ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠäººã ã®è¡åãäºæž¬ããåé¡ã解決ããæ©äŒããããã¹ã³ãŒãã®ç¹ç°æ§ã¯çŸå®¹æ¥çã«é¢é£ããŠããŸããã ãå®éšãã®äž»ãªå¯Ÿè±¡è ã¯å¥³æ§ã§ããã ç§ãã¡ã¯æ¬è³ªçã«çåã«æãã€ããŸããã人工ç¥çµå路網ã¯ããã®äººèªèº«ã§ãããã®è¡åããŸã ç解ããŠããªãå°åã®ïŒäººã®ïŒå®éã®ç¥çµå路網ãç解ã§ããã®ã§ããããã ãã®è³ªåã«ã©ã®ããã«åçããçµæãšããŠåŸããããã®ã«ã€ããŠã¯ã詳现ãã芧ãã ããã
è±åœã®ããŒã±ãã£ã³ã°ä»£çåºã¯ãçŸå®¹æ¥çã®ããã€ãã®ãã©ã³ãã®ããŒã±ãã£ã³ã°ã³ãã¥ãã±ãŒã·ã§ã³ãæé©åããããã«ç§ãã¡ã®ããŒã ãæåŸ ããŸããã ãã®åé¡ã解決ããããã«ãç§ãã¡ã¯ããŸããŸãªè§åºŠãããã€ã€ãŒã襲æããªããã°ãªããŸããã§ããã ãã®çµæãåãã€ã€ãŒãžã®åå¥ã®ã¢ãããŒããèŠã€ããã®ã«åœ¹ç«ã€å€ãã®äºæž¬ããã³æšå¥šã¢ãã«ãæ§ç¯ããŸããã ãã®éçšã§ãããã€ãã®éèŠãªããžãã¹ã¢ãŒã¡ã³ãã決å®ãã圌ã®äž»èŠãªKPIãæé·ããŸããã
åºåã«ãã倧èŠæš¡ãªçæã®ä»£ããã«ãã¿ãŒã²ãããçµã£ãããŒãœãã©ã€ãºããããªãã¡ãŒã䜿çšããŸã
å°å£²æ¥è ã¯å£²ãäžããå¢ãããããšèããŠããŸãã ãããè¡ãã«ã¯ã顧客ãæãæé©ãªéä¿¡ãã£ãã«ã䜿çšããŠè³Œå ¥ããå¯èœæ§ãæãé«ãååãæäŸããé©åãªã¿ã€ãã³ã°ã§ãããè¡ãå¿ èŠããããŸãã ãããã£ãŠããŸãã¹ãã¢ã«ã¯ããã£ãã«ãšããã€ãã®äºæž¬ã¢ãã«ã®äœç³»çãªãªãŒã±ã¹ãã¬ãŒã·ã§ã³ã«å ããŠãæšå¥šã·ã¹ãã ãå¿ èŠã§ãã ãã®AIã¿ã¹ã¯ã¯ãBeauty Brainsãå§èšããCleverDATAã«ãã£ãŠè¡ãããŸããã
ãã©ã³ãã®å®åº«ã«ã¯ã顧客ã®è³Œå ¥å±¥æŽããµã€ãã蚪åãã顧客ã®å±¥æŽãããã³ååå人ããã®éµäŸ¿ç©ããã³éµäŸ¿ç©ãžã®åå¿ã«é¢ããæ å ±ããããŸããã ãããã£ãŠãã¯ã©ã€ã¢ã³ããã©ã®ã¡ãŒã«ãåä¿¡ããããã©ã®ã¡ãŒã«ãéããã®ããã©ã®ãªã³ã¯ã«è¡ã£ãã®ãããããŠäœã«ã€ãªãã£ãã®ãã確èªã§ããŸããã
ãŸãããããªãã¯ã¹å解ãå調ãã£ã«ã¿ãªã³ã°ãé£æ³ã«ãŒã«ãªã©ã®å€å žçãªæ¹æ³ã䜿çšããŠã¬ã³ã¡ã³ããŒã·ã¹ãã ãäœæããŸããã次ã«ãç¹å®ã®ã±ãŒã¹ã§ããå¹ççã«å®è¡ã§ãããã©ãããå®éšããããšã決å®ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¬ã³ã¡ã³ããŒã·ã¹ãã ã«å°éããŸããã
æ°ããå®éšã·ã¹ãã ã®å©ç¹ã¯ã第äžã«ãããã¹ãèšè¿°ãã補åã«é¢ããè¿œå æ å ±ã䜿çšããã第äºã«ã顧客ã®è³Œå ¥ã·ãŒã±ã³ã¹ãèæ ®ãããããšã§ããã
ããã«ãããŸããŸãªéä¿¡ãã£ãã«ã®æ¥ç¶ãéå§ããŸããããŸããæãå®äŸ¡ãªãã£ãã«ã®1ã€ã§ããã¡ãŒãªã³ã°ãªã¹ãã§ãã ããã«ãAdwordsãä»ããFacebookã¡ãã»ãŒãžãšåºåãåä¿¡è ã«é ä¿¡ãããããã«ãªããŸããã
