ãã®ã¢ããªã±ãŒã·ã§ã³ã¯ããã£ãŒãã©ãŒãã³ã°ã«åºã¥ããçæç競åãããã¯ãŒã¯ ïŒGANïŒã®æè¡ã«åºã¥ããŠæ§ç¯ãããŠããŸãã NVIDIAèªäœã¯ãããGauGANãšåŒãã§ããŸã-ããã¯ãã¢ãŒãã£ã¹ãã®Paul Gauguinãæãããšãæå³ãããããã§ãã GauGANæ©èœã¯ãæ°ããSPADEã¢ã«ãŽãªãºã ã«åºã¥ããŠããŸãã
ãã®èšäºã§ã¯ããã®ãšã³ãžãã¢ãªã³ã°ã®åäœãã©ã®ããã«æ©èœãããã説æããŸãã ãããŠãã§ããã ãå€ãã®èå³ã®ããèªè ãåŒãä»ããããã«ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãã©ã®ããã«æ©èœãããã«ã€ããŠè©³çŽ°ã«èª¬æããããšããŸãã SPADEã¯çæ競äºãããã¯ãŒã¯ã§ããããããããã«ã€ããŠè©³ãã説æããŸãã ãã ãããã®çšèªã«æ¢ã«ç²ŸéããŠããå Žåã¯ãããã«ãç»åããç»åãžã®ãããŒããã£ã¹ããã»ã¯ã·ã§ã³ã«é²ãããšãã§ããŸãã
ç»åçæ
ç解ãå§ããŸããããææ°ã®æ·±å±€åŠç¿ã¢ããªã±ãŒã·ã§ã³ã®ã»ãšãã©ã¯ãç¥çµå€å¥åïŒèå¥åšïŒã䜿çšããSPADEã¯çæãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒãžã§ãã¬ãŒã¿ãŒïŒã§ãã
åŒå¥åš
åŒå¥åšã¯å ¥åããŒã¿ãåé¡ããŸãã ããšãã°ãç»ååé¡åã¯ãç»åãååŸããŠ1ã€ã®é©åãªã¯ã©ã¹ã©ãã«ãéžæããåŒå¥åšã§ããããšãã°ãç»åããç¬ãããè»ããã亀éä¿¡å·ç¯ããšããŠå®çŸ©ããŸãã åé¡åšã«ãã£ãŠååŸãããåºåã¯ãéåžžãæ°å€ã®ãã¯ãã«ãšããŠè¡šãããŸã v ã©ã㧠v i ç»åãéžæããããã®ã«å±ãããšãããããã¯ãŒã¯ã®ä¿¡é ŒåºŠãè¡šã0ã1ã®æ°å€ ç§ã¯ ã¯ã©ã¹ã
èå¥åšã¯åé¡ã®ãªã¹ããäœæããããšãã§ããŸãã 圌ã¯ãç»åã®åãã¯ã»ã«ãã人ããŸãã¯ãæ©æ¢°ãã®ã¯ã©ã¹ã«åé¡ããããšãã§ããŸãïŒãããããã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ãïŒã
åé¡åšã¯ã3ã€ã®ãã£ãã«ïŒèµ€ãç·ãéïŒãæã€ç»åãååŸããç»åãè¡šãããšãã§ããåå¯èœãªã¯ã©ã¹ã®ä¿¡é Œãã¯ãã«ãšæ¯èŒããŸãã
ç»åãšãã®ã¯ã©ã¹ã®éã®æ¥ç¶ã¯éåžžã«è€éã§ããããããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯å€ãã®ã¬ã€ã€ãŒã®ã¹ã¿ãã¯ãééããåã¬ã€ã€ãŒã¯ãããããããã«ãåŠçãããã®åºåã次ã®è§£éã¬ãã«ã«æž¡ããŸãã
çºé»æ©
SPADEãªã©ã®çæãããã¯ãŒã¯ã¯ãããŒã¿ã»ãããåãåãããã®ããŒã¿ã¯ã©ã¹ã«å±ããŠãããã®ããã«èŠããæ°ããå ã®ããŒã¿ãäœæããããšããŸãã åæã«ãããŒã¿ã¯äœã§ãããŸããŸããïŒé³ãèšèªããŸãã¯ãã®ä»ã®ãã®ã§ãããç»åã«çŠç¹ãåãããŸãã äžè¬ã«ããã®ãããªãããã¯ãŒã¯ãžã®ããŒã¿å ¥åã¯ãåã«ä¹±æ°ã®ãã¯ãã«ã§ãããå ¥åããŒã¿ã®å¯èœãªã»ããã®ãããããç¬èªã®ç»åãäœæããŸãã
ã©ã³ãã ãªå ¥åãã¯ãã«ã«åºã¥ããžã§ãã¬ãŒã¿ãŒã¯ãç»ååé¡åšãšã¯å®è³ªçã«å察ã«æ©èœããŸãã ãæ¡ä»¶ä»ãã¯ã©ã¹ããžã§ãã¬ãŒã¿ãŒã§ã¯ãå ¥åãã¯ãã«ã¯å®éã«ã¯ããŒã¿ã¯ã©ã¹å šäœã®ãã¯ãã«ã§ãã
