ã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã®ãæ¬ãæžããâãŠã«ãã©ã ã®èšèªãæããããã« ã翻蚳åŸã
Kirill Guzenkoã«æè¬ããŸãã
ãWolframèšèªå ¥éããšããæ¬ã¯ã ããŒãã³ã㌠ã ç¡æã®ãªã³ã©ã€ã³ ã ãã®ä»ã®åœ¢åŒã§å©çšã§ããŸãã
ãã€ãå¥ã®æ¬ãæžããã©ããããããŸããã§ããã ç§ã®ææ°ã®æ¬-A New Kind of Science-㯠ã10幎以äžã«ãããéäžçãªç 究ã«è²»ããããã®ã§ããããŸã§è¡ã£ããã¹ãŠã®äžã§æ倧ã®ãããžã§ã¯ãã§ãã
ããããå°ãåã«å¥ã®æ¬ãæžãå¿ èŠãããããšã«æ°ã¥ããŸãã-ããã°ã©ãã³ã°ã«ç²ŸéããŠããªã人ã玹ä»ããæ¬ã§ã Wolframèšèªãšãã®èšèªãæ瀺ããã³ã³ãã¥ãŒãã£ã³ã°åéã®èãæ¹ã玹ä»ããæ¬ã§ãã
ãã®çµæããä»æ¥åºçãããŠããåçŽWolframèšèªã®æ¬ã§ãã ãŸããã€ã³ã¿ãŒããããä»ã®åœ¢åŒã§ãèªç±ã«å©çšã§ããŸã ã
ãã®æ¬ã®ç®çã¯ããŒããã人ã ãå°ããŠãWolframèšèªã«ã€ããŠååã«ç¥ã£ãŠããããå®æçã«äœ¿ã£ãŠããããããšãã¹ãŠã®ããã®ããã°ã©ã ãäœæã§ããããã«ããããšã§ãã ãããŠãããŒãããšèšããšããç§ã¯æ¬åœã«ããŒãããæå³ããŸãã ãã®æ¬ã¯çã®ããã§ãã ããã°ã©ãã³ã°ãæ°åŠïŒç®è¡ã®åºæ¬ãé€ãïŒããŸãã¯ãã®ä»ã®åéã®ç¥èãæå³ãããã®ã§ã¯ãããŸããã 圌女ã¯æåãããªãŒãããããŸããŸãªããšã説æããŠããŸãã ç§ã¯ããã倧人ãšåäŸã®äž¡æ¹ã«é©ãããã®ã«ããããšããŸããã 12æ³ä»¥äžã®æ®éã®åäŸã«ã¯ãšãŠãé©ããŠãããšæããŸãã
éå»ã«ã¯ããã®ãããªæ¬ã®ååšã¯äžå¯èœã§ããã ãã®å®è£ ã«å¿ èŠãªæè¡ã¯ãŸã ååšããŠããŸããã§ããã çé¢ç®ãªããã°ã©ãã³ã°ã¯åžžã«å€§å€ãªäœæ¥ã§ãããå®éã®æŠå¿µãšçµã³ã€ããè¯ãæ¹æ³ã¯ãããŸããã ããããä»ã§ã¯WolframèšèªããããŸãã ãã®äœæã«ã¯30幎ããããŸããã ããããçŸåšã§ã¯ååãªéã®çµã¿èŸŒã¿ã®ç¥èãå«ãŸããŠãããããã°ã©ãã³ã°ããã»ã¹ã¯ååã«èªååãããŠãããç¥èã®ãªã人ããèšç®å¯èœãªäººã®å¢çã«äººãå°ãããšãã§ããŸãã
ãããããããè¡ãæ¹æ³ã¯ïŒ äœãã©ã®é çªã§èª¬æããå¿ èŠããããŸããïŒ ãã®æ¬ãæžãããšã«ãªã£ãåé¡ããããŸããã å°ãåã«ã ããã°ã©ããŒåãã®ç°¡åãªçŽ¹ä»ãæžããŸããã30ããŒãžã»ã©ã§ãWolframèšèªã®åºæ¬çãªã¢ã€ãã¢ããã§ã«ããã°ã©ãã³ã°ã«æ £ããŠãã人ã ã«çŽ¹ä»ããŠããŸãã ããããããã°ã©ãã³ã°ã«ã€ããŠäœãç¥ããªã人ã¯ã©ãã§ããããïŒ
é·å¹Žã«ããããç§ã¯ãããã®äººã ã«çŸåšã®Wolframèšèªãäœã§ãããã瀺ãæ§ã ãªæ¹æ³ãèŠã€ããŠããŸããã ããã§ãç§ã¯ãã®çµéšã§äœãããå¿ èŠããããããã®æ¬ã§èª¬æããŸããã
ããã¯å¯Ÿè©±ã§ã
