å 容
- ãã³ãœã«ãšã¯äœã§ããããªãå¿ èŠã§ããïŒ
- ãã¯ãã«æŒç®ãšãã³ãœã«æŒç®ã ãã³ãœã«ã©ã³ã¯
- æ²ç·åº§æš
- ãã³ãœã«å芧äŒã®ãã€ã³ãã®ãã€ããã¯ã¹
- ãã³ãœã«ã®ã¢ã¯ã·ã§ã³ãšãã®ä»ã®çè«çãªè³ªå
- èªç±åºäœã®éååŠã è§é床ã®æ§è³ª
- ãœãªããã®æçµå転ã å転ãã³ãœã«ã®ããããã£ãšãã®èšç®æ¹æ³
- Levi-Civitaãã³ãœã«ã®ç³ã¿èŸŒã¿ã«ã€ããŠ
- æçµå転ã®ãã©ã¡ãŒã¿ãŒã«ããè§é床ãã³ãœã«ã®å°åºã é ãšããã·ããé©çš
- è§é床ãã¯ãã«ãååŸããŸãã æ¬ ç¹ã«åãçµã
- èªç±ãªåãã§ã®äœã®ãã€ã³ãã®å éã ãœãªããã®è§å é床
- åºäœéååŠã«ããããããªã²ããã«ãã³ãã©ã¡ãŒã¿ãŒ
- ãã³ãœã«åŒã®å€æã®åé¡ã«ãããSKA Maximaã ãããªã²ã»ããã«ãã³ã®ãã©ã¡ãŒã¿ãŒã«ãããè§é床ãšå é床
- åäœã®ãã€ããã¯ã¹ã®éæšæºçãªçŽ¹ä»
- éèªç±ãªåºäœéå
- åºäœã®æ £æ§ãã³ãœã«ã®ç¹æ§
- ããããžã£ããã³ãã®ã¹ã±ãã
- ã€ããã³ãå¹æã®æ°åŠçã¢ããªã³ã°
ã¯ããã«
ä»åã®çŽ¹ä»ã¯ãã¢ã¯ãã£ããã§ãã ããã«äœæ¥ãéå§ããåã®èšäº6ããã³9ã®çµæã䜿çšããŠãåºäœã®è§é床ã®æ¬äŒŒãã¯ãã«ãååŸããæçµå転ã®ãã©ã¡ãŒã¿ãŒã§è¡šçŸããŸãã
ãã®ãããMaximaã§ã®é·ãæåã®èŠçãšçãã骚ã®æããå€æã«ãã£ãŠãã©ã³ã¯2ã®é察称è§é床ãã³ãœã«ã¯æ¬¡ã®ããã«èŠãããšããçµè«ã«éããŸããã
Levi-Civitaãã³ãœã«ã§ïŒ1ïŒãæãç³ãããšã«ããè§é床ã®æ¬äŒŒãã¯ãã«ãååŸããæ¹æ³ã«ã€ããŠè©±ããŸããã
ãããããããªãç 究ã«ãããåŒïŒ2ïŒã«ã¯èª€ã£ãçµæã«ã€ãªãããšã©ãŒãå«ãŸããŠããããšã瀺ãããŸããã 解決çã¯ãæç®ãç 究ããLevi-Civitaãã³ãœã«ã®ç³ã¿èŸŒã¿ã«é¢ããèšäºã®çµæãããã«ç解ããããšã§èŠã€ãããŸããã
ãã®çµæãšããŠèµ·ãã£ãããšã«èå³ã®ãã人ãç«ã«æåŸ ããŸãã
ããŒããŒã¯ãŒã¯ã«ç ©ããããããšã¯ãããŸãããMaximaã䜿çšããããããã¡ã€ã«ã«ãèšå®ãããŸã
omega.mac
kill(all); load(itensor); imetric(g); idim(3); <p>depends([u,phi],t);</p> <p>Omega:ishow( (1-cos(phi))*(diff(u([m],[]),t)*u([k],[]) - u([m],[])<em>diff(u([k],[]),t)) + sin(phi)</em>(1-cos(phi))<em>u([],[i])</em>('levi_civita([i,l,k],[])*diff(u([],[l]),t)*u([m],[]) - 