Mathematicaã¯ãå€ãã®ããã°ã©ãã³ã°ãã©ãã€ã ãé«åºŠãªãããã°ããŒã«ãèªåã€ã³ã¿ãŒãã§ãŒã¹èšèšãªã©ããµããŒãããæè»ãªèšå·èšèªã«åºã¥ããŠããŸãã èšèšããå®è£ ãŸã§ã®éçºããã»ã¹å šäœãç°¡çŽ åããŸãã Mathematicaã®ãã¹ãŠ-ããŒã¿ãããã°ã©ã ãåŒãã°ã©ããããã¥ã¡ã³ã-ã¯ã·ã³ããªãã¯åŒã®åœ¢åŒã§è¡šãããŸãã
æ°åŠç°å¢ã«ã€ããŠèª¬æããããããŸã第äžã«ããã®èšç®èœåãšã¿ã¹ã¯ã®ç¯å²ã«ã€ããŠè©±ãå¿ èŠããããŸãïŒMathematicaã«ã¯ãWolfram Researchã«ãã£ãŠçºèŠãããé«åºŠã«æé©åãããã¢ã«ãŽãªãºã ã®äžçæ倧ã®ã³ã¬ã¯ã·ã§ã³ãå«ãŸããŠããŸãã JITïŒãªã³ã¶ãã©ã€ã§ã®ã³ã³ãã€ã«ïŒã®æå¹æ§ãšèªåæ§æå¯èœãªäžŠåã³ã³ãã¥ãŒãã£ã³ã°ã®çµã¿åããã«ãããåçã®æ£ç¢ºæ§ãšåä¿¡ã®é«éæ§ãä¿èšŒãããŸãã ã·ã¹ãã ã¯ãããã粟床ã®æ°å€ããµããŒãããŠãããçµæã®å質ãæ¹åããããã«å éšèšç®ã«ããã«æ£ç¢ºãªå€ã䜿çšãããããšããããããŸãã ãŸãã粟床ãé«ããããã«ãç°å¢ã¯èšå·èšç®ã䜿çšããŸãã åŒãåçŽåãŸãã¯å€æããããšããæ°å€èšç®ãå®è¡ããŸãã ãã®å Žåã解æ³ã¢ã«ãŽãªãºã ã¯æ°åã®æ¹æ³ããèªåçã«éžæãããèšç®ããã»ã¹äžã«ãå€æŽã§ããŸããããã«ããã解æ³ã®é床ãäžãããæåã¿ã¹ã¯èšå®ããã粟床ãåäžããŸãïŒãã ããããã¯çŠæ¢ãããŠããŸããïŒã
æ°åŠçãªå¯èœæ§ã¯ãã¹ãŠãç·åœ¢ã·ã¹ãã ã ãã§ãªãã代æ°çã埮åçãå埩çãæ©èœççåŒããã³äžçåŒã解ãèœåãæäŸãã匷åãªé¢æ°ã®å°ããªã»ããã«å«ãŸããŠããŸãã 埮åããã³ç©ååæãçŽæ°åæãšããŒãªãšåæãã¯ã©ã¹ã¿ãŒåæãç©åå€æãªã©ãå®è¡ããæ©èœã ãŸããã·ã³ããªãã¯ãããªãã¯ã¹ãä»»æã®ç²ŸåºŠã®æ°ãæã€ãããªãã¯ã¹ãé«å¯åºŠãã¹ããŒã¹ãæ°çŸäžã®èŠçŽ ãæã€ãããªãã¯ã¹ã代æ°æ¹çšåŒã®æ ¹ãšã·ã¹ãã ãèŠã€ããããã®ããŸããŸãªæ°å€ææ³ã Mathematicaã¯ãé¢æ£ã³ã³ãã¥ãŒãã£ã³ã°ã®ããã®å æ¬çãªã·ã¹ãã ãæäŸããå æ°å解ãšå解ãæ§é æŒç®ãå€é åŒã®é€ç®ãªã©ãå€é åŒä»£æ°ã®ãã¹ãŠã®åŽé¢ãå«ã¿ãŸãã ãã®ç°å¢ã§ã¯ãããžã§æ²ç·ãBã¹ãã©ã€ã³ãNURBSæ²ç·ãããã³ãµãŒãã§ã¹ãä»»æã®æ°ã®æ¬¡å ã§äœæã衚瀺ã管çã§ããŸãã ã¹ãã©ã€ã³ã䜿çšããŠããŒã¿ãè£éãããšãä»»æã®ãã£ãŒã«ãã«ã¹ãã©ã€ã³ã¡ãœãããé©çšã§ããŸãã