ãããŸã§èŠãŠããããã«ãSPADEã¯åãªããã©ã³ãã ãã¯ãã«ã以äžã®ãã®ã䜿çšããŸãã ã·ã¹ãã ã¯ããã»ã°ã¡ã³ããŒã·ã§ã³ãããããšåŒã°ããäžçš®ã®å³é¢ã«ãã£ãŠå°ãããŸãã åŸè ã¯ãäœãã©ãã«æçš¿ãããã瀺ããŸãã SPADEã¯ãåè¿°ã®ã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ãšã¯éã®ããã»ã¹ãå®è¡ããŸãã äžè¬ã«ãããã¿ã€ãã®ããŒã¿ãå¥ã®ã¿ã€ãã®ããŒã¿ã«å€æããå·®å¥çãªã¿ã¹ã¯ã«ã¯åæ§ã®ã¿ã¹ã¯ããããŸãããããã¯å¥ã®ç°åžžãªãã¹ãåããŸãã
çŸä»£ã®ãžã§ãã¬ãŒã¿ãŒãšãã£ã¹ã¯ãªãããŒã¿ãŒã¯éåžžãç³ã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšããŠããŒã¿ãåŠçããŸãã ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒã®è©³çŽ°ã«ã€ããŠã¯ã Chew on KarnaãŸãã¯Andrei Karpatiã®èšäºãåç §ããŠãã ããã
åé¡åšãšã€ã¡ãŒãžãžã§ãã¬ãŒã¿ãŒã®éã«ã¯1ã€ã®éèŠãªéãããããåŠçäžã«ã€ã¡ãŒãžã®ãµã€ãºãã©ãã ãæ£ç¢ºã«å€åãããã«ãããŸãã ç»åããã¹ãŠã®ç©ºéæ å ±ã倱ããã¯ã©ã¹ã®ã¿ãæ®ããŸã§ãç»ååé¡åã¯ãããæžããå¿ èŠããããŸãã ããã¯ãã¬ã€ã€ãŒãçµã¿åãããããåã ã®ãã¯ã»ã«ãééãããããã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšããããšã§å®çŸã§ããŸãã äžæ¹ããžã§ãã¬ãŒã¿ãŒã¯ãç³ã¿èŸŒã¿è»¢çœ®ãšåŒã°ãããç³ã¿èŸŒã¿ããšã¯éã®ããã»ã¹ã䜿çšããŠç»åãäœæããŸãã 圌ã¯ãã°ãã°ããã³ã³ããªã¥ãŒã·ã§ã³ããŸãã¯ãéã³ã³ããªã¥ãŒã·ã§ã³ããšæ··åãããŸãã
ã2ãã¹ãããã®åŸæ¥ã®2x2ã³ã³ããªã¥ãŒã·ã§ã³ã¯ãå2x2ãããã¯ã1ãã€ã³ãã«å€æããåºåãµã€ãºã1/2ã«çž®å°ããŸãã
ã¹ããããã2ãã®è»¢çœ®ããã2x2ã³ã³ããªã¥ãŒã·ã§ã³ã¯ãåãã€ã³ããã2x2ãããã¯ãçæããåºåãµã€ãºã2åã«ããŸãã
çºé»æ©ãã¬ãŒãã³ã°
çè«çã«ã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯äžèšã®ããã«ç»åãçæã§ããŸãã ããããã©ã®ããã«åœŒå¥³ãèšç·ŽããŸããïŒ ã€ãŸããå ¥åç»åããŒã¿ã®ã»ãããèæ ®ããå Žåããžã§ãã¬ãŒã¿ãŒïŒãã®å Žåã¯SPADEïŒã®ãã©ã¡ãŒã¿ãŒã調æŽããŠãææ¡ãããããŒã¿ã»ããã«å¯Ÿå¿ããããã«èŠããæ°ããç»åãäœæããã«ã¯ã©ãããã°ããã§ããïŒ
ãããè¡ãã«ã¯ããããããæ£ããã¯ã©ã¹ã©ãã«ãæã€ç»ååé¡åãšæ¯èŒããå¿ èŠããããŸãã ãããã¯ãŒã¯äºæž¬ãã¯ãã«ãšæ£ããã¯ã©ã¹ããããã°ãéäŒæã¢ã«ãŽãªãºã ã䜿çšããŠãããã¯ãŒã¯æŽæ°ãã©ã¡ãŒã¿ãŒã決å®ã§ããŸãã ããã¯ãç®çã®ã¯ã©ã¹ã決å®ããéã®ç²ŸåºŠãé«ããä»ã®ã¯ã©ã¹ã®åœ±é¿ãæžããããã«å¿ èŠã§ãã
ç»ååé¡åšã®ç²ŸåºŠã¯ãèŠçŽ ããšã«ãã®åºåèŠçŽ ãæ£ããã¯ã©ã¹ãã¯ãã«ãšæ¯èŒããããšã§æšå®ã§ããŸãã ãã ãããžã§ãã¬ãŒã¿ãŒã«ã¯ãæ£ãããåºåã€ã¡ãŒãžã¯ãããŸããã
åé¡ã¯ããžã§ãã¬ãŒã¿ãŒãç»åãäœæãããšããåãã¯ã»ã«ã«ãæ£ãããå€ããªãããšã§ãïŒäºåã«æºåãããããŒã¹ãçŽTransãã«åºã¥ãåé¡åšã®å Žåã®ããã«ãçµæãæ¯èŒããããšã¯ã§ããŸããïŒã çè«çã«ã¯ããã®ãã¯ã»ã«å€ãå®éã®ç»åãšéåžžã«ç°ãªã£ãŠããŠããä¿¡ããããŠã¿ãŒã²ããããŒã¿ã«äŒŒãŠããç»åã¯ãã¹ãŠæå¹ã§ãã