'levi_civita([i,j,m],[])*diff(u([],[j]),t)*u([k],[])) + sin(phi)<em>cos(phi)<em>diff(u([],[p]),t)</em>'levi_civita([m,p,k],[]) + diff(phi, t)</em>'levi_civita([m,q,k],[])*u([],[q]))$</p> <p>Omega2:ishow(expand(lc2kdt('levi_civita([],[m,k,r])*Omega)))$</p> <p>Omega3:ishow(canform(contract(expand(Omega2))))$</p>
çµæãåŸã
ãã®åŒãæåã§ç¢ºå®ããåŸãçå®ã«éåžžã«é¡äŒŒããçµæãåŸãããŸã
ããã§ã®ã¿ïŒ3ïŒæ£ç¢ºã«2å以äžã®çå®-å転軞ãåãããã«çœ®ããšã ç§ãã¡ã¯åŸã
ã€ãŸããè§é床ã¯å転軞ã«æ²¿ã£ãŠåããããŸãããå転è§ã®åŸ®åã®2åã§ãã ããã¯ã©ã®ããã«ã§ããŸããïŒ ããã¯äžå¯èœã§ãããäžæ£ç¢ºã¯å®çŸ©ïŒ2ïŒã§è¡ãããŸãã ãã®äžæ£ç¢ºãã®çç±ãå察称ãã³ãœã«ãšæ¬äŒŒãã¯ãã«ã«é¢ããã¢ã€ãã¢ã®æ¹è¯ãããã®èšäºã®ç®æšã§ãã
1.åã³ã©ã³ã¯2ã®å察称ãã³ãœã«ã®ä»éãããã¯ãã«ã«ã€ããŠ
è§é床ãã³ãœã«ãèæ ®ããŸãïŒ1ïŒã ããã¯å察称ãªã®ã§ã誰ãç§ãã¡èªèº«ã§ãããå解ããããšãæ°ã«ããŸãã
çµæïŒ4ïŒã¯ãè§é床ãã³ãœã«ã®å察称æ§ã«åºã¥ããŠããŸãïŒ ïŒãã¯ãããã«ãŒãã«ã¿ã®ç¹æ§ãšãã¬ãããã¿ãã³ãœã«ãšã®é¢é£æ§ã«ã€ããŠã¯ã ããã§è©³ãã説æããŸãã ã
ãããŠä»æ³šç®-ãã¯ãã«ãå°å ¥ããŸã
ãããŠããã®ãã¯ãã«ããåã³ãã³ãœã«ãååŸã§ããããšã¯æããã§ãïŒ1ïŒ
ïŒ4ïŒã«å®å šã«åŸã£ãŠããŸãã ãããŠä»ãïŒ6ïŒãã¯ããã«ïŒ1ïŒã§è¡ã£ãããšãè¡ããŸã-ã¬ã-ããã¿åå€ãã³ãœã«ã§ããŒã«ã¢ããããŸã
ããã§ããã¥ãŒã¹ããããŸãã-å®éãè§é床ãã³ãœã«ãLevi-Chevitaåå€ãã³ãœã«ã§æãç³ããšã1ã€ã§ã¯ãªã2ã€ã®è§é床ãåŸãããŸãã 5çªç®ã®èšäºã§ã¯ãä»éãããã¯ãã«ãååŸããããã«é¢ä¿ïŒ2ïŒãäžããããLevi-Civitaãã³ãœã«ã®ä¹ç®ãšç³ã¿èŸŒã¿ã®èŠåãç¡èŠããããããå°å ¥ã§åŸãããçµæã¯èª€ãã§ãã èšéãã³ãœã«ã®å Žåã®ããã«ãéå€æã®å ŽåãåŒã®å³åŽãšå·ŠåŽã«éãã³ãœã«ãæããã ãã§ååã§ãã ãããããããšã¯éã®ã€ã³ããã¯ã¹ã®ãã¢ã§ç³ã¿èŸŒããšãã®ã¡ããªãã¯ãã³ãœã«ã®ã¿ãã¯ãããã«ãŒãã«ã¿ãäžããŸãããã€ã³ããã¯ã¹ã®ãã¢ã®ãã¢ã§ç³ã¿èŸŒããšãã®Levi-Civitaãã³ãœã«ã¯TWOã¯ãããã«ãŒãã«ã¿ãäžããŸãã ããããšã©ãŒã®çç±ã§ãããçµæã®è¡šç€ºã¯2åã§ããã