æ¬è³ªçã«ããã®æ¬ã¯èªè ãšã³ã³ãã¥ãŒã¿ãŒã®éã®äŒè©±ã§ãã Wolframèšèªã«ã¯ããã¹ãŠãæ£åžžã«æ©èœããããã«ãã2ã€ã®éèŠãªããšããããŸãã ãŸããèšèªã¯ã·ã³ããªãã¯ã§ããããã color ã image ã graphãªã©ã åŠçãããã¹ãŠã®ãã®ããã€ã¢ãã°ããã¯ã¹ã«è¡šç€ºã§ããŸãã ãããŠç¬¬äºã«ãèšèªã¯çŽç²ã«æ©èœçã§ããããããã®äžã®ãã¹ãŠãå®å®ããŠãããå ¥åã¯ãã¹ãŠèªçµŠèªè¶³ã®æ§é ã«ãªããŸãã
ãŸããWolframèšèªã«çµã¿èŸŒã¿ã®ç¥èãå«ãŸããŠããããšãéåžžã«éèŠã§ããããã«ãããå®éã®èšç®ãããã«éå§ã§ããŸãã
èŠèŠåãåæ§ã«éèŠã§ã-ãããã£ãŠãäœãèšç®ãããããç°¡åã«ç¢ºèªã§ããŸãã
ã©ãããå§ããŸããïŒ
ã§ã¯ãã©ãããå§ããŸããïŒ ç®è¡ã«é¢ããæ¬ã®æåã®ããŒãž -çµå±ã®ãšãããããã¯èª°ã§ãèšç®ã®ä»çµã¿ãèŠãããšãã§ããé åã§ãïŒ
Wolframèšèªã®ã åèª ãã®äžéšãç解ããã®ã«åœ¹ç«ã€èŸæž ïŒèªåœïŒãšåŒã°ããã»ã¯ã·ã§ã³ããããŸãã ãŸãã æŒç¿ ïŒæŒç¿ïŒããããŸãã
ããŠãç®è¡ã¯çµãããŸããã次ã¯ã©ãã«è¡ããŸããïŒ ç§ã¯é¢æ°ã®è¡šçŸã«çŽè¡ããç®è¡æŠå¿µãéããŠãããã玹ä»ããããšã«ããŸããã ãã©ã¹ã¯ãé¢æ°ã®æŠå¿µã¯èªè ã«ãšã£ãŠã¯æ°ãããããããŸããããããããå®è¡ããæäœïŒç®è¡æŒç®ïŒã¯ãã§ã«ããç¥ãããŠããããšã§ãã
Plusé¢æ°ãæããã«ãªããšããã«ãç¹å¥ãªçŽ¹ä»ãå¿ èŠãšããªãMaxãªã©ã®é¢æ°ã«ããã«åãæ¿ããããšãã§ããŸãã Maxé¢æ°ã¯ç¹ã«èå³æ·±ãããšã¯äœãããŸããã 次ã«çŽ¹ä»ããããèå³æ·±ãæ©èœã¯RandomIntegerã§ã ãããã¯ã人ã ãäœåºŠãäœåºŠã䜿çšããŠããããäžãããã®ã確èªããã®ã奜ãã§ãã
ããã§ã¯ã次ã¯äœã§ããïŒ çãã¯æããã§ã-ãªã¹ããå ¥åããå¿ èŠããããŸãã ãããããªã¹ããã©ããããïŒ ãããããèŠçŽ ãéžæããããšã¯ç¹ã«ãšããµã€ãã£ã³ã°ã§ã¯ãªãããã§ããããããéèŠã§ãããšããç解ã¯ããã«ã¯åŸãããŸããã ãããã£ãŠããªã¹ããæäœããããã®æåã®æ©èœã§ããListPlotãå°å ¥ããããšã«ããŸããã èŠèŠåããå§ããã®ã¯çŽ æŽãããããšã§ãããŸããããã¯ã»ãã®å°ããªã³ãŒããå ¥åããŠãæçµçã«ãã倧ãããŠèå³æ·±ããã®ã«ããæ¹æ³ã®è¯ãäŸã§ããããŸãã
å®éãæãåçŽãªäŸã®äžã§æãåªããŠããã®ã¯Rangeé¢æ°ã§ããããããããã§èª¬æããŸããã ç¯å²ã¯ãã³ã³ãã¥ãŒã¿ãŒãå®éã«äœããèšç®ããŠããããšã瀺ããç解ããããçµæãçæããçŽ æŽãããæ¹æ³ã§ãã
ããŠãä»ãç§ãã¡ã¯æ©èœãšãã®å ±åäœæ¥ã®ã¢ã€ãã¢ãçµ±åããå¿ èŠããããŸãã Reverseé¢æ°ã¯å®éã«ã¯ããŸãäžè¬çã§ã¯ãããŸããããç解ããã®ã¯éåžžã«ç°¡åã§ãã 次ã«ã Joiné¢æ°ã玹ä»ããŸãã
è¯ããã¥ãŒã¹ã¯ã Reverse ã Range ãããã³Joinã䜿çšãããš ãå®å šã«èªçµŠèªè¶³ã§ãããããŸããŸãªèšç®ãå®è¡ã§ããããçš®ã®ãã€ã¯ãèšèªãããããšã§ãã ãããŠããã¡ãããèšç®ãè¡ããšãã·ã³ããªãã¯ãŸãã¯ã°ã©ãã£ãã¯åœ¢åŒã§çµæãããã«èŠãããšãã§ããŸãã
