ãããããªãŒã®ä»çµã¿ã§ããããã§ã¯ãããããããããããã«ãçµã¿åããåŒã§ã¯ãªãç®è¡åŒãèšç®ããŠããŸãã å³ã®ã¹ãããã¯ãã·ã³ã®1ããŒãã§ãã
ããã§ãåæã®ãããã¿ã€ãã®æºåãæŽããŸãããã¿ã¯ãããªãŒãœãããŠã§ã¢ã·ãã¥ã¬ãŒã¿ãŒã®åœ¢åŒãšFPGAã§ã®å®è£ ã®åœ¢åŒã®äž¡æ¹ã§ååšããŸãã
ã€ããªãã®ãŒ
åŸæ¥ã®ã¢ãŒããã¯ãã£ã®ã³ã³ãã¥ãŒã¿ãŒã¯äžçãå€ããŸããããä¿¡ããããªãã»ã©ã®ãé ãããæé·ã®æéã¯æããã«çµãããŸããã äž»ãªå¶éèŠå ã®1ã€ã¯ã䞊ååã劚ããããã»ããµãšã¡ã¢ãªéã®ããã«ããã¯ã§ãã é¢æ°åããã°ã©ãã³ã°ã¯ããã©ã³ãã€ãã³éäžåã¢ãŒããã¯ãã£ã®å¶éãåé¿ããé åçãªæ¹æ³ã§ãããé¢æ°åã¢ãããŒãã«åºã¥ããŠã³ã³ãã¥ãŒã¿ãŒã¢ãŒããã¯ãã£ãäœæããããšããè©Šã¿ã¯æåããŠããŸãã ã
ããããæéãçµã€ã«ã€ããŠããã€ã¯ããšã¬ã¯ãããã¯ã¹æè¡ã¯æ¹åãããããæ°äž»çã«ãªããŸãã ã³ã³ããããªã¢ã«ããžãã¯ã«åºã¥ããŠã³ã³ãã¥ãŒã¿ãŒãäœæããããšããŠããŸãã èšç®åé¡ã¯åŒãšããŠå ¬åŒåãããŸã-ã³ã³ãããŒã¿ãŒé¢æ°ã®çžäºã®ã¢ããªã±ãŒã·ã§ã³ã®ããªãŒïŒ
// ( ) 2+3 = + 2 3 = + ( +1 1 ) ( +1 1 1 ) = + ( +1 1 ) ( +1 +1 1 ) `` ``si`k`s``s`ksk ``s``s`ksk i ``s``s`ksk ``s``s`ksk i
ããã°ã©ã ã®å®è¡ã¯ããã®åŒããçããåºãç°¡åãªåœ¢åŒã«å€æããããšãšç解ãããŸãã ã·ã¹ãã ã¯ãã¥ãŒãªã³ã°å®å šã§ãããæ¬ ç¹ããããŸãããã¹ãŠã®åŒãèšç®ã§ããããã§ã¯ãããŸããã çµã¿åããããžãã¯ã䜿çšããŠäœããèšç®ããæ¹æ³ã®è©³çŽ°ã«ã€ããŠã¯ã ãã¡ããšãã¡ããã芧ãã ããã
建ç¯
äž»ãªã¢ã€ãã¢ã¯ãã³ã³ãããŒã¿ã䜿çšã§ããã»ã«ã®ããŒããŠã§ã¢ããªãŒã«ããã°ã©ã ããªãŒãé 眮ããããšã§ãã
ãªãããŒããŠã§ã¢ããªãŒãªã®ãïŒ å®éãããã°ã©ã ããªãŒãéåžžã®1次å ã¢ãã¬ã¹ç©ºéã«æ圱ãããšãéããŒã«ã«ã®ãé·ããæ¥ç¶ãå¿ ç¶çã«çºçããŸãã ããªãŒåŒã®ãã©ããã¬ã³ãŒãã®äŸã次ã«ç€ºããŸãããïŒA * BïŒ+ïŒC * DïŒ-Eãããã§ãã+ãã¯ã-ãã®ããŒã¿ãœãŒã¹ã§ãããåŒã§ã¯ééã空ããŠããŸãã