ããã§ã¯ãã©ã®ãã¯ã»ã«ã§åºåãå€æŽããå¿ èŠãããã®ãââãã©ã®ããã«ããŠããçŸå®çãªç»åãäœæã§ããã®ãïŒã€ãŸããããšã©ãŒä¿¡å·ããäžããæ¹æ³ïŒãžã§ãã¬ãŒã¿ãŒã«ã©ã®ããã«äŒããããšãã§ããŸããïŒ ç 究è ã¯ãã®è³ªåãããèããŠãããå®éãããã¯éåžžã«å°é£ã§ãã å®éã®ç»åããå¹³åãè·é¢ããèšç®ãããªã©ãã»ãšãã©ã®ã¢ã€ãã¢ã§ã¯ããŒãããäœå質ã®ç»åãçæãããŸãã
çæ³çã«ã¯ãããã®ã€ã¡ãŒãžãšå®éã®ã€ã¡ãŒãžãåºå¥ããã®ã¯ã©ããããé£ãããããªã©ã®ãé«ã¬ãã«ãã®æŠå¿µã䜿çšããŠãçæãããã€ã¡ãŒãžãã©ã®çšåºŠçŸå®çã§ããããã枬å®ãã§ããŸãã
çæçæµå¯Ÿãããã¯ãŒã¯
ããã¯ããŸãã«Goodfellow et alãã2014ã®äžéšãšããŠå®è£ ããããã®ã§ãã ã¢ã€ãã¢ã¯ã1ã€ã§ã¯ãªã2ã€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠç»åãçæããããšã§ãã1ã€ã®ãããã¯ãŒã¯-
ãžã§ãã¬ãŒã¿ã2çªç®ã¯ç»ååé¡åšïŒåŒå¥åšïŒã§ãã åŒå¥åšã®ã¿ã¹ã¯ã¯ããžã§ãã¬ãŒã¿ãŒã®åºåç»åããã©ã€ããªããŒã¿ã»ããã®å®ç»åãšåºå¥ããããšã§ãïŒãããã®ç»åã®ã¯ã©ã¹ã¯ãåœãããã³ãå®ããšããŠæå®ãããŸãïŒã ãžã§ãã¬ãŒã¿ãŒã®ä»äºã¯ãããŒã¿ã»ããå ã®ç»åã«å¯èœãªéãé¡äŒŒããç»åãäœæããããšã«ãããåŒå¥åšãã ãŸãããšã§ãã ãã®ããã»ã¹ã§ã¯ããžã§ãã¬ãŒã¿ãšãã£ã¹ã¯ãªãããŒã¿ãæµã§ãããšèšããŸãã ãããã£ãŠãååïŒ ãžã§ãã¬ãŒãã£ã-æµå¯Ÿçãããã¯ãŒã¯ ã
ã©ã³ãã ãªãã¯ãã«å ¥åã«åºã¥ãçæç競åãããã¯ãŒã¯ã ãã®äŸã§ã¯ããžã§ãã¬ãŒã¿ãŒåºåã®1ã€ã¯ãèå¥åšãã ãŸããŠãå®éã®ãç»åãéžæãããããšããŠããŸãã
ããã¯ã©ã®ããã«åœ¹ç«ã¡ãŸããïŒ ããã§ã0ïŒãfalseãïŒãã1ïŒãrealãïŒãŸã§ã®å€ã§ãããå€å¥åã®äºæž¬ã®ã¿ã«åºã¥ãããšã©ãŒã¡ãã»ãŒãžã䜿çšã§ããŸãã åŒå¥åšã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ããããããšã©ãŒã«é¢ããçµè«ãç»åãžã§ãã¬ãŒã¿ãŒã§å ±æã§ããŸãã ã€ãŸããèå¥åšã¯ãèå¥åšãããã欺ããããã«ç»åãã©ãã§ã©ã®ããã«èª¿æŽããå¿ èŠããããïŒã€ãŸããç»åã®ãªã¢ãªãºã ãé«ããæ¹æ³ïŒããžã§ãã¬ãŒã¿ãŒã«äŒããããšãã§ããŸãã
åœã®ç»åãèŠã€ããæ¹æ³ãåŠç¿ããéçšã§ãåŒå¥åšã¯ãžã§ãã¬ãŒã¿ãŒã«äœæ¥ãæ¹åããæ¹æ³ã«ã€ããŠããè¯ããã£ãŒãããã¯ããžã§ãã¬ãŒã¿ãŒã«äžããŸãã ãããã£ãŠãåŒå¥åšã¯ããžã§ãã¬ãŒã¿ãŒã«å¯ŸããŠãæ倱ã®åŠç¿ãæ©èœãå®è¡ããŸãã
æ å ã®å°ããªGAN
äœæ¥äžã«åœç€Ÿãæ€èšããGANã¯ãäžèšã®ããžãã¯ã«åŸããŸãã 圌ã®å·®å¥è D ç»åãåæããŸã x ãããŠå€ãååŸããŸã D ïŒ x ïŒ 0ãã1ãŸã§ãããã¯ãã€ã¡ãŒãžãæ¬ç©ã§ãããããžã§ãã¬ãŒã¿ãŒã«ãã£ãŠåœé ãããŠãããšãã圌ã®ä¿¡é ŒåºŠãåæ ããŠããŸãã 圌ã®çºé»æ© G æ£èŠååžæ°ã®ã©ã³ãã ãªãã¯ãã«ãååŸããŸã Z ç»åã衚瀺ããŸã G ïŒ z ïŒ ããã¯åŒå¥è ã«ãã£ãŠã ãŸãããå¯èœæ§ããããŸãïŒå®éããã®ç»å D ïŒ G ïŒ z ïŒïŒ ïŒ
è°è«ããªãã£ãåé¡ã®1ã€ã¯ãGANã®ãã¬ãŒãã³ã°æ¹æ³ãšããããã¯ãŒã¯ããã©ãŒãã³ã¹ã®æž¬å®ã«éçºè ã䜿çšããæ倱é¢æ°ã§ãã äžè¬ã«ãæ倱é¢æ°ã¯ãèå¥åšãåŠç¿ããã«ã€ããŠå¢å ããçºçåšãåŠç¿ããã«ã€ããŠæžå°ããã¯ãã§ãã ãœãŒã¹GANã®æ倱é¢æ°ã¯ã次ã®2ã€ã®ãã©ã¡ãŒã¿ãŒã䜿çšããŸããã æåã¯
