ãã£ãšããªããçåã«æããŸããïŒå°çã¯ããã«äœãšæžãããŠããŸããïŒ ãã®åŒçšããã®åŒã¯ãé«çæ°åŠæè²ãåãã人ã«ãšã£ãŠããã®è³ªåã奜å¥å¿seventhçãª7幎çãšåããããã«çãããšããç¹ã§èå³æ·±ãã 奜å¥å¿Nonçãª7幎çã¯ããã®èšäºã®ç¯å²ãè¶ ãããããã«ç°ãªãç¯å²ã®èå³ãæã£ãŠããŸãã ãããã圌ãã§ããããããã®ã¯ã¬ã€ãžãŒãªãªã¿ã¯ããç¬ãåãåã³ãåŠå®ããããšã¯ãããŸããã
次ã®ããã¹ãã§ã¯ããã®ç¥ç§çãªãã£ã©ã¯ã¿ãŒã®çµã¿åããã®ç§å¯ãæããã«ããŸãã ã«ããã®äžã«æ¥ãŠãã ããããããããã¶ãŒã«ã§ãããã=ã¿ã«ã¹ããŒã®ãã©ããã¯ã¹ã«ã€ããŠè©±ããã奜å¥å¿BarçãªããŒããªã¢ã³ã圌女ãå¿ã倱ã£ãçç±ã圌女ã®éŒ»ãæéåã®ããŒãã«åãåããããããã¢ã¬ã¯ãµã³ããŒã®è§ã®ããçãæ¥çããèå³æ·±ãç©èªãèŠããŠããŸãã
ãããã®äººã ã¯èª°ã§ããïŒ
å±¥æŽæ å ±ã«èå³ããªãå Žåã¯ã 次ã®ã»ã¯ã·ã§ã³ã«é²ãã§ãã ããã
ããã§ããã¢ã³ã«ã¬ãåŒçšããé çªã«ç¹å®ã®ãã©ãªã»ãã©ã«ãã£ãåŒçšããŠããå¿åèè ã®ããã¹ãããã®åŒçšã§ãã ãã®ãã¹ãŠã®ãã¹ãã¢ãããºã ãç解ããããã«ããããã¬ãã«ã®åŒçšã®èè ããå§ããŸãããã 圌ã®ååã¯ãŽã£ã¯ãã«ã»ãã£ãªãããŽã£ããã»ã·ã¥ã©ãŽã¬ãã§ãããç©çç§åŠãšæ°çç§åŠã®å士ãææããã·ã¢ç§åŠã¢ã«ãããŒã®åŠè ã§ããããçè«ååŠã®åºç€ããšããã¿ã€ãã«ã§æ¬ã®èè ã§ããããŸãã äžèšã®åŒãçºçããã®ã¯ãããŒãžçªå·8ïŒ2008幎çãèŠãå ŽåïŒã®äžã§ã§ãã ããã§ã¯ããã®ç®çãæ確ã«ããããã«å°ã説æããŸãã
ååŠã®éçšã§ã®å€å žååŠã®åœ¢åŒçå ¬çåã®æ瀺ã¯äžé©åã§ããããšã«æ³šæããŠãã ãããããã¯å®éã«ã¯æ°åŠçè«çã®é ã§ãããé©åãªååŠã§ã¯ãªãããã§ãã
åæ§ã«ãç®è¡ã®å ¬çåã¯ç®è¡èªäœã®å¯Ÿè±¡ã§ã¯ãããŸããã <åãåŒçšãç¶ããŸããåå ¥åããŸãã>
ãã®ãããååŠã§ã¯ãèªè ãååãªç©çççŽèŠ³ãæã£ãŠãããšä»®å®ããŠãåºç€ã®èª¬æãé床ã®åœ¢åŒäž»çŸ©ã§éè² è·ã«ãªããªãããã«ããããšã¯çã«ããªã£ãŠããŸãã