é亀差ãµãããªãŒã¯ãç¬ç«ããŠåæã«èšç®ã§ãããããèªç¶ãªäžŠåæ§ãåŸãããŸãã å ±æã¡ã¢ãªã¯ãããŸãããããŒã¿ã¯ããŒã«ã«ã«ä¿åãããŸããã€ãŸãããããã»ããµ-ãã¹-ã¡ã¢ãªããšããã®ã©ã¯ãããŸããã ãµãããªãŒã®ã³ããŒãé€ããã¹ãŠã®æäœã¯é«éã§ãã åã®èšäºã§ããã®ãããªæ§é ã®ããªãŒã䜿çšããŠæ°å€ããœãŒãããæ¹æ³ã瀺ããŸããã
ãããã£ãŠãããæ©èœããå¥ã®æ©èœãžã®ã¢ããªã±ãŒã·ã§ã³ã®ããªãŒãããã
ããã§ãèã¯åºæ¬é¢æ°ã§ã;çµã¿åããè«çã®å Žåããããã¯åºæ¬çãªçµã¿åãããããšãã°éåSãKãIã§ãã
Ix = Ix = x - Kxy = (Kx)y = x - Sxyz = ((Sx)y)z = (xz)(yz) -
ããŒããŠã§ã¢ããªãŒã®SKI
ã¢ã»ã³ãã©ãŒã®æ§æã¯ãé£è§£ãªé¢æ°åããã°ã©ãã³ã°èšèªunlambdaããåçšãããŠããŸãïŒ ãã®åºçç©ã§æåŸã«çŽæãããŠãããšããïŒã
`ix = Ix ``kxy = (Kx)y ```sxyz = ((Sx)y)z
ãã®ãœãªã¥ãŒã·ã§ã³ã«ãããunlambdaã€ã³ã¿ãŒããªã¿ãŒã䜿çšããŠèšç®ã®æ£ç¢ºæ§ãæ€èšŒã§ããŸãã
ããã§ããã©ã€ã ïŒ `ïŒã¯é¢æ°ãé©çšããããã®èšå·ã§ãã ãã¬ãã£ãã¯ã¹è¡šèšãã€ãŸã `fx = fïŒxïŒã䜿çšãããŸãã
FïŒGïŒXãYïŒãHïŒZãVïŒïŒ= `` F``GXY``HZV
ãã®åœ¢åŒã§åŒããã·ã³ã®å ¥åã«éãããŸãã ããŠã³ããŒãã¯ããªãŒã®ã«ãŒããä»ããŠè¡ãããå€éšããã€ã¹ã¯ããã°ã©ã ãã£ã©ã¯ã¿ãŒãã«ãŒãããŒãã«è»¢éããæåã®ãã£ã©ã¯ã¿ãŒã¯ãããååŸããæ®ãããã®åå«ã«æž¡ããŸããååå«ã¯ååž°çã«ããŠã³ããŒãæé ãå®è¡ããŸãã ãµãããªãŒãå®å šã«åä¿¡ãããšãããŒãã¯ãããç¥å ã«å ±åããããã°ã©ã ã®äžéšã®å®è¡ãéå§ããŸãã
äœæ¥äŸ
ããšãã°ãããŒã«åŒ"ïŒ1 | 0ïŒïŒïŒ0 | 1ïŒ"ãèšç®ããŸãã çµã¿åããããŒã¹ã§ã¯ãããã¯`` `` ssk````siik`ki````sii`kikãšããŠè¡šãããšãã§ããŸãã¯ãããã®ãããªè¡šçŸã¯èªãããšãã§ããŸãããã æç§æžãåç §ããŠæžãããšãã§ããŸãã ãã®çš®ã®ããã°ã©ã ãå®è¡ããçµæããã·ã³ã®ç¶æ ã¯å ã®åŒããåäžã®ããŒã«å€ïŒ ãkããšããŠãšã³ã³ãŒããããã1ããŸãã¯ãkiãã®åœ¢åŒã®å€ã0ãïŒã«é²åããŸãã ãã®ç¹å®ã®åŒã§ã¯ãæ£ç¢ºã«ãkããåŸãããŸãã
