ãã®äžèŠåçŽãªã¿ã¹ã¯ã¯ããŸã èšç®å¹ŸäœåŠã®æªè§£æ±ºåé¡ã®ãªã¹ãã«ãããŸãã ããã«ãç¶æ³ã¯å€æ¬¡å 空éã®ãã€ã³ããç¹ã«æ²ç·ã®ãã€ã³ãã«ãé¢ä¿ããŸããããã¹ãŠã®ãã€ã³ããæŽæ°åº§æšãæã¡ãåãã©ã€ã³ã«ããŒã«ã©ã€ãºãããå Žåãåé¡ã¯ãã§ã«æãç°¡åãªãªãã·ã§ã³ã§ãã
ãã®ã¿ã¹ã¯ãæ°åŠè ã«ãã£ãŠèª²é¡ãšããŠèªèãããŠããã»ãŒåäžçŽïŒShamosã1975ïŒã§ãããã€ãã®çµæãåŸãããŸããã 1次å ã®åé¡ã«å¯ŸããŠ2ã€ã®ã±ãŒã¹ãèããããŸãã
- ãã€ã³ãã¯çŽç·äžã«ãããŸãïŒã¿ãŒã³ãã€ã¯ã®åé¡ïŒ
- ãã€ã³ãã¯åäžã«ãããŸãïŒãã«ããŠã§ã€ã®åé¡ïŒ
ãããã®2ã€ã®ã±ãŒã¹ã¯ãçç±ã®ããã«ç°ãªãååãåãåããŸãã-ãããã解決ããã®ã«ç°ãªãåªåãå¿ èŠã§ãã å®éãæåã®åé¡ã¯ååã«è¿ éã«ïŒ15幎ã§ïŒè§£æ±ºãããããã¯ãã©ããã³ã°ã¢ã«ãŽãªãºã ãæ§ç¯ãããŸãããããã«ãããå¹³åã§2次æéã§è§£ã埩å ãããŸãã $ã€ã³ã©ã€ã³$ OïŒn ^ 2 \ log nïŒ$ã€ã³ã©ã€ã³$ ã©ã㧠$ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ -ãã€ã³ãæ°ïŒSkienaã1990ïŒ; 2çªç®ã®ã¿ã¹ã¯ã®å Žåãããã¯ãããŸã§è¡ãããŠããããææ¡ãããæé©ãªã¢ã«ãŽãªãºã ã¯ææ°é¢æ°çãªèšç®ã®è€éããæã£ãŠããŸã $ã€ã³ã©ã€ã³$ OïŒn ^ n \ log nïŒ$ã€ã³ã©ã€ã³$ ïŒLemkeã2003ïŒã äžã®ç»åã¯ãç°ãªããã€ã³ãæ°ã®ã»ããã®è§£ãåŸãããã«ã³ã³ãã¥ãŒã¿ãŒãã©ããããã®æéåäœãããã瀺ããŠããŸãã
ã€ãŸããå¿ççã«èš±å®¹ã§ããæéïŒ10ç§ä»¥å ïŒã§ãå€ãã® $ã€ã³ã©ã€ã³$ X $ã€ã³ã©ã€ã³$ ã¿ãŒã³ãã€ã¯ã±ãŒã¹ã§ã¯æ倧1äžãã€ã³ãããã«ããŠã§ã€ã±ãŒã¹ã§ã¯æ倧10ãã€ã³ãã§ããããã¯å®éã®çšéã«ã¯ãŸã£ãã䟡å€ããããŸããã
å°ã説æã ã¿ãŒã³ãã€ã¯ã®åé¡ã¯ãå®çšçãªèŠ³ç¹ãããã€ãŸãééããããŒã¿ã®å€§éšåã«ã€ããŠè§£æ±ºããããšèããããŠããŸãã ãã®å Žåã解ãåŸãããã®æéãææ°é¢æ°çã«ç¡èŠãããç¹å¥ãªããŒã¿ã»ããããããšããäºå®ã«å¯ŸããçŽç²ãªæ°åŠè ã®å察 $ã€ã³ã©ã€ã³$ OïŒ2 ^ n \ log nïŒ$ã€ã³ã©ã€ã³$ ïŒãã£ã³ã1982ïŒã ã¿ãŒã³ãã€ã¯ãšã¯å¯Ÿç §çã«ãææ°ã¢ã«ãŽãªãºã ã®ãã«ããŠã§ã€åé¡ã¯ãäœããã®æ¹æ³ã§è§£æ±ºããããšã¯èŠãªãããŸããã
ãã€ãªã€ã³ãã©ããã£ã¯ã¹ã®èŠ³ç¹ããç°ç¶éè·¯åé¡ã解決ããããšã®éèŠæ§
20äžçŽã®çµããã«ãéãªããœãŒã åæçµè·¯ãšåŒã°ããçäœåååæã®æ°ããçµè·¯ãçºèŠãããŸããã åŸæ¥ã®åæã«ãŒããšã®äž»ãªéãã¯ãæçµçãªåæçµæãDNAã«ãŸã£ãããšã³ã³ãŒããããŠããªãããšã§ãã 代ããã«ããããã®ãªããžã§ã¯ããåéã§ãããããŒã«ãïŒå€ãã®ç°ãªãã·ã³ã»ã¿ãŒãŒïŒã®ã³ãŒãã®ã¿ãDNAã«æžã蟌ãŸããŸãã ãããã£ãŠããã€ãªãã·ã³ãšã³ãžãã¢ãªã³ã°ã¯å€§å¹ ã«åŒ·åãããŠãããããã20çš®é¡ã®æšæºéšåïŒã¿ã³ãã¯è³ªæ§æãšãåŒã°ããæšæºã¢ããé žïŒã§åäœããåäžã¿ã€ãã®ã³ã¬ã¯ã¿ãŒïŒãªããœãŒã ïŒã®ä»£ããã«ã500ãè¶ ããæšæºéšåããã³éæšæºéšåã§åäœã§ããä»ã®å€ãã®ã¿ã€ãã®ã³ã¬ã¯ã¿ãŒãç»å ŽããŸãïŒéã¿ã³ãã¯è³ªæ§æã¢ããé žãšãã®ããŸããŸãªä¿®é£ŸïŒã ãŸãããããã®ã¢ã»ã³ãã©ã¯ãããŒãããã§ãŒã³ã«æ¥ç¶ããã ãã§ãªããéåžžã«è€éãªæ§é ïŒåšæçãåå²ãããã³å€ãã®ãµã€ã¯ã«ãšåå²ãæã€æ§é ïŒãååŸã§ããŸãã ããã¯ãã¹ãŠããã®ç掻ã®ããŸããŸãªã±ãŒã¹ã§çŽ°èã®å µåšåº«ãå€§å¹ ã«å¢å ãããŸãã ãã®ãããªæ§é ã®çç©åŠç掻æ§ã¯é«ããç¹ç°æ§ïŒäœçšã®éžææ§ïŒãããŸããŸãªç¹æ§-å¶éãããŠããŸããã è±èªã®æç®ã«ããããããã®çŽ°èç£ç©ã®ã¯ã©ã¹ã¯ãNRPïŒéãªããœãŒã ç£ç©ããŸãã¯éãªããœãŒã ããããïŒãšåŒã°ããŠããŸãã çç©åŠè ã¯ãéåžžã«å¹æçã§ãããç¹ç°æ§ã«ããå¯äœçšã®ãªãæ°ããè¬çåŠç補å€ãèŠã€ããããšãã§ããã®ã¯ããŸãã«ãã®ãããªçŽ°è代è¬ã®ç£ç©ã§ããããšãæãã§ããŸãã
å¯äžã®è³ªåã¯ãNRPãã©ã®ããã«ãã©ãã§æ¢ããã§ãã ãããã¯éåžžã«å¹æçã§ããããã现èã¯ãããã倧éã«çç£ããå¿ èŠãå šããªãããã®æ¿åºŠã¯ç¡èŠã§ããã ãã®ãããçŽ1ïŒ ã®äœã粟床ãšèšå€§ãªè©Šè¬ãšæéã³ã¹ãã䌎ãååŠæœåºæ³ã¯åœ¹ã«ç«ã¡ãŸããã 次ã ãããã¯DNAã«ãšã³ã³ãŒããããŠããªããããã²ãã ã®ãã³ãŒãäžã«èç©ããããã¹ãŠã®ããŒã¿ããŒã¹ãããã³ãã€ãªã€ã³ãã©ããã£ã¯ã¹ãšã²ããã¯ã¹ã®ãã¹ãŠã®æ¹æ³ã圹ã«ç«ããªãããšãæå³ããŸãã äœããèŠã€ããå¯äžã®æ¹æ³ã¯ãç©ççæ¹æ³ãã€ãŸã質éåæã«ãããã®ã§ãã ããã«ãçŸä»£ã®åå èšã§ã®ç©è³ªã®æ€åºã¬ãã«ã¯éåžžã«é«ããããéèŠã§ãªãéãåèš>ã800ååïŒã¢ãã¢ã«ç¯å²ããŸãã¯æ¿åºŠïŒãèŠã€ããããšãã§ããŸã $ã€ã³ã©ã€ã³$ 10 ^ {-18} $ã€ã³ã©ã€ã³$ ïŒ
ã
質éåæèšã¯ã©ã®ããã«æ©èœããŸããïŒ è£ çœ®ã®äœæ¥å®€ã§ã¯ãååã¯ç Žçã«å解ãããŸãïŒå€éšè¡çªã«ããé »åºŠã¯äœããªããŸãããçžäºã®è¡çªã«ããé »åºŠãé«ããªããŸãïŒã ãããã®ãã©ã°ã¡ã³ãã¯ã€ãªã³åãããå€éšã®é»ç£å Žã§å éããã³åé¢ãããŸãã åé¢ã¯ãæ€åºåšã«å°éããæéããŸãã¯ç£å Žã®å転è§ã®ããããã§çºçããŸããããã¯ããã©ã°ã¡ã³ãã®è³ªéã倧ãããé»è·ãäœããããäžåšçšã«ãªãããã§ãã ãããã£ãŠã質éåæèšã¯æçã®è³ªéããèšéãããŸãã ããã«ãã質éãã¯ãåã質éïŒããæ£ç¢ºã«ã¯ã1ã€ã®å€ $ã€ã³ã©ã€ã³$ m / z $ã€ã³ã©ã€ã³$ ïŒããã«ãã©ã°ã¡ã³ããŒã·ã§ã³ãé²ããããã«åé¢ããŸãã 2段質éåæèšã¯åºãååžããŠãããã¿ã³ãã 質éåæèšãšåŒã°ããŠããŸããå€æ®µè³ªéåæèšã¯éåžžã«ãŸãã§ãããåã« $ã€ã³ã©ã€ã³$ ms ^ n $ã€ã³ã©ã€ã³$ ã©ã㧠$ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ -ã¹ããŒãžã®æ°ã ãããŠãããã§ããã®æ§é ãç¥ãããã«ãã©ã®ããã«ããŠãããããååã®ããããçš®é¡ã®ãã©ã°ã¡ã³ãã®è³ªéã ããç¥ããšããã¿ã¹ã¯ãçŸããŸããïŒ ããã§ãããããç·åœ¢ãããããšç°ç¶ããããã«ã€ããŠãã¿ãŒã³ãã€ã¯ãšãã«ããŠã§ã€ã®åé¡ã«ãªããŸããã