次ã®ã»ã¯ã·ã§ã³ã§ã¯ã èŠèŠåãšãªã¹ãã®æäœã«ã€ããŠèª¬æããŸããããã«ãããåè¿°ã®å 容ãçµ±åãããå®éã«åœ¹ç«ã€ããŸããŸãªæ©èœã玹ä»ãããŸãã 次ã«ç¶ãã®ã¯Tableã§ãããã«ã¯ã«ãŒããªã©ã®äŸ¿å©ãªæ©èœãå«ãéåžžã«åŒ·åã§äžè¬çãªæ©èœããããŸãã
å埩åã®ãªãåçŽãªããŒãžã§ã³ã®Tableããå§ããŸãã Tableã¯æ°åã®ãªã¹ããšåãæ¹æ³ã§ã°ã©ãã£ãã¯èŠçŽ ã®ãªã¹ããè¡šçŸã§ããããšã¯åœç¶ã ãšæããŸãïŒãã¡ããããããã§ãããšããäºå®ã¯ãWolframèšèªã®æ ¹æ¬çã«è±¡åŸŽçãªæ§è³ªã®çµæã§ãïŒã
次ã®å€§ããªã¹ãããã¯ã Tableã«å€æ°ãå ¥åããããšã§ãã ç§ã¯ãããã©ã®ããã«è¡ããã«ã€ããŠå€ãã®ããšãèããçŽç²ã«è±¡åŸŽçãªããŒãžã§ã³ã§ãããæåã«ç€ºãããšãæåã§ãããšå€æããŸããã æåŸã«ãé¢æ°ãæ¢ã«çŽ¹ä»ããŸãããã·ã³ããªãã¯ããŒãžã§ã³ã§ã¯ãå€æ°ã®åºæãããã«ç¢ºèªã§ããŸãã ããããå€æ°ãå«ãããŒãã«ãå°å ¥ããã®ã§ãå€ã«åºãŠãããªã¢ã«ã³ã³ãã¥ãŒãã£ã³ã°ããšåŒã°ãããã®ãå®è¡ããããšãã§ããŸãã
æ¬ãžã®ã²ãŒããŠã§ã€
æ¬ã®æåã®æ°ã»ã¯ã·ã§ã³ã§ã¯ãèšç®ã®ææã¯äž»ã«æ°åãšãªã¹ãã§ããã ããã«ãèšç®ã«äœ¿çšã§ãããã®ãä»ã«ãããããšã瀺ããããšæããŸãã æåã®äŸã®ããã«ã è²ãéžæããŸããã ïŒaïŒèª°ããèªåã®ååšãç¥ã£ãŠãããïŒbïŒèšç®ãå®è¡ã§ãããïŒcïŒå©ããåããŠã«ã©ãã«ãªçµæãåŸãããšãã§ããïŒïŒïŒãããè²ã¯è¯ãéžæã§ãã
è²ãå®æãããã ã°ã©ãã£ãã¯ãªããžã§ã¯ãã«ç§»ããŸã ã 座æšã®æŠå¿µã¯å°å ¥ããªãã£ããããåã ã®ã°ã©ãã£ãã¯ãªããžã§ã¯ãã衚瀺ã§ããã®ã¯ããããã®äœçœ®ã«é¢ããæ å ±ãªãã§ãã
ãããŠã3次å ã®å³åœ¢ã«è§Šããªãçç±ã¯ãŸã£ãããããŸãããããã«ããããã«è§ŠããŸãã
ããã§ããé«åºŠãªãäœãã ã€ã³ã¿ã©ã¯ãã£ããªæäœã®æºåãã§ããŸããã æ§æã®ç¹ã§ã¯ã Tableãšå€ãã®é¡äŒŒç¹ããããŸãããããã§ã¯å®å šãªã€ã³ã¿ã©ã¯ãã£ããŠãŒã¶ãŒã€ã³ã¿ãŒãã§ã€ã¹ãåŸãããŸãã ãŸããã°ã©ãã£ãã¯ã¹ãå°å ¥ãããããã€ã³ã¿ãŒãã§ã€ã¹ã®äžéšã«ãªãå¯èœæ§ããããŸãã 人ã ã¯ãå€æ°ã®ç°ãªãããã°ã©ã ã§ã€ã³ã¿ã©ã¯ãã£ããªã€ã³ã¿ãŒãã§ãŒã¹ãèŠãŸããã ç§ã®çµéšã§ã¯ã圌ããèªåã§ãŒãããäœæããèœåã«éåžžã«æéãåããããšã瀺ããŠããŸãã
ãã®æ¬ã§æ¬¡ã«çŽ¹ä»ããã®ã¯ãããããé©ãã¹ãããšã§ãããç»ååŠçã§ãã ã¯ããç»ååŠçã®èåŸã«ã¯å€ãã®è€éãªèšç®ããããŸãã ããããWolframèšèªã§ã¯ããã¹ãŠãå éšã«é ãããŠããŸãã ãããŠã人ã ã¯Blur ã ColorNegateã®ãããªæ©èœãèŠãã ãã§ããã®ç®çã¯ç°¡åã«ç解ã§ããŸãã