ãã¢ã³ã«ã¬ãšã¯èª°ãªã®ãã説æããå¿ èŠã¯ãªããšæããŸãã æè¿ã®åºæ¥äºã«ç §ãããŠãããªãŒã®äººé䞻矩è ã§ããããã®å§ãã仮説ããšããåèªãšå¥ã®å§ãPerelmanããšçµã¿åãããŠèŠããŠããå¿ èŠããããŸãã éåžžã«ç°¡åãªå ŽåïŒ19äžçŽåã°ããçŸåšãŸã§ãç³ã®è¢ã«åº§ã£ãŠãã人ãã¡ã«ãšã£ãŠïŒããžã¥ãŒã«ã¢ã³ãªãã¢ã³ã«ã¬ã¯å²äžæé«ã®æ°åŠè ã®1人ã§ãããçŸç§äºå žã®ç§åŠè ãããããžãŒã®äœæè ãçžå¯Ÿæ§çè«ã®æ°åŠçåºç€ãããããçš®é¡ã®é¢çœãæçšãªãã®ã§ãã åŒçšãããåŒçšã¯ã1910幎çã®Science and MethodããåŒçšãããã®ã§ãã ãã®äœåã¯ãããŸããŸãªæ°åŠçãç§åŠçãå²åŠçããã³æèšçãªãããã¯ã«é¢ãããšãã»ã€ã®ã³ã¬ã¯ã·ã§ã³ã§ãã éåžžã«å¥œå¥å¿ã匷ããèªã¿ãããããŸã é¢é£æ§ã®ãããã®ã§ãåŒçšãããå®å šã«å°ãªããã®ã§ãã
ããã«ãäŸãã°ïŒ
å€ãã®å¿ãæ°åŠãç解ããããšãæåŠããŠããããšãã©ã®ããã«èª¬æããã®ã§ããïŒ ããã¯é説çã§ããïŒ å®éãããã«ããã®ã¯ãè«çã®åºæ¬ååã«ã®ã¿èšŽããç§åŠãäŸãã°ççŸã®ååã«èšŽãããããã°ç§ãã¡ã®ç解ã®éªšæ Œãæ§æãããã®ã«èšŽããç§åŠã§ãããããèªäœãåæã«æåŠããããšãªãæŸæ£ããããšã®ã§ããªããã®ã«èšŽããããã§ãããã®ç§åŠãæããšæãã人ãããŸãïŒ ãããŠããããã®äººã ã®ã»ãšãã©ïŒ 圌ããçºæã§ããªãããã«ããŸããã-ããã¯ãŸã èš±ãããŠããŸãã ãããã圌ãã¯æäŸãããŠãã蚌æ ãç解ããŠããŸããã圌ãã¯ããããã§æããçã§çããå ã圌ãã«ãããããšãã圌ãã¯ç²ç®ã®ãŸãŸã§ã-ããã¯éåžžã«å¥åŠã§ãã
ãŸãã¯äžæ¹ã§ïŒ
ããã§4幎çã æåž«ã¯ããåã¯ãäžå¿ãšåŒã°ãã1ã€ã®å éšç¹ããåãè·é¢ã«ããå¹³é¢äžã®ç¹ã®å¹ŸäœåŠçäœçœ®ã§ãããšæ瀺ããŸãã è¯ãçåŸã¯ãã®ãã¬ãŒãºãããŒãã«æžããŸãã 貧ããåŠçã¯åœŒå¥³ã«ãå°ããªç·ããæããŸããã誰ãäœãç解ããŸããã§ããã ãã®åŸãæåž«ã¯ãã§ãŒã¯ãåããé»æ¿ã«åãæããŸãã ããããåŠçãã¡ã¯ãããªã圌ã¯ããã«èšããªãã£ãã®ã§ãããåã¯åã§ãããããã«ç解ã§ããã§ãããããšèããŠããŸããã
ãã ããç¹å®ã®åŒçšã«èå³ããããŸãã 次ã®ããã«å§ãŸããæ°åŠãšè«çãã®ç« ã«ãããŸãã
æåã«æ°åŠã«ç¹æã®ååã«é Œããã«æ°åŠãè«çã«éå ããããšã¯å¯èœã§ããïŒ æ°åŠè ã®åŠæ ¡ãããã倧矩ã«å¯Ÿãããã¹ãŠã®æ ç±ãšä¿¡ä»°ããã£ãŠãããã蚌æããããšããŠããŸãã 圌女ã¯ç¹å¥ãªèšèªãéçºããŸããããã®èšèªã§ã¯ãèšèã¯ãªããæšèã®ã¿ããããŸãã ãã®èšèªã¯å°æ°ã®ã€ãã·ãšãŒã¿ãŒã«ãã£ãŠã®ã¿ç解ããããããåãšãè ã¯ç±å¿ãªä¿¡å¥è ã®ã«ããŽãªãŒçãªå£°æã«å±ããåŸåããããŸãã