èšç®ã«ã¯116ã¯ããã¯ãµã€ã¯ã«ããããŸãã ãããã®ãã¡ãæåã®67ã®æž¬å®ã¯ããã°ã©ã ã®ããŒããç¶ç¶ããŸãã å®çšæ§ã®èŠ³ç¹ããã¯ããã®æ°å€ã¯æåŸ ã§ããŸããããæé©åã®å¯èœæ§ããããŸããããšãã°ãããè±å¯ãªçµã¿åããã®ã»ããã䜿çšãããšãããã°ã©ã ã®ãµã€ãºãšå®è¡æéã®äž¡æ¹ãåæžãããŸãã
ã·ãã¥ã¬ãŒã¿ããã³FPGAããŒãžã§ã³
説æãããçµæã¯ããœãããŠã§ã¢ã·ãã¥ã¬ãŒã¿ã§ååŸãããŸããã ããã§åã€ããã®ãœãŒã¹ãšå®è¡å¯èœãã¡ã€ã«ã ã·ãã¥ã¬ãŒã¿ãŒã¯ã³ã³ãœãŒã«ã¢ããªã±ãŒã·ã§ã³ã§ãããã€ã³ã¹ããŒã«ã¯äžèŠã§ããçµã¿åããåŒã¯ã³ãã³ãã©ã€ã³ãã©ã¡ãŒã¿ãŒãšããŠæž¡ãããŸãã
ã€ã³ã¿ã©ã¯ãã£ãã¢ãŒãã®ã·ãã¥ã¬ãŒã¿ãŠã£ã³ããŠã®ç°¡åãªèª¬æ
1ïŒå ¥åããã°ã©ã
2ïŒããã¹ããšããŠã®ããã°ã©ã ã®çŸåšã®ç¶æ
3ïŒããŒããŠã§ã¢ããªãŒã®å®å šãªç¶æ
4ïŒçŸåšã®ããŒãã®ã¹ããŒã¿ã¹ã®ãã³ãŒã
1ïŒå ¥åããã°ã©ã
2ïŒããã¹ããšããŠã®ããã°ã©ã ã®çŸåšã®ç¶æ
3ïŒããŒããŠã§ã¢ããªãŒã®å®å šãªç¶æ
4ïŒçŸåšã®ããŒãã®ã¹ããŒã¿ã¹ã®ãã³ãŒã
ãã¢ä»ãã®å°ããªãããªã§ã
ã·ãã¥ã¬ãŒã¿ã¯ãverilogã«å®è£ ãããŠããFPGAããŒãžã§ã³ã«æ£ç¢ºã«å¯Ÿå¿ããŠããŸãããæ ¹æ¬çãªéãã1ã€ãããŸããç©çãªãœãŒã¹ã®å¶éã¯ãããŸããã ã€ãŸããã·ãã¥ã¬ãŒã¿ã«ã¯æœåšçã«ç¡éã®ããªãŒãããããã®ããªãŒã¯FPGAäžã§å¶éãããŠããŸãã 63ããŒãã®ããªãŒãã€ãŸãæ·±ã6ã¯16,000ã®Altera LEãå æããŸãã èšç®ããã»ã¹äžã«ããã°ã©ã ã倧ãããªããšãèšç®ã¯å€±æããŸãã ããŒããŠã§ã¢ããŒãžã§ã³ã®å¯äžã®å©ç¹ã¯ãããŒããŠã§ã¢ã®åºæ¬çãªå®çŸå¯èœæ§ã瀺ãããšã§ãã