ãŸãã人ã ãç¹ã«åäŸã¯ãå¿ èŠã«å¿ããŠç»åããã©ãã°ããã ãã§ç»åã䜿çšããŠèšç®ãå®è¡ã§ããããšã奚å±ããŠããŸãã å®éãããã¯å€§éã®ããŒã¿ãå€éšããããã°ã©ã ã«å ¥åãããæ¬ã®æåã®äŸã§ãïŒã»ã¯ã·ã§ã³ã®ãµã³ãã«ç»åãå¿ èŠã ã£ãã®ã§ããŠã§ãã«ã¡ã©ã§æ¬ã®äœæ¥ãããŸããïŒã
ããããç§ã¯è¡ãšããã¹ãã«ã€ããŠè©±ããŸããã æååæäœã¯éåžžã«éå±ã§ãã ããããWolframèšèªã«ã¯ããŠã£ãããã£ã¢ã®èšäºããåèªã®é²ãèŠèŠåããããããŸããŸãªèšèªã§äººæ°ã®ããåèªãæ€çŽ¢ãããã«é¢ä¿ãªããããªããã§ããå€ãã®èå³æ·±ãããšããããŸãã
次ã«ã é³ãšé³ç¬Šããã·ãŒã±ã³ã¹ãäœæããæ¹æ³ã«ã€ããŠèª¬æããŸããã ãã¡ãããå°å·ãããæ¬ã§ã¯ããããèãããšã¯ã§ããŸããããå°ããªã¢ã€ã³ã³ã¯ç§ãã¡ãäœãæ±ã£ãŠããã®ããããçšåºŠç€ºããŠããŸãã
ãã°ã©ãã£ãã¯ã®çŽåŸã«é³ã«è§Šããªãã®ã¯ãªãã§ããïŒããšå°ãããããããŸãããããŸã第äžã«ãèå³ãç¶æããããã«ããã€ãã®ããšãæ··ããããšãè¯ããšæããŸããã ãã ããç°ãªãé åã®éã«ã¯äŸåé¢ä¿ã®ç¹å®ã®ãã§ãŒã³ããããŸãã ããšãã°ãé³ç¬Šã®ååã¯æååãšããŠæå®ããããããæåã«æååã«èšåããå¿ èŠããããŸãã
以äžã¯ã é åããŸãã¯ãªã¹ãã®ãªã¹ãã§ãã ãã®åŸ- 座æšãšã°ã©ã ã ãŸãã座æšãããŸãã«ããæ°åŠçãªããã®ã§ããããšãå¿é ã§ããã ããããç¹ã«é åã調ã¹ãåŸã座æšã¯ãã¯ãéåžžã«è€éãªæŠå¿µã§ã¯ãªãããã§ãã ãŸãã2次å 座æšã®æŠå¿µãæ€èšããã®ã§ã3次å ã«ç§»è¡ããããšã¯é£ãããããŸããã
æ¬ã®ãã®æç¹ã§ã人ã ã¯ãã§ã«Wolframèšèªã§æ¬åœã«åœ¹ã«ç«ã€ããšãããæ¹æ³ãç¥ã£ãŠããŸãã ããã§æ¬¡ã®ã»ã¯ã·ã§ã³ã§ã¯ãããçš®ã®éå¥ããããããŸãã-ã¡ã¿ã»ã¯ã·ã§ã³ã®äžçš®ã§ã Wolframèšèªã®ããªã¥ãŒã ãç解ããç¹å®ã®ãããã¯ãæ©èœã«é¢ããæ å ±ãèŠã€ããæ¹æ³ã瀺ããŸãã
æœè±¡ã³ã³ãã¥ãŒãã£ã³ã°ãå°å ¥ããã®ã§ãä»åºŠã¯å®éã®ããŒã¿ã«ã€ããŠèª¬æããWolfram LanguageãWolfram | Alphaã§æ瀺ããèšå€§ãªéã®ããŒã¿ã«ã¢ã¯ã»ã¹ããæ¹æ³ã瀺ããŸãã
å€ãã®å®äžçã®ããŒã¿ã«ã¯ãŠããããå«ãŸããŠããããã次ã®ã»ã¯ã·ã§ã³ã§ã¯ãŠãããã®æäœã«ã€ããŠèª¬æããŸã ã ãããå®äºããã ãå°çèšç®ã»ã¯ã·ã§ã³ïŒå°çã«é¢é£ããèšç®ïŒã«è§ŠããŸããããšãã°ãå°çäžã®ãã€ã³ãéã®è·é¢ãæ€çŽ¢ããããããããæç»ãããã§ããŸãã
ãã®åŸã æ¥ä»ãšæéã«ã€ããŠã話ããŸã ã ããã¯ç¹ã«é¢çœããŠæçšãªãããã¯ã§ã¯ãªããšæãã§ãããã ããããããã¯å®éã«ã¯ãŠããã¿ã¹ãªå®éã®ã³ã³ãã¥ãŒãã£ã³ã°ã®éåžžã«è¯ãäŸã§ãã
Wolframèšèªã¯éåžžã«èšå€§ãªèšèªã§ãã ããããããã¯åžžã«äœåºŠãäœåºŠã䜿çšãããŠããå°æ°ã®ã¢ã€ãã¢ã«åºã¥ããŠããŸãã æ¬ã®æãéèŠãªã¿ã¹ã¯ã®1ã€ã¯ããããã®ã¢ã€ãã¢ãã«ããŒããããšã§ãã ãããŠæ¬¡ã®ã»ã¯ã·ã§ã³- ãªãã·ã§ã³ã«ã€ã㊠-ã¯ãå®éã«çµ¶ãéãªãçºçãã1ã€ã®ç°¡åãªã¢ã€ãã¢ãã«ããŒããŠããŸãã