èªè ã¯ãããã«è°è«ãããããšããã§ã«ç解ããŠãããšæããŸãã ããã€ãã®æ¿ããã䌎ããã¢ã³ã«ã¬ã¯ãç解ã§ããªãè¡šèšæ³ãšåºæ¬ã®ä¿®æ£ã«ãã£ãŠãæ°ããåŠæ ¡ãã®æ°åŠè ãæ»æããŸãã ãã®åŸã®åºæ¥äºã瀺ããããã«ããã®åé¡ã§åœŒã¯éè¡è ã§ããããšãå€æããŸãã-ãããã圌ã«ã¯ãã®çç±ããããŸããã å³ãã1890幎代ã«æ°åŠã§èµ·ãã£ãããšã¯ããã®ç±ççãªãã©ã³ã¹äººãããç¡é¢å¿ãªäººãé©ãããã
ããã§ããã§ãŒã³ã®çµãããå éšåŒçšç¬Šãå«ãŸãªãåŒçšç¬Šã«å°éããŸããã èè ã¯ãã§ãµã¬ã»ãã©ãªã»ãã©ã«ãã£ã§ããæ°åŠè ã¯ããã»ã©å倧ã§ã¯ãããŸããããããã€ãã®ãã©ããã¯ã¹ã®ãããã§æŽå²ã«ååãæžãããšãã§ããŸããã 圌ã«é¢ããæ å ±ã¯ããªãäžè¶³ããŠããã圌ã®å§ã®ã¹ãã¬ã¹ãã©ãã»ã©ããããèŠã€ããããšããã§ããŸããã§ããã ãã®èšäºãæžãããã«å§ããå ¬åŒã¯ã圌ã®èšäºãThe Transfinite Numbersã®è³ªåãã«å«ãŸããŠããŸããã ãã®èšäºã¯ãæåãªããããã¹ãã®ãžã£ã³ã»ãã¡ã³ã»ãã€ãšãã«ãã®èæžãFrom Frege ToGödelïŒA Math Book in Mathematical LogicãïŒä»¥äžã5æã®è±èªã¯ããŒããšããŒãããã®ãã®ã§ãããããååã翻蚳ãããªã¹ã¯ã¯ãããŸããïŒã§æ¬ãèŠã€ããŸããã Peanoã®èšäºãç®è¡ã®åçãæ°ããæ¹æ³ã«ãã£ãŠæ瀺ããããã圌女ã®æ¬ã«å«ãŸããŠããã®ã§ãããã¯å€§æåã§ããã ãã®èšäºã§ã¯ããå°æ°ã®ã€ãã·ãšãŒã¿ãŒã®ã¿ãç解ã§ããæå®ãã玹ä»ãããŸãããããããªãã§ã¯ããã©ãªã»ãã©ã«ãã®èšäºã¯äžåœèªãšåãã§ããã
ã¡ãªã¿ã«
åãPeanoã®èšäºã®å
容ã®ç°¡åãªæ¹äœãç§ã®ããã®1ã€ã«ãããŸã
åæ çãªäœè«
é¢çœãã¯ã©ãã«ãŒãèŠãããªãå Žåã¯ã 次ã®ã»ã¯ã·ã§ã³ã«çŽæ¥é²ãã§ãã ããã
van Heyenortã®æ¬ã®PeanoãšBurali-Fortiã®èšäºã®åã«ãFregeã®èšäºãæŠå¿µã®èšç®ããŸãã¯ç®è¡ãæš¡å£ããçŽç²ãªæèã®åœ¢åŒèšèªãããããŸããã æ°åŠè ã§å²åŠè ã§ããããªãŒããªããã»ã«ãŒããŽã£ããã»ãŽããããã»ãã¬ãŒã²ã¯ãååãšããŠãè¿°èªèšç®ã®äœæè ãšèŠãªãããšãã§ããŸãã 圌ã¯ãã®habrapostã®ãããã¯ãšã¯ããªãéæ¥çãªé¢ä¿ã«ãããŸãïŒãã¢ã³ã«ã¬ã¯æ¬ã®äžã§ãããèšåããŠããŸããã§ããããå®éãæ°åŠãè«çã«éå