ä»éããæ¬äŒŒãã¯ãã«ãååŸããã«ã¯ãé¢ä¿ïŒ5ïŒã䜿çšããå¿ èŠããããŸãã 次ã«ãè§é床ã®æ£ããçµæã«å°éããŸã
ããŠãïŒ8ïŒãååŸããã«ã¯ãå°ãæéãè²»ããå¿ èŠããããŸããã ãããã£ãŠã 8çªç®ã®èšäºã§ã¯ãLevi-Civitaãã³ãœã«ã®ç¹æ§ã«ãã®ãããªæ³šæãæãããŸããã 5çªç®ãš6çªç®ã®èšäºã¯ããã«å¿ããŠä¿®æ£ãããŸãã
ééããç¯ãããšã¯ãç§ã®åºçç©ããã©ããŒããŠããèŽè¡ãèãããšãéåžžã«è¿·æã§ãã ãã ãããã®ãµã€ã¯ã«ã®èšäºã§ã¯ããã³ãœã«èšç®ãšãããå®éã®åé¡ã®è§£æ±ºã«é©çšããæ¹æ³ã®èª¬æã«å ããŠãç§ã®ç¹å®ã®äŸã䜿çšããŠèªç¥ã®ããã»ã¹ã説æããŠããŸãã ãããŠããåç¥ã®ããã«ãèªç¥ã®ããã»ã¹ã¯å€ãã®å埩ã§æ§æãããŠããŸãã
æçµçã«ãç®æšã«å°éããŸãã-ããã«ãéçž®éã¡ããªãã¯ãæã€ä»»æã®åº§æšã«ã€ããŠãæçµå転ã®ãã©ã¡ãŒã¿ãŒã«é¢ããŠè§é床ã®åŒãååŸããŸããã
2.ãªããŸã æ¬äŒŒãã¯ãã«ãªã®ã§ããïŒ
ããã§ãè§é床ãååŸããŸããã ç°¡åã«ããããã«ãäœã®å転軞ããã®æ¹åãå€ããªããšä»®å®ããŸãã 次ã«ãåŒïŒ8ïŒã¯èªæãªåœ¢åŒã«ãªããŸã
è§é床ãã¯ãã«ã®å€å žçãªå®çŸ©ã瀺ããŠããŸã
è§é床ãã¯ãã«ã¯ãå転軞ã«æ²¿ã£ãŠãåæèšåãã«å転ãçºçããããã«èŠããæ¹åã«åããããŸãã
ãªãåæèšåãã§ããïŒ çè«ååŠãç©çåŠãæ°åŠã®ã³ãŒã¹ãèšå®ãããšããããã©ã«ãã®åº§æšç³»ãããã©ã«ãã§äœ¿çšãããããã§ãã åæèšåãã«æ£ã®å転æ¹åãæã£ãŠããŸãã
ïŒ9ïŒã«ç®ãåããŸãã å転è§ã®å°é¢æ°ã®æ£ã®å€ã¯ãè§åºŠãæéãšãšãã«å¢å ããããšã瀺ããŠããŸãã ããã¯ãå転ãæ£æ¹åã§ããããšãæå³ããŸããã€ãŸãã ãããã£ã¯åæèšåãã«å転ããŸãïŒå転軞ã®åäœã¯ç§ãã¡ãèŠãŸãïŒã å転äžã®ããã£ãã€ã³ãã®é床ã¯ããªã€ã©ãŒå ¬åŒã«ãã£ãŠæ±ºå®ãããŸã
ãããŠããã§ã-é床ãã¯ãã«ã¯ãè§é床ããååŸãã¯ãã«ãžã®æçå転ãæ£æ¹åãã€ãŸãåæèšåãã«çºçããããã«èŠããæ¹åã«åããããŸãïŒå³1ïŒã
å³ 1.åäœã®å転-æ£ãã座æšç³»
次ã«ã座æšç³»ãå·Šã«å€æŽããŸãïŒå³2ïŒ
å³ 2.åäœã®å転-巊座æšç³»
身äœã¯ãã©ã®åº§æšç³»ã§ãããèæ ®ããããæ°ã«ããŸããã å転ããå Žæã§å転ããŸãã ãã ããæ°ããã·ã¹ãã ã®åºæºå転è§ã®æ£æ¹åã¯æèšåãã§ãã ãããã£ãŠã身äœã®æ¢åã®å転æ¹åã§ã¯ãå転è§åºŠãæžå°ãã ããã®åŸãè§é床ãã¯ãã«ã¯ãïŒ9ïŒã«åŸã£ãŠãå察æ¹åã«å€ãããŸãã