ãªãã·ã§ã³ã®åŸãç§ãã¡ã¯ãã°ãã°è€éãªãããã¯ãšããŠèŠãããäœãã«ã€ããŠè©±ãæºåãã§ããŠããŸãïŒ ã°ã©ããšãããã¯ãŒã¯ ã ããããç§ã®çµéšã§ã¯ã人ã ã¯æ¥åžžç掻ã§ããªãå€ãã®ã°ã©ããšãããã¯ãŒã¯ã«çŽé¢ããŠãããããWolframèšèªã§ããããç解ããã®ã«å€§ããªåé¡ã¯ãªãããšã瀺ããŠããŸããããã¯ã·ã³ããªãã¯ãªããžã§ã¯ãã®å¥ã®äŸã§ãã
ã°ã©ããšãããã¯ãŒã¯ã«ç¶ããŠãäžèŠéåžžã«è€éãªãããã¯ã§ããæ©æ¢°åŠç¿ãéå§ããæºåãã§ããŸããã ããããå éšã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãè€éã§ãã£ãŠããWolframèšèªã§ãããå®è£ ããæ©èœèªäœã¯éåžžã«ç解ãããããã®ã§ãã ãããŠãçŽ æŽãããããšã¯ã圌ããšäžç·ã«å€ãã®äŸãæããããšã§ãæ©æ¢°åŠç¿ã®éèŠãªã¢ã€ãã¢ã®éåžžã«è¯ãçŽæçãªã¢ã€ãã¢ãåŸãããšãã§ãããšããããšã§ãã
æ¬ãéããŠãç§ã¯å¯èœãªéãåçŽãªæ¹æ³ã§ç©äºãæ瀺ããããšããŸãã ãã ããããã«ããããã§ã«åãäžãããããã¯ããã詳现ã«èª¿ã¹ãå¿ èŠãçããå ŽåããããŸãã ãæ°å€ã®è©³çŽ°ããšããã®ä»ã®èŠèŠåãã¯ãã®äºå®ã瀺ã2ã€ã®äŸã§ããããã§ã«ééããæŠå¿µã説æããŠããŸããããããã®é åãããå®å šã«ç解ããã«ã¯ãæ°ããã¬ãã«ã§ãããã«æ»ãå¿ èŠããããŸãã
é¢æ°åããã°ã©ãã³ã°
次ã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ã é¢æ°åããã°ã©ãã³ã°ã®éèŠãã€ä¿¡ããããªãã»ã©åŒ·åãªãããã¯ãæããã«ããŸã ã éå»ã«ãããŠãé¢æ°åããã°ã©ãã³ã°ã¯äžè¬çã«è€éãªãã®ãšèŠãªãããããã°ã©ãã³ã°ãç¿ãå§ããã°ããã®äººã ã«æãã䟡å€ã®ãããã®ã§ã¯ãããŸããã§ããã ããããWolframèšèªã¯ç¶æ³ãå€ãããšæããŸãããããŠä»ãã¯ããã«ç解ããããèšèªã§é¢æ°åããã°ã©ãã³ã°ã説æããããšãå¯èœã«ãªããŸããã é¢æ°ãé©çšããããã»ã¹ã«ã€ããŠã®æœè±¡çãªäŒè©±ããå§ããããšã«ããŸããã
ãŸãã çŽç²ãªå¿åé¢æ°ã«ã€ããŠã話ããããšæããŸã ã ååãšããŠããã£ãšæ©ã話ãããããšãã§ããŸããããã®åã«ãé¢æ°ãäžè¬çã«ã©ã®ããã«äœ¿çšããããã人ã ã«ç€ºãããšãéèŠã ãšæããŸãã
次ã®ã»ã¯ã·ã§ã³ã§ã¯ãé¢æ°åããã°ã©ãã³ã°ã®çã®åã®ããã€ãã®å åã«æ¢ã«æ°ã¥ãããšãã§ããŸãã äžè¬çã«ã NestListãNestGraphãªã©ã®é¢æ°ã¯ãããªãè€éã§æœè±¡çã«èŠãããããããŸããã ããããæ¬ã®ãã®æç¹ã§ã¯ãååãªæ°ã®Wolframèšèªæ§æäœã調ã¹ãã®ã§ãç°¡åã«èª¬æã§ããå€ãã®å ·äœçãªäŸããããŸãã