åçŽã§å€æ¬¡å ã®ç©åãããã³ãããã®ã·ãŒã±ã³ã¹ã®åãšç©ãåããŸãã å€æ°ã®æ°å€ç©åæ³ããµããŒããããŠããŸãã åã«ãããšãMathematicaã¯æ¢ç¥ã®ãã¹ãŠã®ç©åã®99ïŒ ãåãããã®åéã®ãªãŒããŒã§ãã æ®å¿µãªãããçŸæç¹ã§ã¯ãã®ãããªæ å ±ããµã€ãã§èŠã€ããããšã¯ã§ããŸããã§ãããããã®åéã§ç§ã倱æãããããšã¯ãããŸããã§ããã
Mathematicaã¯ã°ã©ãã®å¹ åºãåºæ¬çãªæäœãšã¢ã«ãŽãªãºã ããµããŒãããŸããããšãã°ããã¹ãã«ãŒããã¯ãªãã¯ãªã©ã®æ€çŽ¢ã§ãã ä»»æã®ã°ã©ããèšå®ããã©ã³ãã ã°ã©ããçæããã€ã³ã¿ã©ã¯ãã£ãã«èšèšããæšæºã®ã°ã©ã圢åŒãšãããªãã¯ã¹ãã¥ãŒã«ãšã¯ã¹ããŒãããã³ã€ã³ããŒãããããšãã§ããŸãã çŽ å æ°å解ãçŽ æ°ãæ¯èŒããã³ã¢ãžã¥ã©ãŒç®è¡ãªã©ã®åçŽãªããšã«ã€ããŠã¯èšåããããšããã§ããŸããã ä»»æã®ç²ŸåºŠã®æ°åŠå®æ°ãå©çšå¯èœã§ãããÏãeãªã©ã®å®æ°ã®æ°çŸäžã®æåãç¬æã«èšç®ãããŸãã
çµ±èšåŠè ã¯ã ä»ã®ã©ã®ã·ã¹ãã ãããå€ãã®çµ±èšååžãå«ãŸããŠãããçµ±èšçãªæž¬å®ãšæäœã®å®å šãªã»ããïŒæ°åŠçæåŸ å€ãšåæ£ããã»ããªãã·ã§ã³ãšæ å ±ã®ãšã³ããããŒãŸã§ïŒãèªåãã©ã¡ãŒã¿ãŒæšå®ãšä»®èª¬æ€å®ãçµ±èšã¢ãã«ã®åæãªã©ãæäŸããŸãã
Mathematicaã¯åŒ·åãªã³ã³ãã¥ãŒãã£ã³ã°ç°å¢ã§ããã ãã§ãªããèšç®çç©åŠãéèå·¥åŠããæ³¢å解æãå°çæ å ±ã·ã¹ãã ãŸã§ã掻åã®å€ãã®æè¡åéã«åœ±é¿ãäžããçµã¿èŸŒã¿ã®è¿œå æ©èœãåããŠããŸãã
Mathematicaã¯ãã¹ãã¬ããã·ãŒããxmlã2次å ããã³3次å ã®ã°ã©ãã£ãã¯åœ¢åŒããã«ãã¡ãã£ã¢ãã¡ã€ã«ãpdfãhtmlãå«ãããã¥ã¡ã³ããã¢ãŒã«ã€ãããã³ãã®ä»ã®å€ãã®ç¹å®ã®ããŒã¿åœ¢åŒãå«ããã€ã³ããŒãããã³ãšã¯ã¹ããŒãçšã®æ°çŸã®åœ¢åŒããµããŒãããŠããŸãã