ãã®çµæã顧客ã®ããŒã±ãã£ã³ã°æ åœè ã«èªåé転ãœãªã¥ãŒã·ã§ã³ãçšæããŸãããããã¯ãé«åºŠã«ããŒãœãã©ã€ãºãããã¡ãŒã«ã®æ¯æ¥ã®ã»ããã§ãã åœç¶ããã£ã³ããŒã³ã®æ°ã¯å€§å¹ ã«å¢å ããããããã®åä¿¡è ã®æ°ã¯åçã«æžå°ããŸããã ã€ãŸããããŒã±ãã£ã³ã°æ åœè ã«äžé£ã®ããã€ã¯ããã£ã³ããŒã³ããæ段ãšããŠæäŸããŸãããç¹å®ã®åãã€ã€ãŒã¯ãåã ã®æ¡ä»¶ã§æãé¢é£æ§ã®é«ã補åã®ãªãã¡ãŒãåãåããŸãïŒãã€ã€ãŒãé¢å¿ãæã£ãŠããå Žåã¯ãå人å²åŒãã®ããããããŒããªã©ïŒã
ããã«ãå€æ°ã®çŸå®¹ããã°ãåæããŠåŸãç¥èãèªç±ã«æŽ»çšã§ããŸããã Habréã®ãã®è»å£ã®åæçµæã«ã€ããŠã¯ããã§ã«è©³çŽ°ã«æžããŠããŸã ã
ãã¡ããããã¥ãŒã¹ã¬ã¿ãŒã§ã¯ãLTVäºæž¬ãæµåºäºæž¬ããã€ã€ãªãã£èšç®ãé©åãªå²åŒã®äºæž¬ãããã³èŽãç©ã調æ»ã«å¯Ÿãã顧客ã®æåæ§ã®äºæž¬ã䜿çšããŸãã 顧客ãããã«è³Œå ¥ããå¯èœæ§ãé«ãã»ã©ãåãåãå²åŒã¯äœããªããŸãã ãããŠãé·ãéè³Œå ¥ããªãã£ãå Žåã人ã¯ããã©ã³ãã倱ããªã¹ã¯ããã顧客ã®ã°ã«ãŒãã«åé¡ãããããã«å¯Ÿããå²åŒãå¢å ããŸãã
2017幎9æãã12æã«ã·ã¹ãã ãã¹ããå®æœããããã®çµæããããžã§ã¯ãã¯æåãããšèªããããŸããã 次ã«ããããžã§ã¯ãã®ãã¬ãŒã ã¯ãŒã¯ã§è§£æ±ºããªããã°ãªããªãã£ãç¹å®ã®ã±ãŒã¹ãæ€èšããŸãã
ç§ãã¡ã¯äººã ãç解ããããã«ãããã¯ãŒã¯ãæããŸãã ã©ã®ããŒã«ãéžæããŸããïŒ
åºæ
ãã¥ãŒã¹ã¬ã¿ãŒã賌èªããŠãã人ã®æ°ã¯éåžžã顧客ã®æ°ãããã¯ããã«å€ããªã£ãŠããŸãã åœç¶ãæåã®è³Œå ¥ã®ç¢ºçãå¢å ããåä¿¡è ã®ã°ã«ãŒãããããŸãã è¿œå ã®åºåãã£ã³ããŒã³ããããã®äººã ã«åããããšãã§ããŸãããè¿œå ã®äºç®ãå¿ èŠãªãããé£çµ¡å å šäœã§è¿œå ã®ãã£ã³ããŒã³ãéå§ããããšã¯ã§ããŸããã
ã€ãŸã 人ã ã®è¡åãäºæž¬ããçãã¿ãŒã²ãããªãŒãã£ãšã³ã¹ã®ã¿ã§ãã£ã³ããŒã³ãå®è¡ããå¿ èŠããããŸãã ãããã®æœåšçãªé¡§å®¢ã«é¢ããè¿œå æ å ±ã¯ãããŸããããã©ã³ãã¯ã圌ããã©ã®ããã«æçŽãéããã©ã®ãªã³ã¯ãã¯ãªãã¯ããããç¥ã£ãŠããã ãã§ãã ãã®ãããç§ãã¡ã¯äººéã®è¡åãç解ããããã«æ©æ¢°ãæããä»äºã«æ¥ãŸããã
ãã®åé¡ã¯å€ãã®æ¹æ³ã§è§£æ±ºã§ããŸãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ¹åã«é²ã¿ãŸããã
ãããã£ãŠãã¡ãŒãªã³ã°åä¿¡è ã®äžé£ã®ã¢ã¯ã·ã§ã³ãåŠçããŸãã
ãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒã¯ãŒãããã»ãã·ã³ã°ã«ãã䜿çšãããïŒã¯ãäžé£ã®ã€ãã³ãã®åŠçã«é©ããŠããŸãã ãã®ãã¡ããªã«ã€ããŠã¯ããã§ã«Habréã§ç¹°ãè¿ãèšè¿°ãããŠããŸãïŒããšãã°ã hereãŸãã¯here ïŒã å€å žçãªå®è£ ã«ãããååž°çãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯ãããšãã°ããã«å¿ããŠããŸããªã©ãå€ãã®ç¹åŸŽçãªåé¡ããããŸãã æ¬ã§å€å žçãªãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ãããšãç« ã®éäžãŸã§ã«ã圌女ã¯ãã®ç« ã®å§ãŸããå¿ããŠããŸããŸãã
