã
ããã€ãã®ã°ã©ãïŒ
4çªç®ã®ãã£ãŒãã«ã¯ãååž°çŽç·ãè¿œå ãããŠããŸãã äžè¬ã«ãå€ãã®å€åœã®ç 究ã«ãããEil51åé¡ã¯ãã¯ããã«å€ãã®å埩ã§ãã¹ããããŸããã å€åãããã°ããŒãã«æé©ãèŠã€ãããªãã£ãçç±ãããããŸãããççŽã«èšã£ãŠãç§ã¯ããã倧èŠæš¡ãªå埩ã§ãã¹ãããèŠã€ãã£ãæ倧å€ã¯427ã§ãã
ãã®æ©äŒã«ãå埩åæ°ããã®ãã§ãã¢ã³ã®å€åãããªã¢ã«ã¢ãŒããã§èŠãŠã¿ãŸããããç§ã¯ãã®åçããšãŠãæ°ã«å ¥ããŸããã
ã°ããŒãã«ãªæŽæ°ãªãã§ãASã®ãããªå ±éã®èžçºä¿æ°ãè¿œå ãããšããã倧ããªå¹æãåŸãããŸãã
2,500,000åã®ç¹°ãè¿ãã§ã®ã¢ããŒãªã³ã°æ¹æ³ãèŠã
ããªãè¯ãçµæã§ããããŸã ACSã¯ãŸã æ¥ãŠããŸããã
Eil101ã¿ã¹ã¯ã¯101ã®éœåžã«å¯Ÿå¿ããæé©ãªè·é¢ã¯629ã9000åã®å埩ãã¢ãªã®æ°11ã§ãã
ããã€ãã®ã°ã©ãïŒ
ããã§ã100åç®ã®ã¿ã¹ã¯ã§ã¯9,000åã®å埩ãããªãå°ãããªã£ãŠããŸããããã®çµæã7,000,000åã®å埩ã§åãæéééã§ã®ã¢ããŒãªã³ã°ãšæ¯èŒããŸãã
ACSã瀺ãããããããªãå®å®ããçµæã ããããACSã䜿çšãããšãæ€çŽ¢ãåŸæ¥ã®ã¢ããŒãªã³ã°ããã管çããããããããšãã§ããŸãïŒåŸè ã§ã¯ãå°ãªããšãåæ¢æ¡ä»¶ãå°å ¥ã§ããŸããã次ã®èšäºã§ã¯ããã«è©³ãã説æããŸãïŒã ãã®ãããACSã¯çŸåšãããããç¹ã§æ倧100ã®ããŒã¯ãç²åŸããŠããŸãã ããã«ãACSã³ãŒããæé©åããããšã¯äŸç¶ãšããŠå¯èœã§ãããã¢ããŒãªã³ã°æ¹æ³ãããã«é«éåããããšã¯äžå¯èœã§ãã ïŒãã®å Žåãã³ãŒãã®æé©åã¯äžååã§ãïŒã
ACSã®ã¡ã€ã³ãã©ã¹ïŒããã³antã¢ã«ãŽãªãºã ã®ä»ã®ä¿®æ£ïŒãç¹°ãè¿ããŸããç¡éã®å埩åæ°ã§ã°ããŒãã«ãªæé©å€ãæ€çŽ¢ããå Žåãã°ããŒãã«ãèŠã€ãã確çã¯1ã«ãªãåŸåããããŸãããã¡ããåé¡ã¯æéå ã§ãã è¿ éã«ããããããããããŸãã¯é·ããã確ãã«ã ãã®ãããéœåžã®æ°ã«å¯Ÿããæéã®äŸåæ§ïŒåã¢ã«ãŽãªãºã ã§åãå埩åæ°ïŒãæ§ç¯ããããšãææ¡ããŸãã
ACSã®å埩åæ°-10 000ãã¢ãª-10ã
SAã®å埩åæ°ã¯7,000,000ã§ãã
ããïŒ ã¢ããŒãªã³ã°æ³ã¯ãé ç¹ã®æ°ã«é¢ä¿ãªãäžå®ã®æéããããããšãããããŸãã ååž°ãæ§ç¯ããããšã«ãããACSã®æéã®è€éããå€æããŸãã
t = 0.0044939x ^ 2 + 0.72097x + 3.8225ïŒåŒ4ïŒ
ããã§ãxã¯éœåžã®æ°ãtã¯ACSã©ã³ã¿ã€ã ã§ã
æ倧100åã®é ç¹ãæã€2ã€ã®ã¢ã«ãŽãªãºã ãæéãšå質ã®äž¡æ¹ã«ã»ãŒå¹æµããå ŽåïŒACSããããã«äžåãïŒã1000ã®éœåžã§ã¯ACSã§10,000åãSAã§7,000,000åã®å埩ãã»ãŒé€å€ãããŸãã䌌ãŠããã¯ãã§ãã
ã芧ãã ããã
ACS 200éœåžïŒã©ã³ãã ãªéœåžïŒãæé-311.54ç§ã
SA 200éœåžïŒäžèšãšåãïŒãæé103.19ç§ã
é 次起åããŸãã äž¡æ¹ãåãçµæã瀺ãå¯èœæ§ã¯ã©ã®ãããã§ããïŒ ãããããç¬éãåºãŸããããããã100åã®1ãäžèŽããã®ã§ããããïŒ ããããããªããç§ããããããç¥ããªãã§ãããïŒ
äžè¬ã«ãäžé£ã®ãã¹ããããã³300ã®é ç¹ã§ãã»ãŒåãçµæãåŸããããã©ã¹ãè¶ ãããšã¢ããŒãªã³ã°æ¹æ³ã¯ãªããªããŸãã
å¶éæéã100ãè¶ ããé ç¹æ°ã®å ŽåãåçŽãªã¢ããŒãªã³ã°æ¹æ³ã¯ACSãããåªããŠããŸãã ç¹°ãè¿ããŸãããMMASãACSããŒã«ã«æ€çŽ¢ããŸãã¯ãã®ä»ã®å€æŽã§ã¯ãªãACSã§ãã