æåã¯ãgifãjpegãpngãsvgãepsãaviãflvãquicktimeãswfãªã©ããã¹ãŠã®æšæºã®ã©ã¹ã¿ãŒããã¯ã¿ãŒãããã³ãããªåœ¢åŒããµããŒããããŠããŸãã ãããªãã¡ã€ã«å šäœãã€ã³ããŒãããããã«åŠçããããã«åã ã®ãã¬ãŒã ãéžæã§ããŸãã ãŸããç»åãæäœããããã«ãMathematicaã«ã¯ãç»åãååŸããããããŸããŸãªãã£ã«ã¿ãŒãã»ã°ã¡ã³ããŒã·ã§ã³ã圢ç¶åæãã¢ãŠãã©ã€ã³éžæãªã©ãé©çšãããããªã¢ã«ã¿ã€ã ã§æ©èœããå€ãã®æ©èœãçµã¿èŸŒãŸããŠããŸãã
ãã«ãã³ã¢ã·ã¹ãã ã§ã¯ãç°å¢ãèšç®ã®ããã€ãã®éšåãåæã«èªåçã«éå§ããŸãïŒããã€ãã¯éãããããŠããŸãããå°ãæãå ããå¿ èŠããããŸãïŒã ãã©ã¬ã«ã³ã³ãã¥ãŒãã£ã³ã°ãµãã·ã¹ãã ã¯ããããã¯ãŒã¯ã³ã³ãã¥ãŒãã£ã³ã°ãã°ãªããã·ã¹ãã ãã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°ã«åãããŠæ¡åŒµã§ããã·ã³ããªãã¯èšèªã¯ããŒã¿åé¢ã®å€ãã®ã¢ãã«ããµããŒãããŸãã ãã®ã·ã¹ãã ã§ã¯ãGPUãããã°ã©ã ããããšãã§ããŸãïŒCUDAããã³OpenCLã®çµã¿èŸŒã¿ãµããŒãã ãã¹ãŠã®GPUæäœã¯ãããã»ã¹éã®ããŒã¿äº€æãèªåã³ã³ãã€ã«ãGPUã³ãŒãã®ãªã³ã¯ãªã©ãç°å¢ã«å®å šã«çµ±åãããŠããŸãã
Mathematicaã«ã¯ãæ§é åããã³éæ§é åããŒã¿ã2dããã³3dã§è¡šç€ºããããã®å®å šãªé¢æ°ã»ãããå«ãŸããŠããŸãã çé«ç·ããã³å¯åºŠã°ã©ãããã€ã³ããã©ã€ã³ããã³ãµãŒãã§ã¹ããã®ã°ã©ãããã¯ãã«ã°ã©ãããã³æµç·ã®ã°ã©ãããã¹ãã°ã©ã ã2次å ããã³3次å ã®ã»ã¯ã¿ãŒå³ããã³åå³ãããã«å³ãå°éåéã®ã°ã©ãïŒè²¡åããã³çµ±èšãã°ã©ãçè«ãªã©ïŒã衚瀺ããæ©èœãçµã¿èŸŒãŸããŠããŸããå¶åŸ¡ã·ã¹ãã ãªã©ïŒãã£ãŒããæ¥æ¬ã®ããŒãœã¯è¶³ããQQæ£èŠç¢ºçãã£ãŒãïŒåäœç¹ããããïŒããå£ã²ãã®ããç®±ãïŒç®±ã²ãå³ïŒãLAFCHïŒããŒãç·å³ïŒãªã©ã