次ã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ãçŽç²ãªæ©èœãç解ãããšãã«éãããèšèªã®é åã«ã€ããŠèª¬æããŸãã å°ãªãã¢ã€ãã¢ããçãŸããå€ãã®åŒ·åãªããã°ã©ãã³ã°æ¹æ³ããããŸãã
é¢æ°åããã°ã©ãã³ã°ã®åŸã次ã®å€§ããªãããã¯ã¯ãã³ãã¬ãŒããšãã¿ãŒã³æåããã°ã©ãã³ã°ã§ãã 以åã«ãããã«ã€ããŠè©±ãããããšã¯ã§ããŸããããä»ã®ãšãããããã®å¿ èŠã¯ãããŸããã
Wolframèšèªã§ãã³ãã¬ãŒããéåžžã«åŒ·åã«ããåºæ¬çãªãã®ããããŸãïŒã·ã³ããªãã¯åŒã«åºã¥ããèšèªã®ãããããã®ã«å¯Ÿããåäžã®æ§é ã§ãã Wolframèšèªã®ä»æ§ãæžããããæååŒããå§ããŸãã ãããŠãçè«èšç®æ©ç§åŠãŸãã¯çŽç²æ°åŠã®å°é家åãã®æ¬ãæžãããªãã確ãã«åãããšãããã§ãããã
ã·ã³ããªãã¯åŒã¯ç解ãã«ããæŠå¿µã§ã¯ãããŸããã Wolframèšèªãå®éã«å®éã«ã©ã®ããã«æ©èœããããããããªãã ãã§ãçè«çåºç€ãç 究ããåæ©ä»ããé£ããã ããããä»ã§ã¯ãããã«ã€ããŠè©±ãããã®ãçã«ããªã£ãŠããŸããç¹ã«ããã³ãã¬ãŒãã䜿çšããŠãã®æ å ã®äœåããã¹ãŠèŠãããšãã§ããããã§ãã
ã¹ã¿ãã¯å šäœ
æ¬ã®ãã®æç¹ã§ãããšãã°Webã¢ããªã±ãŒã·ã§ã³ããããã€ããæ¹æ³ãæ€èšããæºåãã§ããŸããã ãããããã®åã«ãä»ã«èæ ®ãã¹ãããšããããŸãã åäŒã«ã€ããŠãããããèªç¶èšèªèªèã«ã€ããŠè©±ããŸãã å éšçã«ã¯ãèšèªèªèã·ã¹ãã ã¯éåžžã«è€éãªãã®ã§ãã ããããWolframèšèªã¬ãã«ã§ã¯èªèã¯äœ¿ããããã§ãããä»ã®äºæãšã©ã®ããã«é¢ä¿ããããèŠãããã«ã¯ãçŽç²ãªæ©èœã«ã€ããŠè©±ãå¿ èŠããããŸãã
ããŠãããã§ãã¹ãŠãã€ã³ã¿ãŒãããã§ã®å±éã«ã€ããŠè©±ãæºåãã§ããŸãã ã ãããŠçŸæç¹ã§ã¯ã人ã ã¯ãäžçãšå ±æã§ãã䟿å©ãªã¢ããªã±ãŒã·ã§ã³ãœãããŠã§ã¢æ§æãäœæããæ©äŒããããŸãã
ãã¹ãŠ220ããŒãžã»ã©ããããŸããã ããããç§ã«ãšã£ãŠã¯ãããã¯é©ãã»ã©å°æ°ã®ããŒãžã§ããããŒãããæåããWebã¢ããªã±ãŒã·ã§ã³éçºã®å°éåéã«é²ãããšãã§ããŸãã ç¹å®ã®çš®é¡ã®ã¢ããªã±ãŒã·ã§ã³ã«ã€ããŠã®ã¿èª¬æããå Žåãããã¯ããã»ã©å°è±¡çã§ã¯ãããŸããã ããããã»ãšãã©ãã¹ãŠã®çš®é¡ã®èšç®ãå®è¡ã§ããéåžžã«äžè¬çãªåœ¢åŒã®ã¢ããªã±ãŒã·ã§ã³ã«ã€ããŠè©±ããŠããŸãã
å€æ°ãžã®å€ã®å²ãåœãŠ
C ++ãJavaãªã©ã®åŸæ¥ã®ããã°ã©ãã³ã°èšèªã«é¢ããæ¬ãéããå Žåãæåã«åºããããããã¯ã®1ã€ã¯ãå€æ°ã«å€ãå²ãåœãŠãããšã§ãã ããããç§ã®æ¬ã§ã¯ã 38çªç®ã®ã»ã¯ã·ã§ã³ã§ã®ã¿ãã®ãããã¯ãåŒçšããŠããŸãã ããæå³ãããã¯å¥åŠã«æãããããããŸããããå®éã«ã¯ããã§ã¯ãããŸããã çµå±ã®ãšãããWolframèšèªã§ã¯ãå€æ°ã«å€ãå²ãåœãŠãããšãªãæ¬æ ŒçãªWebã¢ããªã±ãŒã·ã§ã³ããããã€ãããªã©ãé©ãã»ã©å€ãã®ããšãã§ããŸãã