èšç®ã«æ»ããŸãã ããã§ã¯ãç®è¡åŒïŒ2 + 1ïŒãèšç®ããŸãããã ãããçµã¿åããè«çã®èšèªã«ç¿»èš³ããããã«ãæäŒçªå·ã䜿çšããŸãã åŒ`` `` si`k`s``s`kski``s``s`sskiãååŸããŸãã æå³ã®ããäœããåŸãããã«ããã®åŒã次ã®ããã«çœ®ãæããŸãïŒ ``ïŒ2 + 1ïŒki ã ãããèšç®ãããšã `k`k`kiãåŸãããŸããæåæ°kã¯åä¿¡ããåçã象城ããŠããŸãã èšç®ã«ã¯124ã¯ããã¯ãµã€ã¯ã«ããããŸãã ãããã ãïŒ1 + 2ïŒkiã®èšç®ã«ã¯ãã§ã«243ãµã€ã¯ã«ãããã ãïŒ3 + 3ïŒkiã«ã¯ 380ãµã€ã¯ã«ãããŸãã æ²ããããªããã¹ãŠã¯éåžžã«é ãã§ããã以äžã«å éçµè·¯ã®æŠèŠã瀺ããŸããã
äžããããäŸã¯ãåçŽã§ç¡æ¡ä»¶ã®ã厩å£ãããè¡šçŸã§ã;å®éã«ã¯ããã®ãããªã¿ã¹ã¯ã¯äŒçµ±çãªæ©æ¢°ã«ãã£ãŠæãããå®è¡ãããŸãã ãã ããå®å šãªãã¥ãŒãªã³ã°ã·ã¹ãã ã§ããçµã¿åããããžãã¯ã䜿çšãããšãèšç®ã®è€éãã®åé¡ã解決ã§ããŸãã察å¿ããåŒã¯ãèšç®ã®éçšã§å€§ãããªãå¯èœæ§ããããŸãã 確ãã«ããã®ããããã£ã¯å¶åŸ¡ã§ããªãæé·ã®ãªã¹ã¯ããããããããã°ã©ã ãçµäºããããšãããããŸããããææ¡ãããã¢ãŒããã¯ãã£ã¯ãã®ãããªã¿ã¹ã¯ã§ã®ã¿å©ç¹ã瀺ãããšãã§ããŸãã ããã®èª¬æã§ã¯ãã«ãŒããšååž°ã衚瀺ãããŸãããããããæŽçããããã®å€å žçãªæ§é ã¯åºå®å°æ°ç¹ã®çµã¿åããã§ãã
`Yx =` x`Yx = `x`x`Yx =` x`x`x`x ...
YïŒxïŒ= xïŒYïŒxïŒïŒ= xïŒxïŒxïŒxïŒ...ïŒïŒïŒïŒ
å®éã®ã³ã³ããããªã¢ã«ãã·ã³ã®ä»®æ³ã¢ããªã±ãŒã·ã§ã³
è«çççµè«
äžèšã®2ã€ã®ç°¡åãªäŸã¯ãããŒã«èšç®ãç®è¡ãããèå³æ·±ãããã«èŠããããšã瀺ããŠããŸãããã·ã³ã¯ãªããžã§ã¯ãã®ãµã€ãºã«éåžžã«ææã§ãã ããããããŒã«åŒã®èšç®èªäœã¯ææã§ã¯ãããŸãããã¿ã¹ã¯ã¯ãã·ãŒã±ã³ã·ã£ã«ãã·ã³ã§ãã£ãŠãOïŒ1ïŒã§å®è¡ãããŸããã€ãŸããããã°ã©ã ã¯å®è¡ããããããé·ãããŒããããŸãã
ãã®ãæ¬ åŠãã¯ã SATã¿ã¹ã¯ã奪ãããŠããŸãã ããã§ã¯ãå€æ°ã§è£è¶³ãããããŒã«åŒããããåŒãæç«ãããã©ãããå€æããå¿ èŠããããŸãã ããã¯ãã§ã«NPå®å šãªåé¡ã§ãã å€æ°å€ã®è€æ°ã®ã»ãããåæã«ãã§ãã¯ããããšã§ãå€§å¹ ãªå éãå®çŸã§ããŸãã ç§ãä»æ³šç®ããŠããã®ã¯ããã®ã¿ã€ãã®ã¿ã¹ã¯ã§ãã ã·ã³ããªãã¯èšç®ãå®çã®èªå蚌æãªã©ãäºæž¬äžå¯èœãªåå²ãšå€§ããªæ°ã®åé¡ã¯èå³æ·±ããã®ã§ãã