äœã®å 端ã®é床ã¯ã©ããªããŸããïŒ ããããäœããããŸãã-ïŒ10ïŒã«ããã°ããã¯ãã«ã¯ãè§é床ããååŸãã¯ãã«ãžã®æçå転ãæèšåãã«çºçããããã«èŠããå Žæã«åããããŸããããã¯ãæ°ãã座æšç³»ã§ãã®ãããªæ£ã®æ¹åãéžæãããŠããããã§ãã ããã¯ãããã£ãã€ã³ãã®é床ãã¯ãã«ã®æ¹åãåããŸãŸã§ããããšãæå³ããŸãã
å³ã®åº§æšç³»ããå·ŠãžããŸãã¯ãã®éã«ç§»åãããšããã€ãŸãåºåºã®åããå€æŽãããšãè§é床ãã¯ãã«ã®æ¹åãå€ããããšãããããŸãã ãããã£ãŠãäžå¯æ¬ ãªå¹ŸäœåŠçãªããžã§ã¯ããšããŠãåºåºã®å€æŽã«å¯ŸããŠäžå€ã§ã¯ãããŸããã ãã®ãããªãã¯ãã«ã¯ã ç䌌ãã¯ãã«ãšåŒã°ããŸã ã ãããã¯è»žãã¯ãã«ãšãåŒã°ããäºå®ã匷調ããŸãããã¯ãã«ã®æ¹åã¯ããã®åº§æšç³»ã§éžæãããæ£ã®å転æ¹åã«ãã£ãŠæ±ºãŸããŸãã
å察ã«ãé床ãã¯ãã«ã¯ãåºåºã®åããå€æŽããŠãæ¹åãå€ããã çãŸãã¯æ¥µãã¯ãã«ãšåŒã°ããŸã ã
çã®ãã¯ãã«ã®ãã¯ãã«ç©ã®çµæã¯ã軞ãã¯ãã«ã§ãã ãããããªãïŒ10ïŒã¯çã®ãã¯ãã«ãäžããã®ã§ããããïŒ ãã ããåŒæ°ã®1ã€ã¯è»žæ¹åãã¯ãã«ã§ãããå·Šã®åº§æšç³»ã«ç§»åãããšãã«æ¹åãå€æŽãããšããã¯ãã«ç©ã®æ¹åã®å€æŽããªããªããŸãã ãããã£ãŠãç䌌ãã¯ãã«ãšçã®ãã¯ãã«ã®ãã¯ãã«ç©ã¯ãçã®ãã¯ãã«ãçæããŸãã
ãã®æå³ã§ãè§é床ãã¯ãã«ã¯ããäžäŸ¿ã§ãã ãããã£ãŠãåºäœååŠã®ãã³ãœã«é¢ä¿ãå°åºãããšãã¯ã座æšç³»ã®ä»»æã®å€æã«é¢ããŠäžå€ã®è§é床ãã³ãœã«ã«äŸåããæ¹ãé©åã§ãã
3.å°ãã®ç·Žç¿-è§é床ãã³ãœã«ããã®ãªã€ã©ãŒã®éåæ¹çšåŒã®å°åº
èªè ãé¢åãªå ¬åŒã«é£œãããããåŸãããé¢ä¿ã®å®éçãªäŸ¡å€ãç解ã§ããããã«ãäœã®å転ã®ä»»æã®ãã©ã¡ãŒã¿ãŒãéããŠè§é床ã®æåã®è¡šçŸãååŸããæ¹æ³ã®äŸã瀺ããŸãã ããšãã°ããªã€ã©ãŒè§ãéããŠã
ãã«ã«ãå³åº§æšç³»ã§äœæ¥ããŸãã ãªã€ã©ãŒè§ã䜿çšãããšãå³3ã«ç€ºãããã«ã空éå ã®åäœã®ä»»æã®æ¹åãæå®ã§ããŸãã
å³ 3.ãªã€ã©ãŒè§-軞zãxãzã®åšãã®æ¥ç¶ããã座æšç³»ã®é 次å転
身äœã®ä»»æã®æ¹åã¯ã3ã€ã®é£ç¶ããå転ã«ãã£ãŠååŸã§ããŸãã ïŒç« åã®è§åºŠïŒã次ã«è§åºŠã«ããx軞ã®æ°ããäœçœ®ã®åšã ïŒæ³å·®è§ïŒãããã³è§åºŠã«ããz軞ã®æ°ããäœçœ®ã®åšã -èªèº«ã®å転è§åºŠã