ã°ã©ãã£ãã¯ã¹ãµãã·ã¹ãã ã¯ãé¢æ°ãããŒã¿ãå³ãç»åããŸãã¯æ³šéã®é«å質ã®éçãŸãã¯åçè¡šçŸãæäŸããèšç®ã®é床ãšèŠèŠçãªå¯Ÿå¿ã®ãã©ã³ã¹ãèªåçã«æ±ºå®ããŸãã ã°ã©ãã£ãã¯æ©èœã¯ãå°å·é åãšå°ååãåå¥ã«éžæã§ããŸãã Mathematicaã«ã¯ãç»åãµã€ãºã軞ã©ãã«ãã°ãªãã衚瀺ãåå²ãå¡ãã€ã¶ãã3Dã©ã€ãã£ã³ã°ãã«ã¡ã©ã¢ã³ã°ã«ãªã©ããã£ã¹ãã¬ã€ã®ããããåŽé¢ãå¶åŸ¡ããæ°çŸã®ãªãã·ã§ã³ãçšæãããŠããããã䞊ã¿ã®ã°ã©ãã£ãã¯ãäœæã§ããŸãã ããã«ã3Dã°ã©ãã£ãã¯ã¯ã€ã³ã¿ã©ã¯ãã£ãã§ãã«ã¡ã©ã®èšå®ããªã¢ã«ã¿ã€ã ã§å€æŽã§ããŸãã
ãããšã¯å¥ã«ãã€ã³ã¿ãŒãã§ã€ã¹ã®èªåèšèšãã·ã³ããªãã¯å¶åŸ¡èŠçŽ ãåäžã®å ¥åã€ã³ã¿ãŒãã§ã€ã¹ãããŸããŸãªçš®é¡ã®ãã¬ãŒã¯ãã€ã³ããèšå®ããæ©èœãåãããããã°ãšãããã¡ã€ãªã³ã°ãã³ãŒãå®è¡äžã®åŒã®ç£èŠãããã°ã©ã å®è¡ã®èŠèŠçãªæ®µéçãªå¶åŸ¡ãªã©ã«ãããéçºã«ã€ããŠèšåãã䟡å€ããããŸãä»ã®äººã«ã Mathematicaã¯ãæ§æã®åŒ·èª¿è¡šç€ºããšã©ãŒå ±åãã³ãã³ãã®è¿œå ãèªåãã©ãŒããããã€ã³ãã³ããªã©ãåãã匷åãªãœãŒã¹ã³ãŒããšãã£ã¿ãŒãæäŸããŸãã å€èšèªIDE Wolfram WorkbenchïŒEclipseããŒã¹ïŒãšã®çµ±åã«ããããããžã§ã¯ããã¡ã€ã«ç®¡çããœãŒã¹ã³ãŒããæäœããããã®é«åºŠãªããŒã«ããããã°ãæ§æ解æãªã©ãéçºå¹çãé«ããããŸããŸãªããŒã«ã«ã¢ã¯ã»ã¹ã§ããŸãã
Mathematicaã«ã¯ããã¿ã³ãšã¹ã©ã€ããŒãã¿ãããã§ãã¯ããã¯ã¹ããããã¢ããã¡ãã¥ãŒããã€ã¢ãã°ããã¯ã¹ãããŒã«ããŒãªã©ã®ã€ã³ã¿ãŒãã§ãŒã¹ãšå¶åŸ¡èŠçŽ ã®å®å šãªã»ãããå«ãŸããŠãããç¬èªã®èŠçŽ ãäœæããæ©èœãæäŸããŠããŸãã ã·ã¹ãã ã¯åãã©ãããã©ãŒã ã«å¯ŸããŠèªç¶ãªæ¹æ³ã§ã³ã³ãããŒã«ãã¬ã³ããªã³ã°ãããããã©ã®OSã§åäœããããèããå¿ èŠãªããã°ã©ãã£ãã¯ã¢ããªã±ãŒã·ã§ã³ãèªç±ã«å ±æã§ããŸãã ãŠãŒã¶ãŒã€ã³ã¿ãŒãã§ãŒã¹èŠçŽ ã«ã¯MathematicaåŒãå«ããŠè¡šç€ºã§ããŸãã
ã·ã¹ãã ã䜿çšãããšãããã±ãŒãžãäœæã§ããŸãããã©ãããã©ãŒã ã«äŸåããªãã³ãŒãã©ã€ãã©ãªã䜿çšãããšãããã±ãŒãžãåå©çšããããã¥ã¡ã³ããšè£å©ããŒã«ããŒã®å®å šãªã»ããã§ç°¡åã«é åžã§ããŸãã å€éšã³ã³ãããŒã©ãŒãå ¥åããã€ã¹ãMathematicaã«ç°¡åã«æ¥ç¶ã§ããŸããã²ãŒã ãããããžã§ã€ã¹ãã£ãã¯ã觊èŠããã€ã¹ã3DããŠã¹ããã®ä»ã®HIDããã€ã¹ãèªåçã«èªèããŠèšå®ã§ããŸãã