ãããŠå®éããããWolframèšèªã®ç¿åŸãéåžžã«ç°¡åãªçç±ã®1ã€ã§ãã å®éãå€æ°ã«å€ãå²ãåœãŠãªãå Žåãåã³ãŒãã¯ç¬ç«ããåžžã«åãåäœã瀺ããŸãã ããããå€æ°ãžã®å€ã®å²ãåœãŠãéå§ãããšããã«ãé衚瀺ã®ç¶æ ã衚瀺ãããå€æ°ã®çŸåšã®å€ã«å¿ããŠã³ãŒããç°ãªãåŠçãå®è¡ããŸãã
ããã«ãããããããå€æ°ãšãã³ãã¬ãŒããžã®å€ã®å²ãåœãŠã«ã€ããŠè©±ãåã£ããšããWolframèšèªã§ãŸããŸãè€éãªæ©èœãå°å ¥ã§ããç¬èªã®é¢æ°ã®å®çŸ©ã«ç§»ãæºåãã§ããŠããŸãã
ãã®æç¹ã§ãèªè ã¯Wolframèšèªã®çšèªãšåºæ¬æŠå¿µã«ã€ããŠå®å šã«ã¬ã€ããããŠããŸãã ããããæ¬ã®æåŸã®ããã€ãã®ã»ã¯ã·ã§ã³ã§ã¯ãããã€ãã®éèŠãªå¿çšãã€ã³ãã«ã€ããŠèª¬æããŠããŸãã æååãã¿ãŒã³ãšçœ®æã«é¢ããã»ã¯ã·ã§ã³ããããŸãã 次ã®ã»ã¯ã·ã§ã³ã§ã¯ã ããŒã¿ãšã³ãŒããããŒã«ã«ããã³ã¯ã©ãŠãã«ä¿åããæ¹æ³ã«ã€ããŠèª¬æããŸã ã 次ã«ã ã€ã³ããŒããšãšã¯ã¹ããŒãã®ã»ã¯ã·ã§ã³ã 次ã«ã ããŒã¿ã³ã¬ã¯ã·ã§ã³ïŒã»ããïŒã®ã»ã¯ã·ã§ã³ã Wolframèšèªã䜿çšãããã¹ãŠã®äººãããŒã¿ã®ã³ã¬ã¯ã·ã§ã³ïŒã»ããïŒãå¿ èŠãšããããã§ã¯ãããŸãããã倧éã®æ§é åããŒã¿ãåŠçããå¿ èŠãããå Žåããã®ã»ã¯ã·ã§ã³ã¯éåžžã«åœ¹ç«ã¡ãŸãã ãããŠãããã¯ãã¹ãŠãWolframèšèªã§ããŸããŸãªã¢ã€ãã¢ãã©ã®ããã«å®è£ ãããŠãããã®èå³æ·±ãäŸã§ãã
ãšãã»ã€ã»ã¯ã·ã§ã³
æ¬ã®æåŸã«ã¯ãããŸããŸãªãããã¯ã«é¢ãããšãã»ã€ã®ã»ã¯ã·ã§ã³ããããŸãïŒ è¯ãã³ãŒããæžãããšã ãããã° ããããšããããããã°ã©ããŒã§ãããšæããæ¹æ³ã«ã€ããŠã ãããã®ã»ã¯ã·ã§ã³ã®ç®çã¯ããã®æ¬ãèªãã çµæãšããŠçããæèæ¹æ³ãéçºããããã€ãã®æœè±¡çãªã¢ã€ãã¢ã«çµã³ä»ããããšã§ãã
ãã¬ãŒã³ããŒã·ã§ã³ã®æ§æ
æåã«èšã£ãããã«ããã®æ¬ã¯åºæ¬çã«å£èªçãªã¹ã¿ã€ã«ã§æžãããŠããŸãã ã»ãšãã©ãã¹ãŠã®ã»ã¯ã·ã§ã³ã§ã 質åãšåçãšæè¡ç詳现 ãšãã 2ã€ã®è¿œå éšåãè¿œå ããŸããã 質åãšåçãå«ãéšåã®ç®çã¯ã人ã ãæãé »ç¹ã«ééãããããã®è³ªåãžã®åçããã¹ããŒãªãŒããªã³ã°ã®ã¡ã€ã³ã©ã€ã³ããæ°ãæ£ããããšãªãæäŸããããšã§ãã
質åã«ã¯ããã€ãã®çš®é¡ããããŸãã äžéšã¯ãåè¿°ã®æ©èœæ¡åŒµã«é¢ãããã®ã§ãã äžéšã¯ãããããã¹ãŠã®èåŸã«ãããã®ã«ã€ããŠã§ãã ãŸããããã€ãã®è³ªåïŒãã¹ãä¹ãšã¯ã©ãããæå³ã§ããïŒãïŒèªè ã«ãã£ãŠã¯åçŽãããããã«èŠãããããããŸãããããã¹ãŠã®èªè ã«ãšã£ãŠã¯ããã§ã¯ãããŸããã
質åãšåçãå«ãéšåã«å ããŠãæè¡çãªè©³çŽ°ãå«ãéšåãå«ããããšã¯åççã§ããããã«æããŸããã 圌ãã®ç®æšã¯ãç¹å®ã®åéã«æ¢ã«ååã«é©å¿ããŠãã人ã ã«æè¡æ å ±ãæäŸãã圌ãã®ç¥èãæ¬ã®è³æãšçµã¿åãããããšãã§ããããã«ããããšã§ãã
æŒç¿