åŒå¥åšãå®éã®ç»åãå®éã«æ£ããåé¡ãã床åããè¡šããŸãã 2çªç®ã¯ãåŒå¥åšãåœã®ç»åãã©ãã ãããŸãæ€åºã§ãããã§ãã
$ inline $ \ begin {equation *} \ mathcal {L} _ \ text {GAN}ïŒDãGïŒ= \ underbrace {E _ {\ vec {x} \ sim p_ \ text {data}} [\ log DïŒ \ vec {x}ïŒ]} _ {\ text {å®ç»åã®ç²ŸåºŠ}} + \äžæ¬åŒ§{E _ {\ vec {z} \ sim \ mathcal {N}} [\ logïŒ1-DïŒGïŒ\ vec {z}ïŒïŒ]} _ {\ text {åœç©ã®ç²ŸåºŠ}} \ end {equation *} $ inline $
åŒå¥åš D ç»åãæ¬ç©ã§ãããšãã圌ã®äž»åŒµãå°ãåºããŸãã ããã¯çã«ããªã£ãŠããŸã L o g D ïŒ x ïŒ åŒå¥è ãxãå®æ°ãšèŠãªããšå¢å ããŸãã åŒå¥åšãåœã®ç»åãããããæ€åºãããšãåŒã®å€ãå¢å ããŸãã ãããã°ïŒ 1 - D ïŒ G ïŒ Z ïŒïŒ ïŒ1ãç®æããŠåªåãå§ããïŒ D ïŒ G ïŒ z ïŒïŒ 0ã«ãªãåŸåããããŸãã
å®éã«ã¯ãç»åã®ãããå šäœã䜿çšããŠç²ŸåºŠãè©äŸ¡ããŸãã ç§ãã¡ã¯å€ãã®ïŒãããã決ããŠãã¹ãŠã§ã¯ãªãïŒå®éã®ç»åãæ®ããŸã x ãããŠãå€ãã®ã©ã³ãã ãªãã¯ãã« Z äžèšã®åŒã«åŸã£ãŠå¹³åå€ãååŸããŸãã 次ã«ãäžè¬çãªãšã©ãŒãšããŒã¿ã»ãããéžæããŸãã
æéãçµã€ã«ã€ããŠãããã¯èå³æ·±ãçµæã«ã€ãªãããŸãã
MNISTãTFDãããã³CIFAR-10ããŒã¿ã»ãããã·ãã¥ã¬ãŒãããGoodfellow GANã 茪éç»åã¯ãããŒã¿ã»ããå ã§é£æ¥ããåœç©ã«æãè¿ãç»åã§ãã
ããã¯ãã¹ãŠãããã4.5幎åã«ã¯çŽ æŽããããã®ã§ããã 幞ããSPADEãä»ã®ãããã¯ãŒã¯ã瀺ãããã«ãæ©æ¢°åŠç¿ã¯æ¥éã«é²æ©ãç¶ããŠããŸãã
ãã¬ãŒãã³ã°ã®åé¡
çæ競äºãããã¯ãŒã¯ã¯ãæºåã®è€éããšäœæ¥ã®äžå®å®æ§ã§æåã§ãã åé¡ã®1ã€ã¯ããã¬ãŒãã³ã°ã®ããŒã¹ã§çºé»æ©ãèå¥åšãããã¯ããã«å ã«ããå Žåãç»åã®éžæãèå¥åšã欺ãã®ã«åœ¹ç«ã€ãã®ã«éå®ãããããšã§ãã å®éãçµæãšããŠãçºé»æ©ã®ãã¬ãŒãã³ã°ã¯ãåŒå¥åšãtrickãããã®åäžã®æ®éçãªã€ã¡ãŒãžãäœæããããšã«ãªããŸãã ãã®åé¡ã¯ã厩å£ã¢ãŒãããšåŒã°ããŸãã
GANæãããã¿ã¢ãŒãã¯Goodfellowã®ã¢ãŒãã«äŒŒãŠããŸãã ãããã®å¯å®€ã®ç»åã®å€ãã¯äºãã«éåžžã«äŒŒãŠããããšã«æ³šæããŠãã ããã åºæ
å¥ã®åé¡ã¯ãçºé»æ©ãå¹æçã«åŒå¥åšãã ãŸããšã D ïŒ g ïŒ Z ïŒïŒ ãéåžžã«å°ããªåŸé ã§åäœããããã m a t h c a l L t e x t G A N G ïŒ v e c z ïŒ ãã®ç»åãããçŸå®çã«èŠããçã®çããèŠã€ããã®ã«ååãªããŒã¿ãååŸã§ããŸããã
ãããã®åé¡ã解決ããããã®ç 究è ã®åªåã¯ãäž»ã«æ倱é¢æ°ã®æ§é ãå€æŽããããšãç®çãšããŠããŸããã Xudong Mao et alãã2016ã«ãã£ãŠææ¡ãããåçŽãªå€æŽã®1ã€ã¯ãæ倱é¢æ°ã®çœ®ãæãã§ã mathcalL textGAN ããã€ãã®åçŽãªé¢æ° V textLSGAN ãããå°ããé¢ç©ã®æ£æ¹åœ¢ã«åºã¥ããŠããŸãã ããã«ããããã¬ãŒãã³ã°ããã»ã¹ãå®å®ããæžè¡°ã®ãªãåŸé ã䜿çšããŠããè¯ãç»åãšåŽ©å£ã®å¯èœæ§ãäœããªããŸãã