çæ³çãªåé¡ã¯ãæåã«çš®ããããªãŒã®ããã«æé·ããã§ããã ãå€ãã®äžŠåãã©ã³ãã圢æããå°ããªåŒã§å®åŒåããå¿ èŠããããŸãã次ã«ããã©ã³ãããã®çµæãçµã¿åãããŠæãè¿ããŸãã
åæ§æå¯èœãªã³ã³ãã¥ãŒãã£ã³ã°
å¯èœãªã¢ããªã±ãŒã·ã§ã³ã«ã¯ã åæ§æå¯èœãªã³ã³ãã¥ãŒãã£ã³ã°ãšããå¥ã®é åããããŸãã ããã¯ãã³ã³ãããŒã¿ãŒã§ã¯ãªããèšèªã®å€éšã§ç¹å¥ãªæå³ãæã€ç¹å¥ãªãããã¯ã§æ©æ¢°ã®ã¢ã«ãã¡ããããè£ããšããèãæ¹ã§ãã ã³ã³ããããªã¢ã«ãã·ã³ã¯2ã€ã®ãã§ãŒãºã§åäœããæåã®ãã§ãŒãºã§åäœããŸãã ããã°ã©ã ã®å®è¡äžã«ããã¹ãŠã®ã³ã³ãããŒã¿ãŒãèšç®ããå¿ èŠããããïŒç¬¬2ãã§ãŒãºã§ïŒã¿ãŒã²ããäœæ¥ãå®è¡ããå¿ èŠãªæ§é ã圢æããç¹å¥ãªãããã¯ã®ã¿ãæ®ããŸãã
ããšãã°ãè«çèŠçŽ ãç¹å¥ãªãããã¯ãšããŠäœ¿çšããå ŽåãåçFPGAãååŸã§ããŸããèŠæ±ã«å¿ããŠãå¿ èŠãªå®æ°ã«ããä¹ç®åšããŸãã¯ãã©ã¡ãŒã¿ãŒåãããå ç®åè·¯ããèšç®ãããããã深床ã®å ç®åšãªã©ãèŠæ±ã«å¿ããŠåçFPGAã圢æã§ããŸã
ãã§ã«ãã§ãã¹ããŒæ°ïŒ3 + 3ïŒãã³ã³ãããŒã¿kããã³iã«é©çšãããšããäžèšãšã»ãŒåãããšãè¡ããŸãããã³ã³ãããŒã¿ã¯èšç®ããã»ã¹ã§ïŒé¢æ°ãšããŠïŒå®è¡ããããçµæãèŠèŠåããããã«äœ¿çšãããŸãã kãåäžãããå ç®åšã«çœ®ãæãããšãèšç®ãå®äºãããŸã§ã«ããã6ã®æ¡ä»¶ä»ãå ç®åšãåŸãããŸãã
ãã®æœåšçãªã¢ããªã±ãŒã·ã§ã³ã¯ãåæ§æãããŸãé »ç¹ã«å¿ èŠãšãããªãéããããã©ãŒãã³ã¹ãããã»ã©èŠæ±ããŸããã
éçºã®æ¹åãåé¡ãããã³å¯èœãªè§£æ±ºç
ããŒãã®å¹ççãªäœ¿çš
æ©èœããã°ã©ã ããªãŒã¯éåžžã«ãŸã°ããªã®ã§ããã©ã³ã¹ã®åããéçãªãã€ããªããªãŒäžã«çœ®ãããšã¯éåžžã«äžå©ã§ãã ãããã£ãŠãè¿ãå°æ¥ã ã»ã«ã©ãŒãªãŒãããã³ã®åçã§åäœããéåžžã®ã°ã©ãäžã«ååšããããŒããŠã§ã¢åçããªãŒãžã®ç§»è¡ã
ãã®ãããªãã®ã¯ãå·ŠåŽãè¡šçŸã§ãããå³åŽãä»®æ³æ©åšã®æ·èšã§ã