ã»ãšãã©ã®ã»ã¯ã·ã§ã³ã§ç€ºãããŠããä»ã®éšåã¯ãæŒç¿ã®ã³ã¬ã¯ã·ã§ã³ã§ãã ãããã®å€§éšåã¯ãã Nãäœæããã³ãŒããæžã ããšãã圢åŒã§è¡šç€ºãããã ãã®ã³ãŒãã®ããåçŽãªåçç©ãèŠã€ãã ããšãã圢åŒã¯ã»ãšãã©ãããŸãã ã
å°å·ãããæ¬ã®æåŸã«ã¯ããã¹ãŠã®æŒç¿ãžã®çãããããWebããŒãžã§ã³ã«ã¯è¿œå ã®æŒç¿ããããŸãã ãã¡ãããããã«æ瀺ãããçãã¯å¯èœãªãã®ã®1ã€ã ãã§ããããããå¯äžã®æ£ããçãã§ããå Žåãç¶æ³ã¯ã»ãšãã©çºçããŸããã
æŒç¿ãæžãããšã¯ç§ã«ãšã£ãŠèå³æ·±ãçµéšã§ãããå®éãããã¯ãããšãã°äººå·¥ç¥èœãšéä¿¡ããæ¹æ³ã«ã€ããŠã®ç§ã®èãã®æèã«ãããŠéåžžã«éèŠã§ãã çµå±ã®ãšãããã»ãšãã©ã®æŒç¿ã§ã¯åºæ¬çã«ã ãã®ããã¹ããè±èªã§åããWolframèšèªã³ãŒãã«å€æããŸãã ãšæžãããŠããŸã ã ç°¡åãªããšã§ãããè±èªã¯èªåèªèº«ã説æããã®ã«é©ããŠããŸãã ããããã¿ã¹ã¯ãé£ããã»ã©ãè±èªã§èª¬æããã®ã¯é£ãããªããŸãã äžè¬ã«ãæ¬ãæžããšããè±èªã§æžããããWolframèšèªã®ãšã¯ãµãµã€ãºã«çããæ¹ãã¯ããã«ç°¡åãªç¶æ³ã«ãã°ãã°ééããŸããã
ããæå³ã§ã¯ãããã¯éåžžã«åªããŠããŸãããªããªããWolframèšèªã¯ã¢ã€ãã¢ãè¡šçŸããã®ã«éåžžã«é©ããŠããããã§ãã è±èªã§ç°¡åã«è¡šçŸã§ãããã®ããããŸãããWolfram | Alphaã§ã®è§£éã«åæ Œã§ããŸãã ããããWolframèšèªã«ã¯ãã£ãšå€ãã®æ§é ãšç²ŸåºŠãå¿ èŠãªãã®ããããããããŸãã
æ¬ïŒ
ããæå³ã§ã¯ãã¯ããã«æè»ãªæ§é ã§ãŠã§ã圢åŒã§äœããäœæããã®ã§ã¯ãªããå°å·å¯èœãªæ¬ãæžãã®ã¯å¥åŠã«æãããããããŸããã ããããç§ã«ãšã£ãŠã¯ããã®æ¬ã®æŠå¿µãéåžžã«åœ¹ç«ã€ããšãããããŸããã ã¯ãããªã³ã¯ããã©ã£ãŠå€ãã®æ å ±ãååŸã§ããWebãµã€ããäœæã§ããŸãã - , , , , .
, - . - , - . , , - â â .
, Wolfram Language, . , , ( ), , .. , . , : , Wolfram Language .
« ». . Wolfram Language â . , , , , . , .
, , , , . , ; , .
, , , Wolfram Language, . , , .
Wolfram Language. 1988 , Mathematica, . : , . 767 . 10 , «» 1488 . , â , .
, , , , . , , , 50 000 .
, Mathematica , , , , . , Wolfram Language , , .
, , Wolfram Language ( Mathematica) . , , , . , , Wolfram Language Mathematica , .
?
, - , . , , , Wolfram Language , , . , . , , , . .
: " ? ". , , , , , . . .
ãã®æ¬ãæžãã®ã¯æ¬åœã«æ¥œããã£ãã§ãã人ã ããããèªãã§èå³ãæã¡ã Wolframèšèªã§ãã°ããããã®ãäœæããæ¹æ³ãåŠã¶ããšãé¡ã£ãŠããŸãïŒ