ç°å¢ã§ã®äœæ¥ã¯ãäž»ã«ãããããã©ããããããïŒããŒãããã¯ã* .nbïŒã§è¡ãããŸããããã«ã¯ããã©ãŒããããããããã¹ããã°ã©ãã£ãã¯ã察話åã¢ããªã±ãŒã·ã§ã³ãã³ãŒãããã³ããŒã¿ãå«ããããšãã§ããŸãããŸããã¬ããŒããŸãã¯ãã¬ãŒã³ããŒã·ã§ã³ã®åœ¢åŒã§é åžããããšãã§ããŸãã æ°åŒã®å ¥åã¯éåžžã«ç°¡åã§ãããåæã«éåžžã«åŒ·åã§ãã ã·ã¹ãã ã«ã¯é«å質ã®ã¯ãŒãããã»ãã·ã³ã°ã·ã¹ãã ã®äžè¬çãªæ©èœããã¹ãŠå«ãŸããŠãããããã¥ã¡ã³ãã®åºç€ãšãªãæåæ§é ã¯ã«ã¹ã±ãŒãã¹ã¿ã€ã«ã·ãŒããèšå®ããããã®æè»ãªãªãã·ã§ã³ãæäŸããŸããã¡ãã¥ãŒããã³ããã°ã©ã ã®äž¡æ¹ã§1000ãè¶ ããæžåŒèšå®ããã³ãã¶ã€ã³ãªãã·ã§ã³ã䜿çšã§ããŸãã
Mathematicaã¯ä»»æã®æšæºSQL-DBMSã«æ¥ç¶ããåŸæ¥ã®æååSQLã¯ãšãªã®å®å šãµããŒããšãšãã«ãããŒã¿ããŒã¹ãã¯ãšãªãçµæã®é«ã¬ãã«ã®ã·ã³ããªãã¯è¡šçŸãæäŸããŸãã ãµãã«ãŒãã³ãåŒã³åºãããšãã§ããCã.NETãJavaããã®ä»ã®èšèªã®ããã°ã©ã ããåŒã³åºãããšãã§ããŸãã åã ã®ãããžã§ã¯ãã§äœ¿çšããããã©ã€ãã©ãªãå®è¡å¯èœãã¡ã€ã«ã«ã³ã³ãã€ã«ãããããããã®Cã³ãŒããèªåçã«çæããŸãã å®è¡æã«åçã©ã€ãã©ãªãæ¥ç¶ããŸãã WSDL WebãµãŒãã¹ã«æ¥ç¶ããŸãã ãããã¯ãã¹ãŠãæ¢åã®ã€ã³ãã©ã¹ãã©ã¯ãã£ã«ç°¡åãªå®è£ ãæäŸããŸãã webMathematicaã¯ãææ°ã®WebæšæºãšãµãŒãã¹ã䜿çšããŠåçã³ã³ãã³ããè¿œå ããWebçµç±ã§èšç®ãå®è¡ããã€ã³ã¿ã©ã¯ãã£ããªWebãµã€ãã®åœ¢ã§é«æ§èœã®Mathematicaã¢ããªã±ãŒã·ã§ã³ãå±éããŸãã gridMathematicaã䜿çšãããšãèªå調æŽãšããã»ã¹å¶åŸ¡ãåããã¯ã©ã¹ã¿ãŒã§ã¢ããªã±ãŒã·ã§ã³ã䞊è¡ããŠå®è¡ã§ããŸãã ãœãããŠã§ã¢ã¬ããŒãã¯ãPDFãã¹ãã¬ããã·ãŒããHTMLãRTFãªã©ãããŸããŸãªåœ¢åŒã§ãµããŒããããŠããŸãã