ç 究è ãééããå¥ã®åé¡ã¯ãé«è§£å床ã®ç»åãååŸããããšã®é£ããã§ããããã¯ãéšåçã«è©³çŽ°ãªç»åã¯ãåœé ç»åãæ€åºããããã«ããå€ãã®æ å ±ãåŒå¥è ã«äžããããã§ãã ææ°ã®GANã¯ãäœè§£å床ã®ç»åã§ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãéå§ããç®çã®ç»åãµã€ãºã«éãããŸã§åŸã ã«ã¬ã€ã€ãŒãè¿œå ããŸãã
GANãã¬ãŒãã³ã°äžã«é«è§£å床ã®ã¬ã€ã€ãŒãåŸã ã«è¿œå ãããšãããã»ã¹å šäœã®å®å®æ§ãå€§å¹ ã«åäžããçµæãšããŠåŸãããç»åã®é床ãšå質ãå€§å¹ ã«åäžããŸãã
ç»åéãããŒããã£ã¹ã
ãããŸã§ãå ¥åããŒã¿ã®ã©ã³ãã ãªã»ããããç»åãçæããæ¹æ³ã«ã€ããŠèª¬æããŠããŸããã ããããSPADEã¯ã©ã³ãã ããŒã¿ã䜿çšããã ãã§ã¯ãããŸããã ãã®ãããã¯ãŒã¯ã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ããããšåŒã°ããç»åã䜿çšããŸãããããªã¢ã«ã¯ã©ã¹ãåãã¯ã»ã«ïŒèãæšãæ°Žãç³ã空ãªã©ïŒã«å²ãåœãŠãŸãã ãã®ç»åãããã«ãŒãã¯ã¹ããŒãã§ãããåçã®ããã«èŠãããã®ãçæããŸãã ããã¯ãç»åéãããŒããã£ã¹ãããšåŒã°ããŸãã
pix2pixã瀺ã6çš®é¡ã®ç»åéãããŒããã£ã¹ãã Pix2pixã¯2ã€ã®ãããã¯ãŒã¯ã®å身ã§ããããã«ã€ããŠã¯ãpix2pixHDãšSPADEã§ããã«èª¬æããŸãã
ãžã§ãã¬ãŒã¿ãŒããã®ã¢ãããŒããåŠç¿ããã«ã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ããããšå¯Ÿå¿ããåçã®ã»ãããå¿ èŠã§ãã GANã¢ãŒããã¯ãã£ãå€æŽããŠããžã§ãã¬ãŒã¿ãŒãšãã£ã¹ã¯ãªãããŒã¿ãŒã®äž¡æ¹ãã»ã°ã¡ã³ããŒã·ã§ã³ããããåãåãããã«ããŸãã ãã¡ããããžã§ãã¬ãŒã¿ãŒã¯ãã©ã®æ¹æ³ã§æç»ãããããç¥ãããã«ããããå¿ èŠãšããŸãã èå¥åšã¯ããžã§ãã¬ãŒã¿ãŒãé©åãªå Žæã«é©åãªãã®ãé 眮ããããšã確èªããããã«ãå¿ èŠã§ãã
ãã¬ãŒãã³ã°äžããžã§ãã¬ãŒã¿ãŒã¯ã»ã°ã¡ã³ããŒã·ã§ã³ãããäžã§ã空ãã瀺ãããŠããå Žæã«èçã眮ããªãããšãåŠç¿ããŸããããããªããšãèå¥åšãåœã®ç»åãªã©ãç°¡åã«æ€åºã§ããããã§ãã
ç»åããç»åãžã®å€æã®å Žåãå ¥åç»åã¯ãžã§ãã¬ãŒã¿ãŒãšãã£ã¹ã¯ãªãããŒã¿ãŒã®äž¡æ¹ã§åãå ¥ããããŸãã åŒå¥åšã¯ããã«ããã¬ãŒãã³ã°ããŒã¿ã»ãããããžã§ãã¬ãŒã¿ãŒåºåãŸãã¯çã®åºåãåãåããŸãã äŸ
ç»åããç»åãžã®ãã©ã³ã¹ã¬ãŒã¿ãŒéçº
å®éã®ç»åããç»åãžã®ãã©ã³ã¹ã¬ãŒã¿pix2pixHDãèŠãŠã¿ãŸãããã ã¡ãªã¿ã«ãSPADEã¯ãpix2pixHDã®ç»åãšé¡äŒŒæ§ã®ã»ãšãã©ã®éšåã®ããã«èšèšãããŸããã
ã€ã¡ãŒãžããã€ã¡ãŒãžãžã®ãã©ã³ã¹ã¬ãŒã¿ãŒã®å Žåããžã§ãã¬ãŒã¿ãŒã¯ã€ã¡ãŒãžãäœæããå ¥åãšããŠåãå ¥ããŸãã ç³ã¿èŸŒã¿ã¬ã€ã€ãŒãããã䜿çšããããšãã§ããŸãããç³ã¿èŸŒã¿ã¬ã€ã€ãŒã¯å°ããªé åã§ã®ã¿å€ãçµåãããããé«è§£å床ã®ç»åæ å ±ãéä¿¡ããã«ã¯ã¬ã€ã€ãŒãå€ãããŸãã
pix2pixHDã¯ãå ¥åç»åã®ã¹ã±ãŒã«ãçž®å°ããããšã³ã³ãŒããŒãã®å©ããåããŠãã®åé¡ãããå¹ççã«è§£æ±ºããåºåç»åãååŸããããã«ã¹ã±ãŒã«ãæ¡å€§ããããã³ãŒããŒããããã«ç¶ããŸãã ããã«ãããããã«ãSPADEã«ã¯ãšã³ã³ãŒããŒãå¿ èŠãšããªããããšã¬ã¬ã³ããªãœãªã¥ãŒã·ã§ã³ããããŸãã