ç°ç¶ããããã®äŸã䜿çšããŠãçäœååã®æ§é ã埩å ããã¿ã¹ã¯ã瀺ãããåé¡ã«ã©ã®ããã«è»œæžããããã«ã€ããŠãããã«è©³ãã説æããŸãã
æçåã®æåã®æ®µéã§ã®ç°ç¶ããããABCDã¯ãDAçµåãŸãã¯ABãBCãŸãã¯CDã®ããããã«ãã£ãŠ4ç®æã§åæããã4ã€ã®å¯èœãªç·åœ¢ããããïŒABCDãBCDAãCDABãŸãã¯DABCïŒã圢æããŸãã èšå€§ãªæ°ã®åäžã®ãããããåå èšãééãããããåºåã«ã¯4ã€ã®ã¿ã€ããã¹ãŠã®ãã©ã°ã¡ã³ãããããŸãã ããã«ããã¹ãŠã®ãã©ã°ã¡ã³ãã¯åã質éãæã¡ãæåã®æ®µéã§åé¢ã§ããªãããšã«æ³šæããŠãã ããã 2çªç®ã®æ®µéã§ã¯ãç·åœ¢ãã©ã°ã¡ã³ãABCDã3ã€ã®å Žæã§åå²ããç°ãªã質éAãšBCDãABãšCDãABCãšDã®å°ããªãã©ã°ã¡ã³ãã圢æãã察å¿ãã質éã¹ãã¯ãã«ã圢æããŸãã ãã®ã¹ãã¯ãã«ã§ã¯ããã©ã°ã¡ã³ãã®è³ªéãx軞ã«æ²¿ã£ãŠãç¹å®ã®è³ªéãæã€å°ããªãã©ã°ã¡ã³ãã®æ°ãy軞ã«æ²¿ã£ãŠãããããããŸãã åæ§ã«ãBCDAãCDABãDABCã®æ®ãã®3ã€ã®ç·åœ¢ãã©ã°ã¡ã³ãã®ã¹ãã¯ãã«ã圢æãããŸãã 4ã€ã®å€§ããªãã©ã°ã¡ã³ããã¹ãŠã第2ã¹ããŒãžã«æž¡ãããããããããã®ãã¹ãŠã®ã¹ãã¯ãã«ãåèšãããŸãã åèšãçµæã¯ããçšåºŠã®è³ªéã§ã $ inline $ \ {m_1 ^ {n_1}ãm_2 ^ {n_2}ã..ãm_q ^ {n_q} \} $ inline $ ã©ã㧠$ã€ã³ã©ã€ã³$ m_i $ã€ã³ã©ã€ã³$ -ããã€ãã®è³ªéãããã³ $ã€ã³ã©ã€ã³$ n_i $ã€ã³ã©ã€ã³$ -ãã®ç¹°ãè¿ãã®é »åºŠã ãã ããç°ãªã質éãåã質éãæã€å¯èœæ§ãããããããã®è³ªéãã©ã®ãã©ã°ã¡ã³ãã«å±ãããã®ãã©ã°ã¡ã³ããäžæã§ãããã©ããã¯ããããŸããã ããããã®çµåãäºãã«é¢ããŠããã»ã©ããããããã©ã°ã¡ã³ãã®è³ªéã¯å€§ãããªããŸãã ã€ãŸããç°ç¶ããããã®èŠçŽ ã®é åºã埩å ããã¿ã¹ã¯ã¯ããã«ããŠã§ã€ã®åé¡ã«ãªããŸãã $ã€ã³ã©ã€ã³$ X $ã€ã³ã©ã€ã³$ ããããã®çµåãããã³å€æ°ã®èŠçŽ $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ -çµåéã®ãã©ã°ã¡ã³ãã®å¡ã
ãã«ããŠã§ã€åé¡ã解決ããããã®å€é åŒæéãåããã¢ã«ãŽãªãºã ã®ååšã®äºæž¬
ç§ã®çµéšãšããã®åé¡ã解決ããããšãã人ãå®éã«äœãããã人ãšã®ã³ãã¥ãã±ãŒã·ã§ã³ããã倧å€æ°ã®äººãäžè¬çãªå ŽåããŸãã¯ãã®ãããªçãç¯å²ã®æŽæ°ããŒã¿ã®ããããã§è§£æ±ºããããšããŠããããšã«æ°ä»ããŸããïŒ1ã 50ïŒã ã©ã¡ãã®ãªãã·ã§ã³ã倱æããéåœã«ãããŸãã äžè¬çãªå Žåãäžæ¬¡å ã®å Žåã®ãã«ããŠã§ã€åé¡ã®è§£æ±ºçã®ç·æ°ã蚌æãããŸããã $ã€ã³ã©ã€ã³$ S_1ïŒnïŒ$ã€ã³ã©ã€ã³$ å€ã«ããå¶éïŒLemkeã2003ïŒ
