ã¯ããã«
ãã®ãããªã¯ç¹°ãè¿ãå®éšã瀺ããŠããŸã-ãåçŸãã®ä»£ããã«èªå®¶è£œã®ãã³ã»ã³ã¹ã䜿çšãããŠããŸã
ããã¯1985幎ããµãªã¥ãŒã7è»éã¹ããŒã·ã§ã³ã§ãå®å®é£è¡å£«V. A.ãžã£ããã³ããšV. P.ãµããã¯ãããªããœãŠãŒãºT-13å®å®è¹ã®ä¹çµå¡ã蚪ããéã«èµ·ãããŸãããå€æ°ã®ãããã¯ãŒã¯ãœãŒã¹
å®å®é£è¡å£«ãè»éã«éã°ãã貚ç©ãé梱ãããšãã圌ãã¯ãããããåçŸããã€ãŸãè³ã®ã€ããããããå€ããªããã°ãªããŸããã§ããã åçŸã®è³ãæã€äŸ¡å€ãããã圌ã¯èªåã§å転ããŸãã ãã®åŸãæåŸãŸã§å転ããŠããä»ããããããé£ã³éãããšããããã¯å転ãç¶ããç¡éåç¶æ ã§æ £æ§ã§é£è¡ããŸãïŒã»ãŒå転ãããããã©ã®ããã«ïŒã ãã®ããããŠã©ãžããŒã«ã»ã¢ã¬ã¯ãµã³ãããŽã£ããã¯ãè³ãåæ¹ã«åããŠçŽ40ã»ã³ãã¡ãŒãã«é£ãã åŸãããããçªç¶180床å転ããåãæ¹åã«é£ã³ç¶ããŸãããè³ã¯åŸãã«åããå察æ¹åã«å転ããããšã«æ°ä»ããŸããã ãã®åŸãåã³ã40ã»ã³ãã¡ãŒãã«ãé£è¡ãããããã¯åã³180床ã®å®è¿ããè¡ããåããŠãªã©ãè³ãåã«ããŠåã³é£è¡ãç¶ããŸãã Dzhanibekovã¯å®éšãç¹°ãè¿ãç¹°ãè¿ããçµæã¯åžžã«ç¹°ãè¿ãããŸããã äžè¬ã«ãç¡éåã§é£è¡ããå転ãããã¯ã43ã»ã³ãã¡ãŒãã«ããšã«éã180床ã®åšæçãªããªãããè¡ããŸãã 圌ã¯ãŸãããããã®ä»£ããã«ä»ã®ãªããžã§ã¯ããããšãã°ãéåžžã®ããããä»ãããã©ã¹ãã·ã³ããŒã«ã䜿çšããããšããŸãããããã¯ãäžå®ã®è·é¢ãé£ãã åŸãåãçªç¶ã®ããªãããè¡ããŸããã
ããã§çš®ã¯ååã ãšæããŸãã å®éãããžã£ããã³ãå¹æãã«ã¯ç°åžžãªãã®ã¯äœããããŸããïŒãã ãã圌ã¯12000幎ããšã®å°çã®æ¥µã®å€åãããã³ãã®ä»ã®äžççãªå€§å€åãä¿¡ããŠããŸãïŒã ãã³ãœã«ä»£æ°ã®è£ 眮ãšæ©æ¢°çéåã®å®å®æ§ã®çè«ã䜿çšããŠãç¥ç§çãªãããã«äœãèµ·ããããç解ããããšããŸãã
1.ããããã©ã ã-質éæ £æ§ç¹æ§
å³ã¯ã調æ»ã®å¯Ÿè±¡ã瀺ããŠããŸãã 確ãã«èªè ã®ããããã¯ãç涯ã«å°ãªããšãäžåºŠã¯ãã®ãããªããããèŠãŸããã ãªãªãžãã«ãšã®é¡äŒŒæ§ãä¿èšŒããããšã¯ã§ããŸãããç§ããã®ã¢ãŒãã£ã¹ãã¯åãã§ãããããã«ããããããã
ãŸãããããã®åãïŒã¢ããªã³ã°ã¯èšç»äžã§ãããä»ã®ãšããïŒå®æ§çã«å匷ããŸãã ãããã£ãŠããã®è£œåã®ç¹å®ã®å¯žæ³ã«ã¯èå³ããããŸããã ãã®ãããã®åœ¢ç¶ã¯ç§ãã¡ã«ãšã£ãŠéèŠã§ãããå®éã«ã¯äœãèšç®ããã«ããã€ãã®çµè«ãåŒãåºãããšãã§ããŸãã