pix2pixHDãããã¯ãŒã¯å³ã¯ãé«ãã¬ãã«ã§ãã ãæ®å·®ããããã¯ãšã+æäœãã¯ãæ®å·®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ãã¹ãããæ¥ç¶ããã¯ãããžãŒãæããŸã ã ãããã¯ãŒã¯ã«ã¯ã¹ãããå¯èœãªãããã¯ãããããšã³ã³ãŒããŒãšãã³ãŒããŒã§äºãã«é¢é£ããŠããŸãã
ãããã®æ£èŠåã¯åé¡ã§ã
ã»ãŒãã¹ãŠã®çŸä»£ã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããããæ£èŠåãŸãã¯ãã®ã¢ããã°ã®1ã€ã䜿çšããŠããã¬ãŒãã³ã°ããã»ã¹ãé«éåããå®å®ãããŸãã åãã£ãã«ãã¢ã¯ãã£ãã«ãããšããã£ãã«ãã©ã¡ãŒã¿ã®ãã¢ã®åã«å¹³åã0ã«ãæšæºåå·®ã1ã«ã·ããããŸãã \ããŒã¿ ãã㊠\ã¬ã³ã ããããåã³éæ£èŠåããŸãã
y= fracxâ mathrmE[x] sqrt mathrmVar[x]+ epsilonâ gamma+ beta
æ®å¿µãªããããããã®æ£èŠåã¯ãžã§ãã¬ãŒã¿ãŒã«å®³ãåãŒãããããã¯ãŒã¯ãç¹å®ã®çš®é¡ã®ç»ååŠçãå®è£ ããããšãå°é£ã«ããŸãã pix2pixHDã¯ãç»åã®ããããæ£èŠåãã代ããã«ãåç»åãåå¥ã«æ£èŠåããæ£èŠåæšæºã䜿çšããŸãã
Pix2pixHDãã¬ãŒãã³ã°
pix2pixHDãSPADEãªã©ã®ææ°ã®GANã¯ãçæã³ã³ãã³ã·ã§ã³ãããã¯ãŒã¯ã®å ã®èšèšã§èšè¿°ããããã®ãšã¯å°ãç°ãªã£ãŠãåºåç»åã®ãªã¢ãªãºã ã枬å®ããŸãã
é«è§£å床ç»åãçæããåé¡ã解決ããããã«ãpix2pixHDã¯åãæ§é ã®3ã€ã®ãã£ã¹ã¯ãªãããŒã¿ãŒã䜿çšããŸããåãã£ã¹ã¯ãªãããŒã¿ãŒã¯ç°ãªãã¹ã±ãŒã«ïŒéåžžãµã€ãºã2åã4åïŒã§åºåç»åãåãåããŸãã
Pix2pixHDã䜿çšãã V textLSGAN ãããã³ãžã§ãã¬ãŒã¿ã®çµè«ãããçŸå®çã«ããããã«èšèšãããå¥ã®èŠçŽ ãå«ãŸããŠããŸãïŒãããå·®å¥è ã欺ãã®ã«åœ¹ç«ã€ãã©ããã«é¢ä¿ãªãïŒã ãã¡ãã®åå m a t h c a l L t e x t F M ããã£ãŒãã£ãããã³ã°ããšåŒã°ãã-å®éã®ããŒã¿ãšãžã§ãã¬ãŒã¿ãŒã®åºåãšã®éã®å·®å¥åã®ã·ãã¥ã¬ãŒã·ã§ã³ã«ãããŠããžã§ãã¬ãŒã¿ãŒãã¬ã€ã€ãŒã®ååžãçããããããšã奚å±ãã L 1 è·é¢ã ãããã®éã
ãããã£ãŠãæé©åã¯æ¬¡ã®ããã«ãªããŸãã
$$ display $$ \ begin {equation *} \ min_G \ biggïŒ\ lambda \ sum_ {k = 1,2,3} V_ \ text {LSGAN}ïŒGãD_kïŒ+ \ bigïŒ\ max_ {D_1ãD_2 ãD_3} \ sum_ {k = 1,2,3} \ mathcal {L} _ \ text {FM}ïŒGãD_kïŒ\ bigïŒ\ biggïŒ\ end {equation *}ã$$ display $$
æ倱ã¯ââ3ã€ã®å·®å¥çèŠå ãšä¿æ°ã«ãã£ãŠåèšãããŸã \ã©ã ã = 10 ãäž¡æ¹ã®èŠçŽ ã®åªå 床ãå¶åŸ¡ããŸãã
pix2pixHDã¯ãå®éã®å¯å®€ïŒåäŸã®å·ŠåŽïŒã§æ§æãããã»ã°ã¡ã³ããŒã·ã§ã³ãããã䜿çšããŠãåœã®å¯å®€ïŒå³åŽïŒãäœæããŸãã
åŒå¥åšã¯ãç»åå šäœãå解ãããŸã§ç»åã®çž®å°ºãçž®å°ããŸããããµã€ãº70Ã70ã®ãã¹ããããã§åæ¢ããŸãïŒé©åãªçž®å°ºã§ïŒã 次ã«ãç»åå šäœã®ãããã®ãã¹ããããã®å€ããã¹ãŠèŠçŽããŸãã