ããã¯ããã«ã«ã座æšã®å転è¡åããzãxãz軞ã®åšãã®å転ã®ç·åœ¢å€æã®åæã®ããã«èŠããããšãæå³ããŸã
次ã«ãïŒ11ïŒãããã®åŒã®1ã€ã«é©çšããŠãå転ãã³ãœã«ãååŸããŸãã
ãã«ã«ãããŒã¹ã§äœæ¥ãããããèšéãã³ãœã«ã¯åäœè¡åã§è¡šãããŸãã SKAã䜿çšãã埮åãšè¡åä¹ç®ã®å®è¡ïŒãã®ãããªã³ãã³ãã䜿çšããMapleãªã©ïŒ
restart; <p>with(LinearAlgebra):</p> <p>A01 := Matrix( [ [cos(psi(t)), -sin(psi(t)), 0], [sin(psi(t)), cos(psi(t)), 0], [0, 0, 1] ]);</p> <p>A12 := Matrix( [ [1, 0, 0], [0, cos(theta(t)), -sin(theta(t))], [0 ,sin(theta(t)), cos(theta(t))] ]);</p> <p>A23 := Matrix( [ [cos(phi(t)), -sin(phi(t)), 0], [sin(phi(t)), cos(phi(t)), 0], [0, 0, 1] ]);</p> <p>B := A01 . A12 . A23;</p> <p>dBdt := map(diff, B, t);</p> <p>Omega := map(simplify,B^(-1) . dBdt, trig);</p>
å転ãã³ãœã«è¡åãååŸããŸã
ïŒ12ïŒããã身äœã«é¢é£ä»ãããã座æšç³»ã®è§é床ã®æåãååŸããã®ã¯ç°¡åã§ã
ååŠã®å°é家ã¯ãïŒ13ïŒ-ïŒ15ïŒã§ãè§é床ãã¯ãã«ãäœã®å転ã®ãã©ã¡ãŒã¿ãŒãšé¢é£ä»ãããªã€ã©ãŒéåæ¹çšåŒã確å®ã«åŠç¿ããŸãã
åæ§ã«ãè§é床ã¯ä»»æã®å転ãã©ã¡ãŒã¿ãŒã«é¢é£ä»ããããšãã§ããŸãã è§é床ãæçµå転ã®ãã©ã¡ãŒã¿ãŒã«é¢é£ä»ããããšã«ãããäžè¬çãªæ¹æ³ã§åŒïŒ8ïŒãåŸãããã«ãã¹ãŠã®å€æãè¡ããŸããã ãã ããè¡šçŸïŒ8ïŒãè¡šçŸïŒ13ïŒ-ïŒ15ïŒããåäœã®éåã®åç解æã«ã¯äŸ¿å©ã§ã¯ãããŸãããäžèšã®åŒã¯ãã©ã¡ãŒã¿ã®ç¹å®ã®å€ã«å¯ŸããŠçž®éããããã§ãã å°æ¥çã«ã¯ãïŒ8ïŒã䜿çšããŠãçž®éã®åœ±é¿ãåããªãåå æ°æåã§è¡šãããè§é床ã«ç§»åããŸãã ãããŠããã®äŸã¯ãã¹ãã§ãããå®äŸã§ãã
ãããã«
ãã®æ³šèšã®å€§éšåã¯ã以åã®åºçç©ã§è¡ããããšã©ãŒããã³äžæ£ç¢ºæ§ã«é¢ããäœæ¥ã§ãã ããããçµæã¯éæãããŸãã-æçµå転ã®ãã©ã¡ãŒã¿ãŒãä»ããŠäœã®è§é床ãã¯ãã«ã®å®çŸ©ãåŸãŠãè§é床ãæ¬äŒŒãã¯ãã«ã§ããããšãæ確ã«ç€ºããŸããã
ãæž èŽããããšãããããŸããïŒ
ç¶ç¶ããã«ã¯...