ããããã°ã©ãã¯æéã§ãããå€ãã®é¢æ°åŒã¯ç¡éã«æé·ããåŸåããããŸããç¹ã«æŽ»çºãªå®è¡ã®å Žåã¯ããã§ãã ããã¯ãä»åŸå¯ŸåŠããå¿ èŠãããå¥ã®åé¡ã§ãã é 延èšç®ã§ã¯ãªããšãã«ã®ãã·ã¥ãªèšç®æŠç¥ã䜿çšãããŠãããããããããä¿®æ£ããå¿ èŠããããŸããããããè¡ãã«ã¯ãå®çšã«è¿ãã¢ãã«ã®åé¡ãèŠã€ããå¿ èŠããããŸãã
ã³ãã³ãã·ã¹ãã æ¡åŒµ
ããŒããŠã§ã¢ã§å®è£ ãããã³ã³ãããŒã¿ãŒã®ã»ãããæ¡åŒµããããšã«ãããæé©åã®é¢ã§ããã€ãã®å©ç¹ãåŸãããšãã§ããŸããçŸåšãSKIã®åºæ¬ã»ããã䜿çšããŸãã
Bxyz = x(yz) - y Cxyz = xzy - , Wxy = xyy - , Yx = x(Yx) - . (+1)nfx = f(nfx) -
çŸæç¹ã§ã¯å ¥åºåã¯ãããŸãããçãã¯ãå®è¡äžã«å€æãããããã°ã©ã æ¬äœã«ãã£ãŠäžããããŸãã IOãå®è£ ããããšã¯å¯èœã§ããããããŸã§ã®ãšããããã®ã¿ã¹ã¯ã¯ç§ã®åªå äºé ã§ã¯ãããŸããã
çŸåšããã·ã³ã¯å€æž¡ãã®ãã©ã¡ãŒã¿ãŒã䜿çšããŠãããããå®éã«ã¯ã»ãšãã©ã®å Žåããã·ã³ã¯ã³ããŒã«åŸäºããŠãããããåŒæ°ãã³ããŒããå¿ èŠããããŸãã åç §ã«ãã転éãå®è£ ããã®ã¯é åçã§ãããœãããŠã§ã¢ã€ã³ã¿ãŒããªã¿ãŒã«ãšã£ãŠããã®ãããªç§»è¡ã®å¹çã¯æ¡éãã«åäžããŸãã ããŒãã®ããŒããŠã§ã¢ãããã¯ãŒã¯ã§ãããå®è£ ããæ¹æ³ã¯ãŸã ããããŸããããããããã®å®çšçãªã¿ã¹ã¯ã衚瀺ãããããçå£ã«ãããè¡ãã€ããã§ãã
ãã·ã³ã®æ©èœãæœåšçã«æ¡åŒµãããã1ã€ã®æ©èœã¯ãããŒããŠã§ã¢ãã¿ãŒã³ãããã³ã°ã§ããç¹ã«ããµãããªãŒã®åçæ§ããã§ãã¯ããŸãã
ããã°ã©ãã³ã°ã®ã¬ãã«ãæ¹åããããšãåªå 床ã®é«ãã¿ã¹ã¯ã®ãªã¹ãã«å«ãŸããŠããŸããããã¹ãŠã®åªåã¯ã·ãã¥ã¬ãŒã¿ãŒã®æ¹åã«åããããŠããŸãã
ã©ã ãã«ã€ããŠ
çµã¿åããè«çã®ã¯ããã«æåããå§åŠ¹ã¯ãã©ã ãèšç®ã§ãã é¢æ°åããã°ã©ãã³ã°ã®ãã®ãªãã·ã§ã³ã®èšç®ããªãŒãå€æŽããããšã¯å¯èœã§ããïŒ ååãšããŠãã¯ãã äž»ãªè¿·æã¯ãå€æ°åãç¡éã«ããå¯èœæ§ãããããšã§ããã€ãŸããå€æ°åŒã³åºãã1ã€ã®ããŒããŠã§ã¢ããŒãïŒæçµïŒã«ã¹ã¿ãã¯ããããšã¯ã§ããŸããã ããããããã¯è§£æ±ºå¯èœã§ãã ååãšããŠãããäžè¬çãªã¢ãã«ãšããŠã©ã ãèšç®ã«åãæ¿ããããšãã§ããŸãã ã³ã³ãããŒã¿ã¯ãµãããªãŒæäœã«ãããšã¬ã¬ã³ãã«æ圱ããããããã³ã³ããããªã¢ã«ããžãã¯ã«æ±ºããŸããã