$$ãã£ã¹ãã¬ã€$$ e ^ {2 ^ {\ frac {\ ln n} {\ ln \ ln n} + oïŒ1ïŒ}} \ leq S_1ïŒnïŒ\ leq \ frac {1} {2} n ^ {n-2} $$ãã£ã¹ãã¬ã€$$
ããã¯ã挞è¿ç·ã«ææ°é¢æ°çãªæ°ã®è§£ãååšããããšãæå³ããŸã $ã€ã³ã©ã€ã³$ n \å³ç¢å°\ infty $ã€ã³ã©ã€ã³$ ã æããã«ããœãªã¥ãŒã·ã§ã³ã®æ°ãææ°é¢æ°çã«å¢å ããå Žåããããã®åä¿¡æéã¯ãã以äžé ããªãããšã¯ãããŸããã ã€ãŸããäžè¬çãªå Žåãå€é åŒæé解ãååŸããããšã¯äžå¯èœã§ãã çãç¯å²ã®æŽæ°ããŒã¿ã«é¢ããŠã¯ããã¹ãŠãå®éšçã«ãã§ãã¯ã§ããŸãã培åºçãªæ€çŽ¢ã«ãã£ãŠè§£æ±ºçãæ¢ãã³ãŒããæžãã®ã¯ããã»ã©é£ãããªãããã§ãã å°ããæ¹ã« $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ãã®ãããªã³ãŒãã¯ããã»ã©é·ãããããŸããã ãã®ãããªã³ãŒãã®ãã¹ãçµæã¯ããã®ãããªããŒã¿æ¡ä»¶ã®äžã§ãä»»æã®ã»ããã®ç°ãªããœãªã¥ãŒã·ã§ã³ã®ç·æ°ã衚瀺ãããŸã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ãã§ã«å°ãã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ãŸããéåžžã«åçã«æé·ããŠããŸãã
ãããã®äºå®ã«ã€ããŠåŠãã åŸãããªãã¯æ¡ä»¶ã«éãããã®ã¿ã¹ã¯ããããããããšãã§ããŸãã ãããããã«ããŠã§ã€ã®åé¡ãæªè§£æ±ºã®ãŸãŸã§ãããšèããããçç±ã®1ã€ã§ãããšèªããŸãã ãã ããæãç©Žã¯ååšããŸãã ææ°é¢æ°ã§ããããšãæãåºããŠãã ãã $ã€ã³ã©ã€ã³$ e ^ {\ alpha x} $ã€ã³ã©ã€ã³$ éåžžã«èå³æ·±ãåäœãããŸãã æåã¯ãéåžžã«ãã£ãããšæé·ãã0ãã1ã«ç¡éã«å€§ããªééã§äžæããŸãã $ inline $ \ infty $ inline $ 0ã«ãããšããã®æé·ã¯ãŸããŸãå éããŸãã ãã ããå€ãäœãã»ã© $ã€ã³ã©ã€ã³$ \ alpha $ã€ã³ã©ã€ã³$ å€ã倧ããã»ã© $ã€ã³ã©ã€ã³$ x $ã€ã³ã©ã€ã³$ é¢æ°ã®çµæãèšå®å€ãã¹ããããªãŒããŒããããã« $ã€ã³ã©ã€ã³$ y = \ xi $ã€ã³ã©ã€ã³$ ã ãã®ãããªå€ãšããŠãæ°åãéžæãããšäŸ¿å©ã§ã $ã€ã³ã©ã€ã³$ \ xi = 2 $ã€ã³ã©ã€ã³$ ã圌ã®åã«å¯äžã®è§£æ±ºçã圌ã®åŸã«å€ãã®æ±ºå®ããããŸãã 質å ãããŠã誰ãã©ã®ããŒã¿ãå ¥åã«å°éãããã«é¢ãã決å®ã®æ°ã®äŸåæ§ããã§ãã¯ããŸãããïŒ ã¯ããããŸããã ã¯ãã¢ãã¢ã®å¥³æ§æ°åŠè Tamara DakisïŒDakicã2000ïŒã«ããçŽ æŽãããphDè«æããããå€é åŒæéã§åé¡ã解決ããããã«å ¥åããŒã¿ãæºããã¹ãæ¡ä»¶ã決å®ããŸããã æãéèŠãªã®ã¯ããœãªã¥ãŒã·ã§ã³ã®äžææ§ãšå ¥åããŒã¿ã®ã»ããã«éè€ããªãããšã§ãã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã 圌女ã®å士è«æã®ã¬ãã«ã¯éåžžã«é«ãã§ãã ãã®åŠçãã¿ãŒã³ãã€ã¯ã®åé¡ã ãã«éå®ããã®ã¯æ®å¿µã§ããããã圌女ãç°ç¶éè·¯ã®åé¡ã«é¢å¿ãåããŠããããããã¯é·ãé解決ãããŠãããšç¢ºä¿¡ããŠããŸãã