ããããšã§ãã®æ··ä¹±ããã¹ãŠéžé ããã®ã¯ãã¬ãŒã²ã§ããïŒã ããããç§ã¯ãã®æããã¡ãã·ã§ããã«ãªæå®ãå ±æããã®ãå©ããããšãã§ããŸããã§ããã 幞ããªããšã«ïŒãŸãã¯äžå¹žãªããšã«ïŒã圌ãã¯ãã®è€éãã®ããã«çŸä»£ã®æ°åŠçè«çã«æ ¹ãäžãããŸããã§ããã ãã¡ããããã¬ãŒã²ã¯ãå°å·äŒç€Ÿã®ã¿ã€ãã»ãã¿ãŒã®å©äŸ¿æ§ã¯ééããªãæé«ã®å©çã§ã¯ãªãããšè¿°ã¹ãŸããããèŠãŠãããããã«ããã®èŠå ãäžå®ã®åœ¹å²ãæãããŸããã ããããããªãåºæã
èŠãïŒ
ãAããBã«ç¶ãã
ãAããBã«ç¶ããããããGã«ç¶ãã
ãAã®åŠå®ããBã«ç¶ããGã«ç¶ãããšã¯çå®ã§ã¯ãªãã
ãå°çã®hãæ°æã®ææã§åããã
ãPh'nglui Mglv'nafh Cthulhu R'laih vgah'nagl fhtagnïŒã ã¢ã®ã¢ã¯ãã¥ã«ããã¢ã®ã¢ããŽã³ïŒã
ãAããBã«ç¶ãã
ãAããBã«ç¶ããããããGã«ç¶ãã
ãAã®åŠå®ããBã«ç¶ããGã«ç¶ãããšã¯çå®ã§ã¯ãªãã
ãå°çã®hãæ°æã®ææã§åããã
ãPh'nglui Mglv'nafh Cthulhu R'laih vgah'nagl fhtagnïŒã ã¢ã®ã¢ã¯ãã¥ã«ããã¢ã®ã¢ããŽã³ïŒã
ãã¡ããããããã§ãã¹ãŠããšã¯ã»ã©é ã人ã«ãšã£ãŠãè¿°èªè«çåŒã®çŸä»£ã®è¡šèšæ³ã¯ããå°ãæ確ã«èŠããããšãèªããªããã°ãªããŸããã
çè«æ å ±
åºæ°ãäœã§ããããã©ãªãã©ã«ãã£ãã©ããã¯ã¹ãäœã§ããããç¥ã£ãŠããå Žåã¯ãããã«æçµã»ã¯ã·ã§ã³ã«é²ãããšãã§ããŸãã
ãã€ãã®æ°åŠè ã²ãªã«ã¯ã»ã«ã³ããŒã«ã¯ãç¡éã®å€æ§æ§ãç解ãå§ããæåã®äžäººã§ãã 圌ã®åã«ã¯ããããã®åçš®ã®ãã¡ã æœåšçãªç¡é倧ãšå®éã®ç¡é 倧㮠2ã€ãããããŸããã§ããã ãããã®æŠå¿µã¯æ¬¡ã®ããã«èª¬æã§ããŸãã
- æœåšçãªç¡é倧ã ãªã³ãŽã®æããããæ¯æ¥å¥ã®ãªã³ãŽãããã«çœ®ãããšããŸãã é ããæ©ãããå±±ã®äžã®ãªã³ãŽã®æ°ã¯ãäºåã«äžããããæ°ãããå€ããªããŸãã
- å®éã®ç¡éã ãªã³ãŽã®æ°ãç¡éã«ããæããããšããŸãã
æ°åŠã®ããæç¹ãŸã§ãæœåšçãªç¡é倧ã«ã®ã¿ééããç¥åŠè ã ããå®éã®ç¡é倧ã«äœçšããŠãç¥ã®ããŸããŸãªã«ããŽãªãŒã説æããŸããã æ°åŠã«å®éã®ç¡é倧ã倧ãŸãã«å°å ¥ããã«ã³ããŒã«ã¯ãåè¿°ã®ãã¢ã³ã«ã¬ãå«ãå®æç人ç©ãšçŸä»£ã®æ°åŠè ã®éã§bothãã®æ³¢ãåŒãèµ·ãããã ããã«ãæ éã«æ€èšãããšãå®éã®ç¡é倧ã¯ç°ãªãããšãå€æããŸããã èªç¶æ°ã®æ°ã¯1ã€ã®ç¡é倧ã§ãããå®æ°ã®æ°ã¯å¥ã§ããã2çªç®ã®ç¡é倧ã¯1çªç®ã®ç¡é倧ããã倧ãããªããŸãã ãããŠãå®åŒæ°ã®é¢æ°ã®æ°ã¯3çªç®ã®ç¡é倧ã§ãããæåã®2ã€ã®çµã¿åãããè¶ ããŠããŸãïŒ