ããããã°ããŒãã«ãªæé©åãèŠã€ããå¿ èŠãããå ŽåããããAntã¢ã«ãŽãªãºã ãšç«¶åã§ãã人ã¯ã»ãšãã©ããŸããã
次ã«ãã·ãã¥ã¬ãŒãããã¢ããŒãªã³ã°æ³ã®é«éåã«ã€ããŠããã€ã説æããŸãã
èªè ãdaiver19ãææ¡ããããã« ããã¡ãããåå埩ã§ã«ãŒããã«ãŠã³ãããªãã§ãã ããã
æ¡ä»¶ä»ãã«ãŒãããããŸãïŒ
1 2 3 4 5 6 7 8 9
2ã€ã®æ°åãã©ã³ãã ã«éžæãããŸããïŒ2.5ïŒ
ããã§ãè·é¢ïŒ1,2ïŒãšïŒ5,6ïŒãèšç®ããè·é¢ïŒ1,5ïŒãšïŒ2,6ïŒãèšç®ããã ãã§ååã§ãã
ãã ããé察称ã®åé¡ã§ã¯ãããã¯æ©èœããŸããã
ããã«ãããéœåžã®æ°ã¯ã¢ã«ãŽãªãºã ã®å®è¡æéã«åœ±é¿ãäžãããããã«ããªãã®æéãèŠããfliplré¢æ°ãåé€ãããŸããã ä¹±æ°ã®é åãäºåã«äœæãããŸããã ããã«ãããåã®èšäºã§ã¢ã«ãŽãªãºã ã®é床ãå€§å¹ ã«åäžããŸããã
ãŸããèªè ã®1人ã¯ã2ã€ã®é ç¹éã®ãã¹ãå転ããã®ã§ã¯ãªãã2ã€ã®é ç¹ãåé 眮ãããšãã®çµæã«èå³ãæã£ãŠããŸãã 1,000,000åã®å埩ã§ãEil101ã®101éœåžã§çµæãèŠãŠã¿ãŸãããã
ãã¹ã®å転ã¯ã¯ããã«åªããŠããŸãã
ä»ã®å€ãã®ããšãèŠããŠäŒããããšæããŸãããããã§ãèšäºã¯ããªãé·ãã§ãã 次ã®åºçç©ã§ã¯ãã¢ããŒãªã³ã°æ¹æ³ããããããããã管çãããããã®ã«ããŠããŸãã ãŸããantã¢ã«ãŽãªãºã ã®ä»ã®ä¿®æ£ãæ€èšããããå°ãæ·±ãæãäžããŠãããéºäŒåŠã«é²ãããšãã§ããŸãã
ããã§ãç¡æ¡ä»¶ã®ãªãŒããŒïŒãããŸã§æ倧100åã®ããŒã¯ïŒãã©ã®ããã«ã°ããŒãã«ãªããè¯ããã¹ã«åãã£ãŠãããã確èªããããšãææ¡ããŸãã
ãŸããæéã®ãªãŒããŒãšSAã®é ç¹ã®æ°ã調ã¹ãããšãææ¡ããŸããããã«ããã34ç§ã§4,000,000åã®å埩ã§1000ã®é ç¹ã®è¿äŒŒè§£ãåŸãããŸãã ååã®èšäºã§500é ç¹ã®2,000,000åã®å埩ã90ç§ã ã£ãå Žåã14.6ã«ãªããŸããïŒ
ãã®ãããªãã®ã ã³ã¡ã³ãä»ãã®ãœãŒã¹ã ã³ãŒãã®èªã¿ããããšé床ã®ãã©ã³ã¹ãç¶æããããšããŸããã MatLabãåããŠäœ¿çšãã人ã§ããã¢ã«ãŽãªãºã ã®æ¬è³ªãç解ããã®ã«éåžžã«åœ¹ç«ã€ã®ã§ããããã«ç®ãéãããšããå§ãããŸãã
ã·ãã¥ã¬ãŒãããã¢ããŒãªã³ã°ã ã³ã¡ã³ãä»ãã®å®å
šãªã³ãŒã
% ( ) %-------------------------------------------------------------------------- tic % clearvars -except cities clearvars % ----------------------------------------------------------------- % - m = 1000000; % ---------------------------------------------------------------- % Tstart = 100000; % Tend = 0.1; % T = Tstart; % S = inf; % n = 500; % ? g = 1; % ------------------------------------------------------------------- % dist = zeros(n,n); % ------------------------------------------------------------------------- % (x,y) cities = rand(n,2)*100; % RANDONE = rand(m,1); % D = randi(n,m,2); % ROUTE = randperm(n); % for i = 1:n for j = 1:n % dist ( ) dist(i,j) = sqrt((cities(i,1) - cities(j,1))^2 + ... (cities(i,2) - cities(j,2))^2); end end % , - for k = 1:m % Sp = 0; % , ROUTEp - % % ROUTEp = ROUTE; % transp = D(k,[1,2]); % , . if transp(1) < transp(2) if transp(1) ~= 1 && transp(2) ~= n S = dist(ROUTE(transp(1)-1),ROUTE(transp(1))) + ... dist(ROUTE(transp(2)),ROUTE(transp(2)+1)); elseif transp(1) ~= 1 && transp(2) == n S = dist(ROUTE(transp(1)-1),ROUTE(transp(1))) + ... dist(ROUTE(transp(2)),ROUTE(1)); elseif transp(1) == 1 && transp(2) ~= n S = dist(ROUTE(end),ROUTE(transp(1))) + ... dist(ROUTE(transp(2)),ROUTE(transp(2)+1)); end else if transp(2) ~= 1 && transp(1) ~= n S = dist(ROUTE(transp(2)-1),ROUTE(transp(2))) + ... dist(ROUTE(transp(1)),ROUTE(transp(1)+1)); elseif transp(2) ~= 1 && transp(1) == n S = dist(ROUTE(transp(2)-1),ROUTE(transp(2))) + ... dist(ROUTE(transp(1)),ROUTE(1)); elseif transp(2) == 1 && transp(1) ~= n S = dist(ROUTE(end),ROUTE(transp(2))) + ... dist(ROUTE(transp(1)),ROUTE(transp(1)+1)); end end %------------------------------------------------------------------------- if transp(1) < transp(2) ROUTEp(transp(1):transp(2)) = ROUTEp(transp(2):-1:transp(1)); if transp(1) ~= 1 && transp(2) ~= n Sp = dist(ROUTEp(transp(1)-1),ROUTEp(transp(1))) + ... dist(ROUTEp(transp(2)),ROUTEp(transp(2)+1)); elseif transp(1) ~= 1 && transp(2) == n Sp = dist(ROUTEp(transp(1)-1),ROUTEp(transp(1))) + ... dist(ROUTEp(transp(2)),ROUTEp(1)); elseif transp(1) == 1 && transp(2) ~= n Sp = dist(ROUTEp(end),ROUTEp(transp(1))) + ... dist(ROUTEp(transp(2)),ROUTEp(transp(2)+1)); end else ROUTEp(transp(2):transp(1)) = ROUTEp(transp(1):-1:transp(2)); if transp(2) ~= 1 && transp(1) ~= n Sp = dist(ROUTEp(transp(2)-1),ROUTEp(transp(2))) + ... dist(ROUTEp(transp(1)),ROUTEp(transp(1)+1)); elseif transp(2) ~= 1 && transp(1) == n Sp = dist(ROUTEp(transp(2)-1),ROUTEp(transp(2))) + ... dist(ROUTEp(transp(1)),ROUTEp(1)); elseif transp(2) == 1 && transp(1) ~= n Sp = dist(ROUTEp(end),ROUTEp(transp(2))) + ... dist(ROUTEp(transp(1)),ROUTEp(transp(1)+1)); end end %-------------------------------------------------------------------------- if Sp < S ROUTE = ROUTEp; iter = k; else % P = exp((-(Sp - S)) / T); if RANDONE(k) <= P ROUTE = ROUTEp; end end % T = Tstart / k; % if T < Tend break; end; end % citiesOP(:,[1,2]) = cities(ROUTE(:),[1,2]); plot([citiesOP(:,1);citiesOP(1,1)],[citiesOP(:,2);citiesOP(1,2)],'-r.') msgbox ('!') % clearvars -except cities ROUTE S iter % toc
Antã¢ã«ãŽãªãºã ã ã³ã¡ã³ãä»ãã®å®å
šãªã³ãŒã
% ( ) % ------------------------------------------------------------------------- tic % clearvars -except cities clearvars % ----------------------------------------------------------------- % - ( ) age = 2000; % - countage = 10; % - n = 50; % ----------------------------------------------------------------- % - , 0 % a = 1; % - , 0 % b = 2; % , e = 0.1; % , p = 0.1; % Q = 1; % AS q = 0.9; % ph = Q/(n*2000); % ------------------------------------------------------------------- % dist = zeros(n,n); % returndist = zeros(n,n); % ROUTEant = zeros(countage,n); % DISTant = zeros(countage,1); % bestDistVec = zeros(age,1); % bestDIST = inf; % ROUTE = zeros(1,n+1); % ( ) RANDperm = randperm(n); % P = zeros(1,n); % val = zeros(1); % getcity = zeros(1); % indexP = zeros(1); % minDISTiterration = zeros(1); % ------------------------------------------------------------------------- % (x,y) cities = rand(n,2)*100; % tao = ph*(ones(n,n)); tao(logical(eye(size(tao)))) = 0; % for i = 1:n for j = 1:n % dist ( ) dist(i,j) = sqrt((cities(i,1) - cities(j,1))^2 + ... (cities(i,2) - cities(j,2))^2); % nn ( ) if i ~= j returndist(i,j) = 1/sqrt((cities(i,1) - cities(j,1))^2 + ... (cities(i,2) - cities(j,2))^2); end end end % for iterration = 1:age % ( ) for k = 1:countage % ****************** ****************** % % ROUTEant(k,1) = randi([1 n]); % ( ), - % - % ROUTEant(k,1) = RANDperm(k); % 1- % ROUTEant(k,1) = 1; % , % , , % % if iterration == 1 % ROUTEant(k,1) = randi([1 n]); % % ROUTEant(k,1) = RANDperm(k); % % ROUTEant(k,1) = 1; % else % ROUTEant(k,1) = lastROUTEant(k); % end % ********************************************************************* % , , for s = 2:n % ir = ROUTEant(k,s-1); % ( ) , % : tao^a*(1/S)^b % 1/S - returndist. % (- * % * - ) , , % . % . : % for c = 1:n % P(1,c) = tao(ir,c).