èæ¯
ç§ã¯ã10幎åã«MIREA倧åŠé¢ã§å匷ãããšãã«ãäžåžã®Vadim Nikolayevich Falkããæ©èœããã°ã©ã ã®å°éçãªèšç®æ©ãäœæãããšããã¢ã€ãã¢ãæ¡çšããŸããã ããŒã ã®ç§åŠçç 究ã¯ãæ©èœçããã³æ©èœçè«çããã°ã©ãã³ã°ã®åéã«ãããçè«çç 究ã«çŠç¹ãåãããŸããã ç¹ã«ãFalkã¯äžçš®ã®æ©èœçã¢ã»ã³ãã©ãŒã§ããFalgolèšèªãéçºããŸããã 圌ã¯ãããã°ã©ã ã®æ£ããã蚌æãããªã©ãçè«çããã³èšç®çãªç®çã®ããã«èªåèªèº«ãäœçœ®ã¥ããŸããããããã«åºã¥ããŠã³ã³ãã¥ãŒã¿ãŒãæ§ç¯ããè©Šã¿ããããŸããã
æ£çŽã«èšã£ãŠãç§ã¯å°ãéãããšãããŠãæ¬åœã«æåããŸããã§ããããæ©èœçãªè«çã³ã³ãã¥ãŒã¿ãŒãäœæãããšããã¢ã€ãã¢ãæ€ãä»ãããã10幎åŸã«ããã¯èœçããŸããã ãã®éãã£ãšããã€ã¯ãåè·¯ãå«ãéãéçºããäŒç€Ÿã§ã·ã¹ãã ããã°ã©ããŒãšããŠåããŠããã®ã§ãããžã¿ã«åè·¯ã®åºç€ãç¿åŸããåé¡ãããŒããŠã§ã¢ãããã¿ã€ãã«æã¡èŸŒãããšãã§ããŸããã
ãããã«
ãããžã§ã¯ãã¯é²è¡äžã§ãã ããã€ãã®èå³æ·±ããã©ãã€ã ã®æ©èœãçµã¿åããããã€ãã³ã³ã³ãã¥ãŒã¿ãŒã®èæ¯ã§ã¯ãªãããããã¿ã€ããäœæããããšãã§ããŸãããé¢æ°åããã°ã©ãã³ã°ãã»ã«ãªãŒãããã³ã ã¢ããã°ã¯ç§ã«ã¯ç¥ãããŠããªãã FPGAãªãã·ã§ã³ã¯ã容éã®å¶éã«ããã»ãšãã©åœ¹ã«ç«ããªãããããŒããŠã§ã¢ã¢ãã«ãšå®å šã«äžèŽãããœãããŠã§ã¢ã·ãã¥ã¬ãŒã¿ã䜿çšãããšãããã°ã©ã ã®å®è¡ã調ã¹ãããšãã§ããŸãã çŸåšã®åœ¢åŒã§ã¯å®çšåã®è©±ã¯ãããŸãããããã·ã³ã®å°æ¥ã®äœ¿çšã®ç®æšãšãªãã¢ãã«ã¿ã¹ã¯ãæ¢ã«æ¢ããŠããŸãã
çµè«ãšããŠãé»åæ©åšã®è¿ä»£çãªéçºã«ãããéåžžã«éèŠãªã¢ã€ãã¢ãå®è£ ã§ããããã«ãªããŸããããããã¯éªšã®æããä»äºã§ãã ãæž èŽããããšãããããŸããã
åç §è³æ
R. V. Dushkinå¥ådarkus ãã³ã³ãããŒã¿ãŒã¯ç°¡åã
ãã€ãããã»ããã¢ãUnlambdaããã°ã©ãã³ã°èšèªã
Unlambdaèšèªã€ã³ã¿ãŒããªã¿ãŒ