èªç¶æ°ã¯æééã瀺ãããã«äœ¿çšãããŸãããç¡ééã¯ã©ãã§ããïŒ ãããè¡ãããã«ãèªç¶ç³»åã¯å€ãã®ããããåºæ°ã«æ¡åŒµãããŸããã åºæ°ã¯ãç¹å®ã®ã»ããã®èŠçŽ ã®æ°ïŒåºçŸ©ã®æå³ïŒã§ãã åäœ-1ã€ã®èŠçŽ ã®ã»ããå ã®èŠçŽ ã®æ°ã 2-2ã€ã®èŠçŽ ã®ã»ããå ã®èŠçŽ ã®æ°ã ããã«ãèªç¶æ°ã®å Žåãèªç¶æ°ã®æ°ã«çããæ°N 0ãç¹ãããŸãã äžè¬çã«ãæåNã®ä»£ããã«ããã©ã€èªã®æåãAlephããããã¯ãã§ãããé©åãªUnicodeæåãæ¿å ¥ããããšãããšã
ãããã£ãŠãN 0ã«ã¯ç¹å®ã®N 1 ãç¶ããŸãããã©ã®ã»ãããããã«å¯Ÿå¿ããããšããåé¡ã¯èªæã§ã¯ãªãããšãå€æããŸããïŒ é£ç¶äœã®ä»®èª¬ãåç §ïŒã ã次ã®æ°ãã®æŠå¿µã§ã¯ãæéããç¡éãžã®ç§»è¡ã«åé¡ãçããŸããã
ããããä»ã®ãç¡éæ°ãããããŸã-ããããåºæ° ããããã¯åºæ°ã§ãããã«ã³ããŒã«ã«ãã£ãŠçºæãããŸããã ãããã®å®çŸ©ã¯ããªãè€éã§ãããç°¡åã«èª¬æããŸãã åºæ°ãåçŽãªã»ããã«å¯Ÿå¿ããå Žåãåºæ°ã¯é åºä»ãã»ããã«å¯Ÿå¿ããŸãã 瀺ãããŠãã2ã€ã®èŠçŽ ã®ããããã«ã€ããŠã ã©ã¡ãã倧ããããå°ãããã é åºé¢ä¿ã¯ããã€ãã®æçœãªåºæºãæºãããªããã°ãªããŸããã ããã«ãåºæ°ãæ§æããããã«ãé åºä»ãã»ããã«è¿œå ã®æ¡ä»¶ã課ããããã®äžã§å®å šã«é åºä»ããšåŒã°ããŸãã 2ã€ã®å®å šã«é åºä»ããããã»ããéã§é åºé¢ä¿ãä¿æããæ確ãªå¯Ÿå¿ã確ç«ã§ããå Žåããããã®ã»ããã¯åãé åºãæã¡ãŸãã
æéã®åºæ°ã¯èªç¶æ°ã«ãããã³ã°ã§ããŸãã ããšãã°ãã»ãã{1ã2ã3}ã®åºæ°ã¯èªç¶æ°3ã«é¢é£ä»ããããšãã§ããŸããåºæ°ã¯äžç·ã«å ç®ã§ããŸããæéã®åºæ°ã®å Žåãå ç®ã¯èªç¶æ°ã®å ç®ãšäžèŽããŸãïŒããšãã°ãOrd {1ã2} + Ord {1 ã2ã3} = Ord {1ã2ã3ã4ã5}ïŒã 2ã€ã®åºæ°ãè¿œå ããã«ã¯ããããã«å¯Ÿå¿ããã»ãããååŸãããããã1ã€ã®ã»ããã«çµåããŠã次ã®é åºé¢ä¿ãèšå®ããå¿ èŠããããŸãã
- åããœãŒã¹ã»ããã®2ã€ã®èŠçŽ ãæ¯èŒããå Žåããã®ã»ããã«ãã£ãé åºé¢ä¿ã䜿çšããŸã