ãããŠããã®ã¢ãããŒãã¯æ©èœããŸã m a t h c a l L t e x t F M ç»åãé«è§£å床ã§ãªã¢ã«ã«èŠããããã«æ³šæãã V t e x t L S G A N å°ããªéšåããã§ãã¯ããããã«ã®ã¿å¿ èŠã§ãã ãã®ã¢ãããŒãã«ã¯ããããã¯ãŒã¯ã®é«éåã䜿çšããããã©ã¡ãŒã¿ãŒã®æ°ã®åæžãããã³ä»»æã®ãµã€ãºã®ç»åãçæããããã«ããã䜿çšããå¯èœæ§ãšãã圢ã§ãè¿œå ã®å©ç¹ããããŸãã
pix2pixHDã¯ãã·ã³ãã«ãªã¢ãŠãã©ã€ã³ãã§ãŒã¹ããé©åãªãããã£é¢ãå«ãåå®çãªç»åãçæããŸãã åäŸã¯ãå·ŠåŽã«CelebAããŒã¿ã»ããããã®å®éã®ç»åããã®ã»ã¬ãã®è¡šæ ã®ã¹ã±ããã®ã¹ã±ãããããã³ãã®ããŒã¿ããäœæãããå³åŽã®ç»åã瀺ããŠããŸãã
pix2pixHDã®äœãåé¡ã«ãªã£ãŠããŸããïŒ
ãããã®çµæã¯ä¿¡ããããªãã»ã©ã§ãããããã«å€ãã®ããšãã§ããŸãã pix2pixHDã¯1ã€ã®éèŠãªåŽé¢ã§å€ãã倱ããŸãã
pix2pixHDãåäžã¯ã©ã¹ã®å ¥åã§ãããšãã°ã©ãã«ã§ãèããããããã§äœãããããèããŠãã ããã å ¥åã¯ç©ºéçã«åäžã§ãããããæåã®ç³ã¿èŸŒã¿å±€ã®åºåãåãã§ãã 次ã«ãã€ã³ã¹ã¿ã³ã¹ã®æ£èŠåã¯ãç»åå ã®åãã£ãã«ã®ãã¹ãŠã®ïŒåäžã®ïŒå€ããæ£èŠåãããŠè¿ããŸã 0 ããããã¹ãŠã®çµè«ãšããŠã βãã©ã¡ãŒã¿ãŒã¯ãã®å€ããŒãããã·ããã§ããŸãããäºå®ã¯æ®ããŸããåºåã¯ãå ¥åããèããã空ãããæ°ŽãããŸãã¯ä»ã®äœãã§ããããšã«äŸåããªããªããŸãã
pix2pixHDã§ã¯ãã€ã³ã¹ã¿ã³ã¹ã®æ£èŠåã¯ã»ã°ã¡ã³ããŒã·ã§ã³ãããããã®æ å ±ãç¡èŠããåŸåããããŸãã 1ã€ã®ã¯ã©ã¹ã§æ§æãããç»åã®å Žåããããã¯ãŒã¯ã¯ãã®ã¯ã©ã¹èªäœã«é¢ä¿ãªãåãç»åãçæããŸãã
ãããŠããã®åé¡ã®è§£æ±ºçã¯ãSPADEã®äž»èŠãªèšèšæ©èœã§ãã
ãœãªã¥ãŒã·ã§ã³ïŒSPADE
æåŸã«ãã»ã°ã¡ã³ããŒã·ã§ã³ãããããç»åãäœæãããšããæ ¹æ¬çã«æ°ããã¬ãã«ã«å°éããŸããã空éé©å¿ïŒdeïŒæ£èŠåïŒSPADEïŒã§ãã
SPADEã®èãæ¹ã¯ããããã¯ãŒã¯å ã®ã»ãã³ãã£ãã¯æ å ±ã®æ倱ãé²ããã»ã°ã¡ã³ããŒã·ã§ã³ããããååå¥ã®ã¬ãã«ã§ããŒã«ã«ã«æ£èŠåãã©ã¡ãŒã¿ãŒÎ³ããã³Î²ãå¶åŸ¡ã§ããããã«ããããšã§ãã åãã£ãã«ã«1çµã®ãã©ã¡ãŒã¿ãŒã®ã¿ã䜿çšãã代ããã«ã2ã€ã®ç³ã¿èŸŒã¿å±€ãä»ããããŠã³ãµã³ããªã³ã°ã䜿çšããŠã»ã°ã¡ã³ããŒã·ã§ã³ããããæäŸããããšã«ãããå空éãã€ã³ãã«å¯ŸããŠãã©ã¡ãŒã¿ãŒãèšç®ãããŸãã
SPADEã¯ãã»ã°ã¡ã³ããŒã·ã§ã³ããããæåã®ã¬ã€ã€ãŒã«ããŒã«ãã代ããã«ãããŠã³ãµã³ããªã³ã°ããŒãžã§ã³ã䜿çšããŠãåã¬ã€ã€ãŒã®æ£èŠåãããåºåãå€èª¿ããŸãã
SPADEãžã§ãã¬ãŒã¿ãŒã¯ããã®èšèšå šäœããã¢ãããµã³ããªã³ã°ã¬ã€ã€ãŒïŒè»¢çœ®ç³ã¿èŸŒã¿ïŒã®éã«é 眮ãããå°ããªãæ®çãããã¯ãã«çµåããŸãã
pix2pixHDãžã§ãã¬ãŒã¿ãŒãšæ¯èŒããSPADEãžã§ãã¬ãŒã¿ãŒã®é«ã¬ãã«åè·¯
ã»ã°ã¡ã³ããŒã·ã§ã³ãããã¯ãããã¯ãŒã¯ã®ãå åŽãããæäŸãããã®ã§ãæåã®ã¬ã€ã€ãŒã®å ¥åãšããŠäœ¿çšããå¿ èŠã¯ãããŸããã 代ããã«ãã©ã³ãã ãªãã¯ãã«ãå ¥åãšããŠäœ¿çšãããå ã®GANã¹ããŒã ã«æ»ãããšãã§ããŸãã ããã«ããã1ã€ã®ã»ã°ã¡ã³ããŒã·ã§ã³ãããããããŸããŸãªç»åãçæããããšãã§ããŸãïŒããã«ãã¢ãŒãã«åæãïŒã ãŸããpix2pixHDã®ããšã³ã³ãŒããŒãå šäœãäžèŠã«ãªããããå€§å¹ ã«ç°¡çŽ åãããŸãã