匷åãªæäœæ©èœã®ãããã§ãç¡æã®Mathematica Playerã䜿çšããŠä»»æã®ã·ã¹ãã ã§è¡šç€ºããã³å®è¡ã§ããã€ã³ã¿ã©ã¯ãã£ããªã¬ãžã§ãããäœæã§ããŸãã ããã±ãŒãžã®ããŒãžã§ã³8ã®æ©èœã®äžã§ãWolfram | AlphaããŒã¿ãžã®çŽæ¥ã¢ã¯ã»ã¹ãšèªç±åœ¢åŒã®èšèªå ¥åãéžæã§ããŸãã ç°¡åãªäººéã®èšèªã§åŒãå ¥åã§ããŸããããã¯åå¿è ã«åœ¹ç«ã€å ŽåããããŸãã
äžèšãããããããã«ãã·ã¹ãã ã¯ã¯ãã¹ãã©ãããã©ãŒã ã§ãããWindowsãmac osãlinuxãããã«ã¯sun solaris 10ïŒ32ãããçãš64ãããçã®äž¡æ¹ïŒåãã«ãªãªãŒã¹ãããŠããŸãã ïŒ ã·ã¹ãã èŠä»¶ãšãµããŒããããŠããOSã®æ£ç¢ºãªãªã¹ãïŒã ãããŠããã¡ããããã®ãããªåŒ·åãªã·ã¹ãã ã§ã¯ãããã¥ã¡ã³ããªãã§ã¯ã§ããŸããã Mathematicaã¯ããã§ã倱æããŸããã§ããïŒãã«ãã¯100,000以äžã®äŸãå«ãã€ã³ã¿ã©ã¯ãã£ããªã©ãããããã§æ§æãããŠããŸãã ãã¹ãŠã®äŸã¯ãããã¥ã¡ã³ãã§çŽæ¥å®è¡ãŸãã¯å€æŽã§ããŸãïŒæããªãã§ãå€æŽã¯ä¿åãããŸããïŒãæ°ããæ©èœãç°¡åã«ç¿åŸã§ããŸãã
ãããã«
æºåã§ã¯ãå ¬åŒWebãµã€ãã®æ©èœã»ã¯ã·ã§ã³ã®è³æãããã¥ã¡ã³ããããã³ç°å¢ã«é¢ããé·å¹Žã®å人çãªçµéšã䜿çšããŸããã è¿œå æ å ±ã«ã€ããŠã¯ãäžèšã®ã»ã¯ã·ã§ã³ ã ãœãªã¥ãŒã·ã§ã³ã»ã¯ã·ã§ã³ã®ã·ã¹ãã ã®äœ¿çšæ¹æ³ã«é¢ããæ å ±ãããã³ãŠãŒã¶ãŒã¹ããŒãªãŒãã芧ãã ãã ã ããçã«ã¯ããªãã®è²»çšãããããŸãããåŠçãæè²æ©é¢ã家åºã§ã®äœ¿çšã«ã¯å€§å¹ ãªå²åŒããããŸãã è©Šçšçã15æ¥é䜿çšã§ããŸãã [ãããŠãããªãã¯ã©ãã§ãããç¥ã£ãŠããããªãèªèº«ã§ãããããŠã³ããŒãããããšãã§ããŸã]ãèå³ãæã£ãŠããã ããã°å¹žãã§ããHabrã«ã¯ãWolfram Mathematicaã«é¢ããããã«å€ãã®èšäºããããŸãã
UPDïŒ vayunã¯ãåŠã¶ã¹ãæãèå³æ·±ãããšã®1ã€-Wolfram Demonstrations Projectã«ã€ããŠèšåããŸãã ã ãã® ãããžã§ã¯ãã§ã¯ ãManipulateã䜿çšããŠäœæãããå€ãã®ããããã°ã©ã ãèŠãããšãã§ããŸãã ãã¹ãŠã®ããã°ã©ã ã«ã¯ãªã³ã©ã€ã³ãã¬ãã¥ãŒãããããã¢ãããžã§ã¯ãïŒç¡æã®Mathematica Playerã§èµ·åã§ããŸãïŒãšãœãŒã¹ã³ãŒããããŠã³ããŒãã§ããŸãã