- ç°ãªããœãŒã¹ã»ããã®2ã€ã®èŠçŽ ãæ¯èŒãããšã2çªç®ã®ã»ããã®èŠçŽ ã¯åžžã«å€§ãããªããŸã
ãã®ãããªå€æ°ã®åºæ°ã¯ãåºæ°ã®åèšã«ãªããŸãã ãããã£ãŠã次ã®åºæ°ã®æ±ºå®ã«åé¡ã¯ãããŸãããåã®åºæ°ãåããããã«åºæ°1ãè¿œå ããã ãã§ãã
èªç¶æ°ã®ã»ããã®åºæ°ã¯ãæåÏã§ç€ºãããŸãã ãã®åŸã«é åºÏ+ 1ãç¶ããŸããããã¯ãä»ã®ã©ã®æ°å€ããã倧ãããæåŸã®ãæ°å€ãè¿œå ããèªç¶æ°ã®ã»ããã«å¯Ÿå¿ããŸãã 次ã«ãåºæ°Ï+ 2ãæ¥ãŸããããã¯ããæåŸããšãæåŸãã2çªç®ãã®æ°ãæã€èªç¶ãªç³»åã«å¯Ÿå¿ããŸãã ãŸãã2ÏïŒèªç¶æ°åããã®åŸã«å¥ã®èªç¶æ°åïŒã3Ïã4ÏãÏ2ãÏÏãªã©ã®åºæ°ããããŸã...
ã芧ã®ãšãããCantorã¯å€§ããªãžã§ãŒã«ãŒã§ããã ç®èãªããšã«ã圌ã®çè«ã®çµããã®å§ãŸããããŒã¯ããã®ã¯åºæ°ã§ãããåŸã«ãåçŽéåè«ããšåŒã°ããããšã«ãªããŸãã åºæ°ã䜿çšããŠãBurali-Fortiã¯ãã©ããã¯ã¹ã«ãªããŸããã 圌ã®æšè«ã®éçšã¯æ¬¡ã®ãããªãã®ã§ããïŒå€ãã®åºæ°ãåãããããããªã秩åºç«ã£ãŠããããšã蚌æããŸãã ã ããã圌èªèº«ã¯ããã€ãã®åºæ°ã«å¯Ÿå¿ããŠããŸãã ãã®åºæ°ãä»ã®åºæ°ä»¥äžã§ããããšã蚌æããŸãããã ããã«1ã€è¿œå ããŸãã ã³ã£ããããç®ãããŠãã ããã
ä»ãç¥èãšç±æãæã£ãŠãç§ãã¡ã¯åºã«è¡ããããã©ãã¹ãã®äžçªåããã¯ããäžã«ãããã®åŒãäœãæå³ããã®ããç解ããæºåãã§ããŠããŸãã
ãšãã»ã³ã¹
ãã©ãŒãªã»ãã©ã«ãã£ã®æå®ãç解ããããšã¯å®¹æã§ã¯ãããŸããã§ããã ãã¢ãã«ãã£ãŠå°å ¥ãããèšæ³ã«ã圌ã¯åœŒèªèº«ã®èšæ³ãããã€ãè¿œå ããŸããã Peanoãšã¯ç°ãªãã圌ã¯èšäºã®åé ã§åœŒã®é©æ°ã«ã€ããŠè©³ãã説æããŠããŸããã§ããã ãããããããã®èª¬æã¯ä»ã®å Žæã«å«ãŸããŠããŸãããæ®å¿µãªããïŒãŸãã¯å¹žããªããšã«ïŒã€ã³ã¿ãŒãããäžã§ãã©ãªãã©ã«ãã£ã®å®å šãªäœåãèŠã€ããããšãã§ããŸããã§ããã ãããã£ãŠãããã€ãã®å Žæã§ãæèã«åºã¥ããŠæå³ãèããªããã°ãªããŸããã§ããã ãã®ããã»ã¹ã¯ã æå㪠NSA ããºã«ã®è§£ãé£æ³ãããŸãã
ããããããã¢ã³ã«ã¬ïŒãããŠæ¬¡ã«ãºã©ãŽã¬ãïŒã®åŒã¯ééã£ãŠããŸãã ãªãªãžãã«ã§ã¯ã次ã®ããã«ãªããŸãã