å€é åŒæé解æ³ãã«ããŠã§ã€åé¡ã䌎ãã¢ã«ãŽãªãºã ã®ååŸ
å¶ç¶ã«ç®çã®ã¢ã«ãŽãªãºã ãæ§ç¯ã§ããããŒã¿ãèŠã€ããããšãã§ããŸããã è¿œå ã®ã¢ã€ãã¢ãå¿ èŠã§ããã äž»ãªã¢ã€ãã¢ã¯ãç°ç¶ããããã®ã¹ãã¯ãã«ã¯ãåäžã®ç°åæã§åœ¢æããããã¹ãŠã®ç·åœ¢ããããã®ã¹ãã¯ãã«ã®åèšã§ãããšãã芳å¯ïŒäžèšåç §ïŒããçãŸããŸããã ããããå ã®ã¢ããé žé åã¯ããã®ãããªç·åœ¢ãããããã埩å ã§ãããããã¹ãã¯ãã«å ã®ã©ã€ã³ã®ç·æ°ã¯éèŠã§ãïŒ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ åã©ã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ -ããããå ã®ã¢ããé žã®æ°ïŒãéå°ã§ãã åé¡ã¯ãã·ãŒã±ã³ã¹ã埩å ããæ©èœã倱ããªãããã«ãã©ã®è¡ãã¹ãã¯ãã«ããé€å€ãããã ãã§ãã äž¡æ¹ã®ã¿ã¹ã¯ïŒè³ªéã¹ãã¯ãã«ããã®ç°ç¶ããããé åã®åŸ©å ãšãã«ããŠã§ã€ã®åé¡ïŒã¯æ°åŠçã«ååãªã®ã§ãå€ãã®ã¿ã¹ã¯ãéåŒãããšãå¯èœã§ãã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã
éäŒäœæ¥ $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã»ããã®ããŒã«ã«å¯Ÿç§°æ§ã䜿çšããŠæ§ç¯ããã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ïŒFominã2016aïŒã
- 察称å æåã®æäœã¯ãã»ããã®ä»»æã®èŠçŽ ãéžæããããšã§ã $ inline $ x _ {\ mu} \ in \ Delta X $ inline $ ããåé€ $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ç¹ã«é¢ããŠå¯Ÿç§°çãªãã¢ãæã€èŠçŽ ãé€ããã¹ãŠã®èŠçŽ $ã€ã³ã©ã€ã³$ x _ {\ mu} / 2 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ïŒL + x _ {\ mu}ïŒ/ 2 $ã€ã³ã©ã€ã³$ ã©ã㧠$ã€ã³ã©ã€ã³$ L $ã€ã³ã©ã€ã³$ -ååšïŒç°ç¶éè·¯ã®å Žåããã¹ãŠã®ãã€ã³ããåäžã«ããããšãæãåºããŸãïŒã
- éšå解ç³ã¿èŸŒã¿ã 2çªç®ã®æäœã§ã¯ã解ã«é¢ããæšæž¬ã䜿çšããŸããã€ãŸãã解ã«å±ããåã ã®ãã€ã³ãã®ç¥èãããããéšå解ã䜿çšããŸãã å€ãã® $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ æ¡ä»¶ãæºããèŠçŽ ãé€ãããã¹ãŠã®èŠçŽ ãåé€ãããŸãããã§ãã¯å¯Ÿè±¡ã®ãã€ã³ãããéšå解ã®ãã¹ãŠã®ãã€ã³ããŸã§ã®è·é¢ã枬å®ãããšãååŸããããã¹ãŠã®å€ã¯ $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã ååŸããè·é¢ã®å°ãªããšã1ã€ãååšããªãå Žåã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ãã®ç¹ã¯ç¡èŠãããŸãã