^a * returndist(ir,c).^b; % end P = tao(ir,:).^a .* returndist(ir,:).^b; % ( k- ) % n , , % % , , % 0, % P(ROUTEant(k,1:s-1)) = 0; % RANDONE = rand; if RANDONE <= q [val, getcity] = max(P); else % ( = 1 ) P = P ./ sum(P); getcity = find(cumsum(P) >= RANDONE, 1, 'first'); end % s- k- ROUTEant(k,s) = getcity; end % k- ROUTE = [ROUTEant(k,1:end),ROUTEant(k,1)]; % S = 0; % k- for i = 1:n S = S + dist(ROUTE(i),ROUTE(i+1)); end % k- , k- age- DISTant(k) = S; % S if DISTant(k) < bestDIST bestDIST = DISTant(k); bestROUTE = ROUTEant(k,[1:end,1]); iter = iterration; end % "" k- ( % , % ) % lastROUTEant = ROUTEant(1:end,end); % , for tL = 1:n xL = ROUTE(tL); yL = ROUTE(tL+1); % tao(xL,yL) = (1-p)*tao(xL,yL) + p*ph; tao(yL,xL) = (1-p)*tao(yL,xL) + p*ph; end end % -------------------------- -------------------------- % "" - tao(tao < 2.500000000000000e-150) = 2.500000000000000e-150; % for t = 1:n xG = bestROUTE(t); yG = bestROUTE(t+1); % tao(xG,yG) = tao(xG,yG) + e*(Q/bestDIST); tao(yG,xG) = tao(yG,xG) + e*(Q/bestDIST); end end % citiesOP(:,[1,2]) = cities(bestROUTE(:),[1,2]); plot([citiesOP(:,1);citiesOP(1,1)],[citiesOP(:,2);citiesOP(1,2)],'.r-') disp (num2str(bestDIST)) msgbox ('!') clearvars -except cities bestDIST bestROUTE iter toc
ãæž èŽããããšãããããŸããã ãŸãäŒããŸã§ã
å€åœã®èè ã®èšäºïŒ
[1]-M.ããªãŽãLMã¬ã³ãã«ãã©ãã¢ã³ãã³ãããŒã·ã¹ãã ïŒå·¡åã»ãŒã«ã¹ãã³åé¡ãžã®å調åŠç¿ã¢ãããŒã//é²åçèšç®ã«é¢ããIEEEãã©ã³ã¶ã¯ã·ã§ã³Volã 1ã1ãppã53-66ã1997ã
[2] T.StÃŒtzleãHãHoosããMAX-MIN Antã·ã¹ãã ãšå·¡åã»ãŒã«ã¹ãã³åé¡ã®ããŒã«ã«æ€çŽ¢ã// IEEEåœéäŒè°é²åèšç®ãppã309-314ã1997幎ã
[3] T.StÃŒtzleãMãLópez-IbáñezãPãPellegriniãMãMaurãMãde OcaãMãBirattariãMichael MaurãMãDorigoãããã©ã¡ãŒã¿é©å¿ã«ãããã¢ãªã³ãããŒæé©åã//ãã¯ãã«ã«ã¬ããŒããã€ãªãã£ã¢ãLibre de Bruxelles倧åŠã2010