ãããã¯èªç±ã«åããããéå¿ãããŒã«ãšããŠéžæãããšäŸ¿å©ã§ãã ããã«ãé©åãªåº§æšç³»ïŒäœã«é¢é£ä»ããããŠããïŒããã«ã«ã座æšã«ãããã®è»žãæ £æ§ã®äž»è»žãšäžèŽãããŸãã ãã®ãããªè»žã¯åžžã«èŠã€ããããšãã§ããçŽäº€ããŸã ã ããã«ã€ããŠã¯ã åã®èšäºã§å³å¯ã«èšŒæããŸããã ãããã£ãŠãäžå¿ã®ãããæ £æ§ãã³ãœã«ã¯å¯Ÿè§è¡åã§è¡šããããšä»®å®ã§ããŸãã
æããã«ãæ倧ã®äž»è»žæ £æ§ã¢ãŒã¡ã³ã㯠-ãããã¯ã軞ã«åçŽãªå¹³é¢å ã§æ£ç¢ºã«æé·ã®åœ¢ç¶ãããŠããŸã ã æ £æ§ã¢ãŒã¡ã³ãã«ã€ã㊠ãã㊠è°è«ããããšãã§ããŸã-ããã¯ãã¹ãŠãçŽåŸã«å¯Ÿããäžå¿éšã®åãã®æ¯ãšããç©Žããã®éå¿ã®è·é¢ã«äŸåããŸããããããã®åœ¢ç¶ã¯æ¬¡ã®ããã§ãããšä»®å®ããŸã ã 次ã«ãç¡æ¬¡å ã®æ £æ§ã¢ãŒã¡ã³ããå°å ¥ããŸã
ãããŠä»¥æ¥
ãã®å Žåãäžå¿æ £æ§ãã³ãœã«ã¯æ¬¡ã®åœ¢åŒãåããŸãã
2.å®å®ãããããéåã®åŸ®åæ¹çšåŒ
ãããã¯ã¹ã¬ããããé¢ãããšèªç±ãªããã£ã®ããã«ç§»åãããããéåæ¹çšåŒãèšè¿°ãã圢åŒã¯æããã§ãã
ãããã¯ãå°çã«èªç±ã«èœäžããéæ £æ§åç §ã·ã¹ãã ïŒå®å®è¹ãã£ãã³ãç¡éåïŒã§ç§»åããããã空æ°æµæããããã§ãããä»ã®æåãç¡èŠãããšä»®å®ããŠãã·ã¹ãã ïŒ5ïŒã®å³åŽããŒããšèŠãªããŸã
åææ¡ä»¶ãäžãããããšã極ã®éåæ¹çšåŒã¯ç°¡åã«çµ±åãããéå¿ã®åäžã§çŽç·çãªéåãåŸãããŸãã 2çªç®ã®æ¹çšåŒã®ãã¹ãŠã®å¡©ãç°¡åã«çµ±åã§ããŸããããã¯ããã®å·ŠåŽããéå¿ã«å¯Ÿãããããã®éåéã®çµ¶å¯ŸåŸ®åã§ããããã§ãã
ã©ã㧠çµå座æšç³»ã§ååŸãããMCDã®å±æ埮åã§ãããåŒèªäœã¯ããŒã¢åŒãšåŒã°ããŸãã
ãããã£ãŠã2çªç®ã®æ¹çšåŒã¯ç©åãäžããŸã
MKDã®äžå€æ§ã«ã€ããŠèªã£ãŠããŸãã åãã«è§é床ãå³å¯ã«è»žã«æ²¿ã£ãŠåããããŠããããšãèãããš ãMCDãåã軞ã«æ²¿ã£ãŠæ¹åä»ããããŸãããã®å Žåã®äœã®é察称æ§ã¯åœ±é¿ããªããããMCDã¯è»žäžã«æ圱ãããŸã ãããŠããã¯çãããªããŸã ã ãããããã€ããã³ãã®å®éšã§èª¬æãããé²åã¯ã©ãã«æ¥ãã®ã§ããããïŒ
3.æåãããéåã®åŸ®åæ¹çšåŒ
çãå°ããªæåã®äœçšäžã§ããããã®è§é床ãæ¹çšåŒïŒ6ïŒããããã«äžããæ³åããéžè±ãããšä»®å®ããŸãã ã ãããšããããã®è§é床ãçãããªããŸã
2çªç®ã®åŒïŒ6ïŒããã³ãœã«åœ¢åŒã«æžãæããŸã
ããã«çœ®ãæããŸãïŒ7ïŒ
ïŒ8ïŒã®æ¬åŒ§ãå±éããŸã