å®çã¯ãäž¡æ¹ã®æäœãã»ãããéåŒãããšã蚌æããŸãã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ããã ãããœãªã¥ãŒã·ã§ã³ã埩å ããã®ã«ååãªèŠçŽ ãæ®ã£ãŠããŸã $ã€ã³ã©ã€ã³$ X $ã€ã³ã©ã€ã³$ ã ãããã®æäœã䜿çšããŠãã¢ã«ãŽãªãºã ãæ§ç¯ãããc ++ã§å®è£ ããããã«ããŠã§ã€ã®åé¡ã解決ããŸããïŒFominã2016bïŒã ãã®ã¢ã«ãŽãªãºã ã¯ãåŸæ¥ã®ããã¯ãã©ããã³ã°ã¢ã«ãŽãªãºã ãšã»ãšãã©ç°ãªããŸããïŒã€ãŸããå¯èœãªãªãã·ã§ã³ãåæããŠè§£æ±ºçãæ§ç¯ããæ§ç¯äžã«ãšã©ãŒãçºçããå Žåã«æ»ããŸãïŒã å¯äžã®éãã¯ãã»ãããçµã蟌ãããšã§ã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ç§ãã¡ããã¹ãããããã®ãªãã·ã§ã³ã¯ããªãå°ãªããªããŸãã
ãããããã€ã®äŸã§ã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ éäŒäžã
ã©ã³ãã ã«çæãããé·ãã®ç°ç¶ããããã«ã€ããŠèšç®å®éšãè¡ããã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ 10ã1000åã®ã¢ããé žïŒå¯Ÿæ°ç®çã®çžŠè»žïŒã 察æ°ç®çã®æšªè»žã¯ãããŸããŸãªæäœã«ãã£ãŠéåŒããããã»ããå ã®èŠçŽ ã®æ°ã瀺ããŸã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ åäœã§ $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ ã ãã®ãããªè¡šçŸã¯çµ¶å¯Ÿã«çããã®ã§ãäŸã«ãã£ãŠã©ã®ããã«èªãŸãããã解èªããŸãã å·Šã®å³ãèŠãŠãã ããã ããããã«é·ããæãããŸã $ã€ã³ã©ã€ã³$ n = 100 $ã€ã³ã©ã€ã³$ ã 圌ã«ãšã£ãŠãã»ããå ã®èŠçŽ ã®æ° $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ çãã $ã€ã³ã©ã€ã³$ n ^ 2 = 10000 $ã€ã³ã©ã€ã³$ ïŒããã¯äžã®ç Žç·ã®ç¹ã§ã $ã€ã³ã©ã€ã³$ y = n ^ 2 $ã€ã³ã©ã€ã³$ ïŒ ã»ããããåé€ããåŸ $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ç¹°ãè¿ãèŠçŽ ãèŠçŽ æ° $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã«æžå° $ã€ã³ã©ã€ã³$ n_D \çŽn ^ {1.9} \çŽ6300 $ã€ã³ã©ã€ã³$ ïŒååä»ãã®åïŒã 察称åã®åŸãèŠçŽ ã®æ°ã¯ $ã€ã³ã©ã€ã³$ n_S \çŽn ^ {1.75} \çŽ3100 $ã€ã³ã©ã€ã³$ ïŒé»äžžïŒãããã³éšå解ã«ããç³ã¿èŸŒã¿åŸ $ã€ã³ã©ã€ã³$ n_C \çŽn ^ {1.35} \çŽ500 $ã€ã³ã©ã€ã³$ ïŒã¯ãã¹ïŒã åèšãã»ããã®åèšããªã¥ãŒã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ããã20åã«åæžãããŸããã åãé·ãã®ããããã§ãããå³ã®å³ã§ã¯ãå瞮㯠$ã€ã³ã©ã€ã³$ n ^ 2 = 10000 $ã€ã³ã©ã€ã³$ åã« $ã€ã³ã©ã€ã³$ N_C \çŽn \çŽ100 $ã€ã³ã©ã€ã³$ ãã€ãŸã100åã