SPADEã¯pix2pixHDãšåãæ倱é¢æ°ã䜿çšããŸããã1ã€ã®å€æŽããããŸããå€ãäºä¹ãã代ããã« V t e x t L S G A N ãã³ãžæ倱ã䜿çšããŸã ã
ãããã®å€æŽã«ãããçŽ æŽãããçµæãåŸãããŸãã
ããã§ãSPADEã®çµæãpix2pixHDã®çµæãšæ¯èŒããŸã
çŽèŠ³
SPADEããã®ãããªçµæãã©ã®ããã«è¡šç€ºã§ããããèããŠã¿ãŸãããã 以äžã®äŸã§ã¯ãããªãŒããããŸãã GauGANã¯1ã€ã®ãããªãŒã®ãããªãã¯ã©ã¹ã䜿çšããŠãæšã®å¹¹ãšèã®äž¡æ¹ãè¡šããŸãã ããããã©ããããããSPADEã¯ããããªãŒãã®äžéšã®çãéšåãå¹¹ã§ãããè¶è²ã§ãªããã°ãªãããäžæ¹ãäžéšã®å€§ããªããããã¯èã§ãªããã°ãªããªãããšãçºèŠããŸãã
SPADEãåã¬ã€ã€ãŒãå€èª¿ããããã«äœ¿çšããããŠã³ãµã³ããªã³ã°ã»ã°ã¡ã³ããŒã·ã§ã³ã¯ãåæ§ã®ãçŽæçãªãèªèãæäŸããŸãã
æšã®å¹¹ã¯ããèããæãå ã®éšåã§ç¶ããŠããããšã«æ°ä»ããããããŸããã ããã§ã¯ãSPADEã¯ããã©ã³ã¯ã®äžéšãããã«é 眮ããå Žæãšãèãã©ãã«ããããã©ã®ããã«ç解ããŸããïŒ ç¢ºãã«ã5x5ãããããå€æãããšãããã«ã¯åã«ãããªãŒããååšããã¯ãã§ãã
çãã¯ã衚瀺ãããããããã¯ã5x5ãããã¯ã«ããªãŒå šäœãå«ãŸããäœè§£å床ã¬ã€ã€ãŒããæ å ±ãåãåãããšãã§ãããšããããšã§ãã ãã®åŸã®åç³ã¿èŸŒã¿å±€ããç»åå ã®æ å ±ã®åããæäŸããããå®å šãªç»åãæäŸããŸãã
SPADEã䜿çšãããšãã»ã°ã¡ã³ããŒã·ã§ã³ãããã§åã¬ã€ã€ãŒãçŽæ¥å€èª¿ã§ããŸãããããã«ãããããšãã°pix2pixHDã®ããã«ãã¬ã€ã€ãŒéã§æ å ±ãäžè²«ããŠåé ãããããã»ã¹ã劚ããããããšã¯ãããŸããã ããã«ãããã»ãã³ãã£ãã¯æ å ±ã倱ãããã®ãé²ããŸããã»ãã³ãã£ãã¯æ å ±ã¯ãåã®ã¬ã€ã€ãŒãåå ã§åŸç¶ã®åã¬ã€ã€ãŒã§æŽæ°ãããããã§ãã
äŒéã¹ã¿ã€ã«
SPADEã«ã¯ãå¥ã®éæ³ã®è§£æ±ºçããããŸã-ç¹å®ã®ã¹ã¿ã€ã«ïŒããšãã°ãç §æãæ°è±¡æ¡ä»¶ãå£ç¯ïŒã§ç»åãçæããæ©èœã§ãã
SPADEã¯ãç¹å®ã®ã¹ã¿ã€ã«ãæš¡å£ããŠã1ã€ã®ã»ã°ã¡ã³ããŒã·ã§ã³ã«ãŒãã«åºã¥ããŠããã€ãã®ç°ãªãç»åãçæã§ããŸãã
ããã¯æ¬¡ã®ããã«æ©èœããŸãããšã³ã³ãŒããŒãä»ããŠç»åãæž¡ããçæãã¯ãã«ãèšå®ããããã«ãã¬ãŒãã³ã°ããŸã Z ãåæ§ã®ç»åãçæãããŸãã ãšã³ã³ãŒããŒããã¬ãŒãã³ã°ãããåŸã察å¿ããã»ã°ã¡ã³ããŒã·ã§ã³ã«ãŒããä»»æã®ã«ãŒãã«çœ®ãæããŸããSPADEãžã§ãã¬ãŒã¿ãŒã¯ã以åã«åãåã£ããã¬ãŒãã³ã°ã«åºã¥ããŠãæäŸãããç»åã®ã¹ã¿ã€ã«ã§æ°ããã«ãŒãã«å¯Ÿå¿ããç»åãäœæããŸãã
ãžã§ãã¬ãŒã¿ãŒã¯éåžžãå€æ¬¡å æ£èŠååžã«åºã¥ããŠãµã³ãã«ãåãåãããšãæ³å®ããŠãããããçŸå®çãªç»åãååŸããã«ã¯ãåæ§ã®ååžãæã€å€ãåºåããããã«ãšã³ã³ãŒããŒããã¬ãŒãã³ã°ããå¿ èŠããããŸãã å®éãããã¯å€åãªãŒããšã³ã³ãŒããŒã®ã¢ã€ãã¢ã§ããJoelZeldesã説æããŠããŸã ã
ããããSPADE / GaiGANã®æ©èœã§ãã ãã®èšäºããæ°ããNVIDIAã·ã¹ãã ãã©ã®ããã«æ©èœãããã«ã€ããŠã®å¥œå¥å¿ãæºãããŠãããããšãé¡ã£ãŠããŸãã Twitter @AdamDanielKinãŸãã¯adam@AdamDKing.comã«ã¡ãŒã«ã§é£çµ¡ããŠãã ããã