ããã ã確ç«ããã移åã¢ãŒãã«å¯Ÿå¿ããŸãã æåŸã®é ïŒ9ïŒã¯å°ããª2次ãšããŠç Žæ£ãããåŒïŒ9ïŒã次ã®åœ¢åŒã«çž®å°ããŸãã
åŒã«åŸã£ãŠè§é床ã®æåãåèšç®ããŸã
ïŒ10ïŒãïŒ9ïŒã«çœ®ãæããŠãå ±éã®èŠçŽ ãåãåºããŸã
ã¯ãããã«ãŒãã«ã¿ã®ããããã£ã䜿çšããæ £æ§ãã³ãœã«ã®ã€ã³ããã¯ã¹ãçç¥ãããšã次ã®ããã«ãªããŸãã
ãŸãã¯
ã©ã㧠-ã©ã³ã¯ãã³ãœã« ã
çµæãšããŠåŸãããæ¹çšåŒç³»ïŒ11ïŒã¯ãæåéåã®ç·åœ¢æ¹çšåŒç³»ãšåŒã°ããæåã®è¿äŒŒã§å®åžžéåã®å®å®æ§ã調ã¹ãã®ã«åœ¹ç«ã¡ãŸãã
ãã³ãœã«ã䜿çšããŠåäœããããšã«æ³šæããŠãã ãããåŒïŒ6ïŒã«ã¯ãã²ã©ãè¡åä¹ç®ãšãã¯ãã«ç©ããããããšãå®å šã«å¿ããŠããŸããã ãã¯ãã«è¡å圢åŒã®å€æã«å¯Ÿãããã³ãœã«ã¢ãããŒãã®åã®å¥ã®å³ã
4.æåã®è¿äŒŒïŒæåã®ãªã¢ãããæ³ïŒã«ãããã€ããã³ããããã®éåã®å®å®æ§ã®ç 究
åã³åŒïŒ11ïŒã®è¡å圢åŒã«æ»ããè§é床ã®åå·®ã®å°é¢æ°ã«é¢ããŠããã解決ããŸãã
ãããã®åãã®å®å®æ§ãè©äŸ¡ããããã«äœ¿çšããæåã®ãªã¢ãããæ³ã«ã¯ãè¡åã®åºæå€ã®ç 究ãå«ãŸããŸã ã å®åžžéåãå®å®ããããã«ãè¡åã®åºæå€ïŒ3ã€ãããŸãïŒ è² ã®å®æ°éšãå¿ èŠã§ãã
ãã ãããŸãã¯ãããªãã¯ã¹ãååŸããå¿ èŠããããŸã ãã®èŠçŽ ããã³ãœã«é¢ä¿ãæºãã
ãŸãããã«ã«ã座æšã§äœæ¥ããããšãæãåºããŠãã ãããããã¯ãã¡ããªãã¯ãã³ãœã«ãåäœè¡åã§è¡šãããLevi-Civitaãã³ãœã«ãæ¢ã«èª¬æããVeblenã·ã³ãã«ã§è¡šãããæ £æ§ãã³ãœã«ãã©ã³ã¯ã§ããããšãæå³ããŸã ã©ã³ã¯æ £æ§ãã³ãœã«ãšäžèŽãã ã
åŒïŒ13ïŒã®ç³ã¿èŸŒã¿ã«ã¯ãSKAã䜿çšã§ããŸãããMaximaãšMapleã®ãã³ãœã«ã®ã³ã³ããŒãã³ãåäœã®åäœããŸã ç解ããŠããªããããç·åœ¢ä»£æ°ããŒã«ã䜿çšããŠMapleã§æ¬¡ã®ã³ãŒãããã°ããã¹ã±ããããŸãã
restart; with(LinearAlgebra): # - levi_civita := proc(i, j, k) local E := IdentityMatrix(3,3); local A := Matrix(3, 3); local i1 := 0; A[1] := E[i]; A[2] := E[j]; A[3] := E[k]; return Determinant(Transpose(A)); end proc: # J := Matrix( [ [I[xx], 0, 0], [0, a*I[xx], 0], [0, 0, b*I[xx]] ]); g := IdentityMatrix(3, 3); Omega := Vector([omega, 0, 0]); L := J . Omega; # G G := Matrix(3, 3); for r from 1 to 3 do for l from 1 to 3 do G[r, l] := 0; for k from 1 to 3 do summ := 0; for m from 1 to 3 do summ := summ + levi_civita(r, k, m)*Omega[k]*J[m, l] + levi_civita(r,k,m)*g[k,l]*L[m]; end do: G[r, l] := G[r, l] + summ; end do: end do: end do:
ãœãŒã¹ããŒã¿ãMapleã«æž¡ããšãåºåã¯è¡åã«ãªããŸã
ã©ã㧠-å®è¿ãã®åã«ã糞ãåãã®å®å®ããéšåã«çœ®ããçŽåŸã®ãããã®å転ã®è§é床ã ãã®è§é床ã¯äžå®ãšèŠãªãããšãã§ããŸãã
è¡åãååŸããããšã¯é£ãããããŸãã
äžããããè¡åã®åºæå€ãèšç®ããããã®ç¹æ§æ¹çšåŒã®åœ¢åŒã¯
ããã解ããŠåºæå€ãååŸããŸã
次å ã®ãªãæ £æ§ã¢ãŒã¡ã³ããæ¡ä»¶ãæºããå Žåãåºæå€ã¯å®æ°å€ãåããŸã
ãã以å€ã®å Žåã2ã€ã®åºæå€ã¯çŽç²ã«èæ°ã«ãªããŸãã åºæå€ã®äŸåé¢ä¿ãããããããå Žå ãã㊠ç¡æ¬¡å ã®æ £æ§ã¢ãŒã¡ã³ããããæ¡ä»¶ïŒ15ïŒã«éåãããšãã°ã©ãã¯è€éãªé åã«å ¥ãããšãããããŸãã
ç¹æ§å€é åŒã®æ£æ ¹
ç¹æ§å€é åŒã®è² ã®æ ¹
çµè«
ç©è³ªçãªéšåãæ£ã§ããå°ãªããšã1ã€ã®åºæå€ã¯ã確ç«ãããéåã¬ãžãŒã ã®äžå®å®æ§ã瀺ããŸãã
æ¡ä»¶ïŒ15ïŒãæåã«æ¡çšããæ¡ä»¶ïŒ3ïŒãæºãããŠããã®ã§ãèŠãŠã¿ãŸãããã æ £æ§ã¢ãŒã¡ã³ãéã®æ¯ã§ã
ã€ãŸããæåã¯æ £æ§ã¢ãŒã¡ã³ãã®æ倧å€ãšæå°å€ã®äžéã§è»žãäžå¿ã«ããããŠããããããããã¯äžå®å®ã«åäœããå転ããŠããåã³å®å®ããäœçœ®ãèŠã€ããããšããåã³å転ããŸãã èªç±äœã®å®å®ããå転ã¯ãæ倧ããã³æå°æ £æ§ã¢ãŒã¡ã³ããæã€è»žã®åšãã§ã®ã¿å¯èœã§ããããšãç¥ãããŠããŸãã
ãã
次ã«ãç¹æ§æ¹çšåŒã®çŽç²ã«èæ°ã®æ ¹ãååŸããŸããæåã®ãªã¢ãããæ³ã¯ããã®å Žåã®éåãå®å®ããŠãããã©ããã®è³ªåã«æ確ã«çããŸããã ããããååŠãä»æ¥ã§ã¯ç¥ããªãããšãšãç¹æ§æ¹çšåŒã®èæ ¹ããã€ç·åœ¢æ¹çšåŒã解ãæ¯åæ§ã®æ§è³ªããåºçºãããšãæ³å·®éåãšç« åã®ããã»ã¹ã«å¯Ÿå¿ããå®åžžç¶æ è¿ãã®è§é床ãã¯ãã«ã®åšæçå€åãä»®å®ããããšãã§ããŸãã
ãã®ç¹ã§ãæ¡ä»¶ãæºããå°çïŒ16ïŒã¯ãã€ããã³ãã®åœ±é¿ãåããŸããã ãããã£ãŠã極ã®å€åã䌎ãäžççãªå€§æšäºã¯ç§ãã¡ãè ãããã®ã§ã¯ãããŸããã
ãã®èšäºã¯ããã€ãã®ãã¬ãŒãã³ã°ã§ããã ãããããåçŸãã®å®ã«æ»ããŸãããä»ã®ãšããã¯ãèªè ã®çããã®æ³šæã«æè¬ããŸãã
>ç¶ç¶ãã...