å·Šå³ã®ãã¹ãã±ãŒã¹ã®çæã¯ãè€è£œã®ã¬ãã«ã $ã€ã³ã©ã€ã³$ k_ {dup} $ã€ã³ã©ã€ã³$ 㧠$ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ 0.1ãã0.3ã®ç¯å²ã§ãå³åŽã®å Žåã¯0.1æªæºã§ããã è€è£œã®ã¬ãã«ã¯æ¬¡ã®ããã«å®çŸ©ãããŸã $ inline $ k_ {dup} = 2- \ log {N_u} / \ log {n} $ inline $ ã©ã㧠$ã€ã³ã©ã€ã³$ N_u $ã€ã³ã©ã€ã³$ -ã»ããå ã®äžæã®èŠçŽ ã®æ° $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã ãã®ãããªå®çŸ©ã¯èªç¶ãªçµæããããããŸãïŒã»ããã«éè€ããªãå Žå $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ãã®å㯠$ã€ã³ã©ã€ã³$ N_u = n ^ 2 $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ k_ {dup} = 0 $ã€ã³ã©ã€ã³$ å¯èœãªéãæé«ã®è€è£œã§ $ã€ã³ã©ã€ã³$ N_u = n $ã€ã³ã©ã€ã³$ ãã㊠$ã€ã³ã©ã€ã³$ k_ {dup} = 1 $ã€ã³ã©ã€ã³$ ã ç°ãªãã¬ãã«ã®è€è£œãæäŸã§ããããã«ããæ¹æ³ã«ã€ããŠã¯ãå°ãåŸã§èª¬æããŸãã å³ã¯ãè€è£œã®ã¬ãã«ãäœãã»ã©ãéåŒããããããšã瀺ããŠããŸã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ 㧠$ã€ã³ã©ã€ã³$ k_ {dup} <0.1 $ã€ã³ã©ã€ã³$ éåŒããããèŠçŽ ã®æ° $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ äžè¬çã«ãã®éçã«éãã $ã€ã³ã©ã€ã³$ OïŒn ^ 2ïŒ\å³ç¢å°OïŒnïŒ$ã€ã³ã©ã€ã³$ ãéåŒããããã»ããã§ã¯ $ã€ã³ã©ã€ã³$ OïŒnïŒ$ã€ã³ã©ã€ã³$ èŠçŽ ãååŸã§ããŸããïŒæäœã«ã¯ã $ã€ã³ã©ã€ã³$ n $ã€ã³ã©ã€ã³$ èŠçŽ ïŒã ã»ããã®åãçãããšããäºå® $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ äžéå€ãèšå®ããããšã¯éåžžã«éèŠã§ãããœãªã¥ãŒã·ã§ã³ãååŸããèšç®ã®è€éããåçã«å€ããã®ã¯åœŒã§ãã
éåŒãæäœãããã¯ãã©ããã³ã°ã¢ã«ãŽãªãºã ã«æ¿å ¥ãããã«ããŠã§ã€ã®åé¡ã解決ããåŸãã¿ãã©ããã¹ãã¿ãŒã³ãã€ã¯ã®åé¡ã«é¢ããŠè©±ããããšã®å®å šãªé¡äŒŒç©ãæããã«ãªããŸããã æãåºãããŠãã ããã 圌女ã¯ãã¿ãŒã³ãã€ã¯åé¡ã§ã¯ã解ãäžæã§ãããéè€ããªãå Žåãå€é åŒæéã§è§£ãåŸãããšãã§ãããšèšããŸããã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã éè€ãå®å šã«ãªããå¿ èŠã¯ãªãïŒå®éã®ããŒã¿ã§ã¯ã»ãšãã©äžå¯èœã§ãïŒããã®ã¬ãã«ã¯éåžžã«å°ãããªããŸãã 次ã®å³ã¯ãããããã®é·ããšè€è£œã®ã¬ãã«ã«å¿ããŠããã«ããŠã§ã€ã®åé¡ã®è§£æ±ºã«å¿ èŠãªæéã瀺ããŠããŸã $ã€ã³ã©ã€ã³$ \ãã«ã¿X $ã€ã³ã©ã€ã³$ ã