2ã€ã®ãªãŒããŒã¬ã€ã«æ³šæããŠãã ãã;ãããã®ååšã¯åºæ¬ã§ãã
ããã§ã®æåãã€ãã·ãã³ãã¯åž°å±ãæå³ããããããçŸä»£ã®èšå·ãεããå§ãŸããŸããã Unã¯ã1ã€ã®èŠçŽ ã®ã¿ãå«ããã¹ãŠã®ã»ããã®ã»ããã§ãã ãããã£ãŠããuεUnããšããè¡šèšã¯ãuã1ã€ã®èŠçŽ ãæã€ã»ããã§ããããšã®ã¿ãæå³ããŸãã ãã®ãããªèªæã§ã¯ãªãè¡šèšæ³ã¯ãè¡šèšæ³u = {aãbãc ...}ã«ããåã ã®èŠçŽ ã®ã»ããã®ãæ§ç¯ãããŸã æ¡çšãããŠããªããšããäºå®ã«ãã£ãŠåŒãèµ·ããããŠããããã§ãã
äžç·ãåŒãããšã«ãããBurali-Fortiã¯Peanoã«ãã£ãŠãå転ã®å åããšããŠå°å ¥ãããè§æ¬åŒ§ã眮ãæããŸãã ãã¢ãã¯ãããªãå¹ åºãã±ãŒã¹ã§ããã䜿çšããŸããã ããšãã°ããã®äžã®b [+ a]ã¯baãæå³ããåŒ[sin]ïŒxïŒã¯arcsinïŒxïŒã象城ããŠããŸããã è¡šèš[xε]ïŒç¹å®ã®æ¡ä»¶ïŒã¯ããã®æ¡ä»¶ãæºããå€ãã®Xãæå³ããŸããã ãããã£ãŠãè¡šèš[ïŒuãvïŒÎµ]ïŒuεUnïŒã¯ããuã1ã€ã®èŠçŽ ã®ã»ããã§ãããããªãã¢ïŒuãvïŒã®ã»ããããæå³ããŸãã Habra Editorã§ããŒã¯ã¢ãããè¿œå ãã䟿å©ãªæ¹æ³ãèŠåœãããªããããããããPeanoã®è¡šèšã䜿çšããŸãã
Koã¯ãé åºä»ãã»ããã®ã»ããã§ãã Burali-Fortié åºã»ããã¯ããã¢ïŒã»ãããé åºé¢ä¿ïŒãšããŠå®çŸ©ãããŸãã ãããã£ãŠãè¡šèš{Koâ[ïŒuãvïŒÎµ]ïŒuεUnïŒ}ã¯ãåã«ãé åºä»ããããã·ã³ã°ã«ãã³ã»ããã®ã»ããããæå³ããŸãã
ãT 'ãæåã®çµã¿åããã䜿çšããŠãBurali-Forteã¯åºæ°ãåãæäœã瀺ããŸãã ããå³å¯ã«ã¯ãåŒT 'ïŒuãvïŒã¯ãé åºvã®é¢ä¿ãäžããããŠããã»ããuã®åºæ°ãæå³ããŸãã ãã ããããã§ããã€ãã®ççŸããããŸããæ€èšäžã®åŒã§ã¯ãé¢æ°T 'ã¯ãã¢ïŒã»ãããé åºé¢ä¿ïŒã§ã¯ãªãããã®ãããªãã¢ã®ã»ããã«é©çšãããŸãã ã³ã³ããã¹ãã«åºã¥ããŠããã®ãããªå Žåã«é¢æ°ãåèŠçŽ ã«é©çšãããç¹å®ã®åæããããåºåã¯ãã¹ãŠã®èŠçŽ ã®å€ã§æ§æãããã»ããã§ãããšä»®å®ããããšãã§ããŸãã ãã®èªã¿ã§ã¯ãT '{Koâ[ïŒuãvïŒÎµ]ïŒuεUnïŒ}ã¯ããã¹ãŠã®ã·ã³ã°ã«ãã³é åºã»ããã®åºæ°ã®ã»ããã§ãã ãã¹ãŠã®ã·ã³ã°ã«ãã³é åºã»ããã¯åçã§ããããããã®é åºã®ã»ããã«ã¯èŠçŽ ã1ã€ã ãå«ãŸããŸããããã¯é åºåäœã§ãã