å³ã§ã¯ã暪座æšãšçžŠåº§æšã®äž¡æ¹ã察æ°ç®çã§ç€ºãããŠããŸãã ããã«ãããã«ãŠã³ãæéã®ã·ãŒã±ã³ã¹ãžã®äŸåæ§ãæ確ã«ç¢ºèªã§ããŸã $ã€ã³ã©ã€ã³$ T = fïŒnïŒ$ã€ã³ã©ã€ã³$ ææ°é¢æ°ïŒçŽç·ïŒãŸãã¯å€é åŒïŒå¯Ÿæ°æ²ç·ïŒã å³ã«èŠãããããã«ãäœã¬ãã«ã®è€è£œïŒå³å³ïŒã§ã¯ã解ã¯å€é åŒæéã§åŸãããŸãã ããŠãããæ£ç¢ºã«ã¯ã解ã¯äºæ¬¡æéã§åŸãããŸãã ããã¯ãéåŒãæäœã«ãã£ãŠã»ããã®ãã¯ãŒãäžéã«äœäžããå Žåã«çºçããŸãã $ã€ã³ã©ã€ã³$ OïŒn ^ 2ïŒ\å³ç¢å°OïŒnïŒ$ã€ã³ã©ã€ã³$ ãæ®ã£ãŠãããã€ã³ãã¯ã»ãšãã©ãªãããªãã·ã§ã³ã®ç¹°ãè¿ããåäžã«ãªããšæ»ããæ¬è³ªçã«ã¢ã«ãŽãªãºã ã¯ãªãã·ã§ã³ã®ç¹°ãè¿ããåæ¢ããŸãããæ®ã£ãŠãããã®ãããœãªã¥ãŒã·ã§ã³ãæ§ç¯ããŸãã
PSããŠãè€è£œã®ç°ãªãã¬ãã«ã§ã®ã»ããã®çæã«é¢ããæåŸã®ç§å¯ãæããã«ããŸãã ããã¯ãããŒã¿è¡šç€ºã®ç²ŸåºŠãç°ãªãããã§ãã ããŒã¿ãäœã粟床ïŒæŽæ°ãžã®äžžããªã©ïŒã§çæãããå Žåãéè€ã®ã¬ãã«ã¯0.3以äžã«ãªããŸãã ããšãã°ãå°æ°ç¹ä»¥äž3æ¡ãŸã§ã®ç²ŸåºŠã§ããŒã¿ãçæãããå Žåãè€è£œã®ã¬ãã«ã¯æ¥æ¿ã«äœäžãã0.1æªæºã«ãªããŸãã ãããŠãããããæåŸã®æãéèŠãªçºèšãç¶ããŸãã
å®éã®ããŒã¿ã®å Žåã枬å®ã®ç²ŸåºŠããŸããŸãåäžããç¶æ³ã§ã¯ããã«ããŠã§ã€ã®åé¡ã¯ãªã¢ã«ã¿ã€ã ã§è§£æ±ºå¯èœã«ãªããŸãã
æåŠ
1. DakicãT.ïŒ2000ïŒã ã¿ãŒã³ãã€ã¯åé¡ã«ã€ããŠã å士è«æããµã€ã¢ã³ãã¬ã€ã¶ãŒå€§åŠã
2.ãã©ãã³ã E.ïŒ2016aïŒã·ãŒã±ã³ã¹åé¡ã®n ^ 2ã¹ãããã®n ^ 2ãã¢ã¯ã€ãºè·é¢ã®ãã«ãã»ããããã®ãã€ã³ãã»ããã®åæ§ç¯ãžã®ç°¡åãªã¢ãããŒãïŒI.çè«ã J Comput Biolã 2016ã23ïŒ9ïŒïŒ769-75ã
3.ãã©ãã³ã E.ïŒ2016bïŒã·ãŒã±ã³ã¹åé¡ã®n ^ 2ã¹ãããã«ãããn ^ 2ãã¢ã¯ã€ãºè·é¢ã®ãã«ãã»ããããã®ãã€ã³ãã»ããã®åæ§ç¯ãžã®ç°¡åãªã¢ãããŒãïŒIIã ã¢ã«ãŽãªãºã ã J Comput Biolã 2016ã23ïŒ12ïŒïŒ934-942ã
4. LemkeãP.ãSkienaãS.ãããã³SmithãW.ïŒ2003ïŒã ç¹éè·é¢ããã»ãããåæ§ç¯ããŸãã é¢æ£ããã³èšç®å¹ŸäœåŠã¢ã«ãŽãªãºã ãšçµã¿åããè«ã25ïŒ597â631ã
5. SkienaãS.ãSmithãWããããã³LemkeãP.ïŒ1990ïŒã ç¹éè·é¢ããã»ãããåæ§ç¯ããŸãã èšç®å¹ŸäœåŠã«é¢ãã第6åACMã·ã³ããžãŠã ã®è°äºé²ã332ã339ããŒãžã ã«ãªãã©ã«ãã¢å·ããŒã¯ã¬ãŒ
6. ZhangãZ.1982ãéšåãã€ãžã§ã¹ããããã³ã°ã¢ã«ãŽãªãºã ã®ææ°é¢æ°çãªäŸã J. Compã ãã€ãª 1ã235ã240ã