ããã·ã¥ã§æ³¢æã€ããšã«é¢ããŠã¯ã圌女ã®ç解ã§ãç§ã¯ã»ãšãã©ã®åé¡ãæ±ããŠããŸããã ãã©ãŒãªã»ãã©ã«ãã£ã®ä»ã®äœåãæ¢ãå¿ èŠããããŸããã ãããã®1ã€ã§ãããLogica MatematicaãïŒæããã«æç§æžã§ãããã€ã¿ãªã¢èªã§æžãããŠããã®ã§å®å šã«ã¯ããããŸããïŒã§ã¯ãLé¢æ°ãèŠã€ãããŸããïŒå°æåã®ãlãããããŸããããæã®ããã«èŠããŸããããããã£ãŠãæ確ã«ããããã«ã倧æåã䜿çšããŸãïŒã 次ã®ããã«æ©èœããŸããåŒæ°ãåãããããã»ããã«å€æããŸãããã®å¯äžã®èŠçŽ ã¯ãã®åŒæ°ã§ãã çŸä»£ã®è¡šèšã§ã¯ïŒLïŒxïŒ= {x}ã
æ³¢ç·ãLãšããŠèå¥ããããã·ã¥ãéãšããŠèå¥ããå Žåã[L]ã¯ã»ããããå¯äžã®èŠçŽ ãæœåºããéå€æã§ããããšãããããŸãã ãã®å Žåã[L] T '{Koâ[ïŒuãvïŒÎµ]ïŒuεUnïŒ}ã¯å®éã«ã¯åäœã§ãã éåžžã®ãŠãããã§ããããããã¯äºçŽ°ãªããšã§ãã
次åã誰ãããã®åŒã§åçãèŠãããšãïŒãããŠãããèµ·ãããšãããã¯ã€ã³ã¿ãŒãããã§ãïŒããã®åŒã®æå³ã圌ã«äŒããããšãã§ããŸãã ãã£ãšæ£ç¢ºã«èšãã°ãããªãã¯èªãå§ããããšãã§ããŸãã 圌ãæåŸã«è³ãåŸããããšã¯ãŸããããŸããã ãããŠã圌ã¯ååãšããŠæ£ããã§ããããããã¯å šãæ®éã®ãç®ç«ããªãåŒã§ãã ãã©ãŒãªã»ãã©ã«ãã£ã®è°è«ã§ã¯ã圌女ã¯äžå¿çãªå Žæãå ããããšã¯ãªãã£ããããã©ããã¯ã¹ã®å®åŒåã®ã»ãã®äžç¬ã§ããã 圌女ã®çœªæªæã¯ãã¹ãŠããã¢ã³ã«ã¬ã®ç®ãåŒãããšããäºå®ã«ãããŸãããã¢ã³ã«ã¬ã¯ã圌女ã®äžã«ããã¬ãŒã¹ã®å»¶é·ããšããæãŸãããªãå²åŠçæå³ãèŠãŸããã å°çã®ãããªå€èŠ³ã«ã€ããŠã¯ããã¬ãŒã²ã®è¡šèšæ³ã¯100ãã€ã³ãã®ãã³ãã£ãã£ãããäžããŸãã
åç §è³æ
ããã§ã¯ãèšåãããæ¬ãžã®ãªã³ã¯ãæ²èŒãããã®ã§ããã矩人ã®åªåã®ãããã§ãããããçš®é¡ã®äžæçãªå Žæãçããããã¡ã€ã«ãã¹ãã£ã³ã°ãµãŒãã¹ãed2kãããã¯ãŒã¯ããããããããŠã³ããŒãããªããã°ãªããŸããã§ãã...ãããŠèå³æ·±ãèªæžã ãã¡ã³ã»ãã€ãã«ãã«ããããã¬ãŒã²ããã²ãŒãã«ãžããéåžžã«å¥œå¥å¿ã匷ãããç解ããã®ã¯é£ããããã·ã¢èªã§ã¯ååšããªãããã ã
ãã¹ãã¹ã¯ãªãã
æè¿ã®ã€ãã³ãïŒãéãããã®ãã£ãã¯ã¿ã€ã ãžã®ç§»è¡ïŒã«ç §ãããŠãããããã®ãããã¯ã«çŽæ¥é¢é£ããªãå°ããªèª¿æ»ãå®æœããããšæããŸãã ãã®èªç±ãèš±ããŠãã ããã