ä»æ¥ãLSTMãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯åºã䜿çšãããŠãããåŸæ¥ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åé¡ã®å€ããå æããããšãã§ããŸããã LSTMãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯ã¡ã¢ãªããããŸãããããã¯ãæ å ±ãèšæ¶ãåçãããã³å¿ããããšãã§ããã»ã«ã§åäœããŸãã ããã«ãLTSMãããã¯ãŒã¯ã¯ãã€ãã³ããäžæ確ãªæéãšå¢çãæã€ã¿ã€ã ã©ã°ã§åºåãããŠããå Žåã«é©ããŠããŸãã
åºæ
ååãšããŠãã¡ãŒãªã³ã°ãªã¹ãã®åä¿¡è ã®ã¢ã¯ã·ã§ã³ã«åºã¥ããŠLSTMãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããããšã¯å¯èœã§ããããã®ãããªã¢ãã«ã¯1çš®é¡ã®åäœã®ã¿ã§ããŸãæ©èœããŸãã futureïŒç¹å®ã®ã¿ãŒã²ããã¢ã¯ã·ã§ã³ã§ã¢ãã«ããã¬ãŒãã³ã°ããå Žåããã®ã¢ãã«ã«ã¯æªæ¥ã«é¢ããæ å ±ãå¿ èŠã§ã-人ãå°æ¥ã¿ãŒã²ããã¢ã¯ã·ã§ã³ãå®è¡ãããã©ãããã¢ãã«ã¯ãã¬ãŒãã³ã°ãªããžã§ã¯ãã®ãã¬ãŒãã³ã°ã»ããã§èªèããŸãã
ã¢ãã«ã®äœæ¥ã®çµæãä»ã®ã¢ãã«ã§äœ¿çšããäºå®ãããå Žåã¯ãå°æ¥ã«é¢ããæ å ±ãã¢ãã«ã®äºæž¬ãšãšãã«äŒãããªãããšã泚ææ·±ãç£èŠããå¿ èŠããããŸãã å°æ¥ã«é¢ããæ å ±ã®æµãã誀ã£ãŠçºçããå Žåãæ°ããã¢ãã«ã¯åãã¬ãŒãã³ã°ãããŸãã ãããã£ãŠããã®åŸã®äœ¿çšã§ã¯ãçµæãç¥ããã«ã€ãã³ãããã¬ãŒãã³ã°ããã€ãã³ãã®ã·ãŒã±ã³ã¹ãä»ã®äºæž¬ã¢ãã«ã§äœ¿çšã§ãããµã€ã³ã«æžããããšããã䟿å©ã«ãªããŸãã ãããŠãããã§èªåãšã³ã³ãŒãããŸãã¯èªåãšã³ã³ãŒããæ¯æŽã§ããŸãã
Habréã®ãªãŒããšã³ã³ãŒããŒã«ã€ããŠã¯ãããšãã°hereããã³hereãåç §ã§ããŸã ã ãããã¯ãå ¥åãšåºåã§åã次å ãæã€ããã«æ§ç¯ãããŠãããäžå€®ã®æ¬¡å ã¯ã¯ããã«å°ãããªã£ãŠããŸãã ãã®å¶éã«ããããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ã€ãã³ãã®ã·ãŒã±ã³ã¹ã§äžè¬åãšçžé¢ãæ€çŽ¢ããããã«åŒ·å¶ãããããããªãŒãã³ãŒããŒã¯åä¿¡ããŒã¿ãäœããã®æ¹æ³ã§äžè¬åããå¿ èŠããããŸãã
ãã®ãããªãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã§ã¯ãæåž«ãšã®ãã¬ãŒãã³ã°ã®ããã«ããšã©ãŒã®éäŒæã®åçã䜿çšãããŸããããããã¯ãŒã¯ã®å ¥åã®ä¿¡å·ãšåºåã®ä¿¡å·ãã§ããã ãè¿ãããšãèŠæ±ã§ããŸãã çµæãšããŠãäžé£ã®ã¢ã¯ã·ã§ã³ããããããçµæã«é¢ããæ å ±ã䜿çšããã«ãã¬ãŒãã³ã°ããŸãã æåž«ãªãã§ãã¬ãŒãã³ã°ãåããŸãã
åºæ èªåãšã³ã³ãŒãã¯ãæ©èœç©ºéã®æ¬¡å ãå¹æçã«åæžã§ããŸãããããã«ããã¯ãã®æ¬¡å ãå°ããã»ã©ãå§çž®ã¯åŒ·ããªããŸãããæ å ±ã®æ倱ã¯å€§ãããªããŸãã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äžè¬çãªæ§é ã¯æ確ã§ããLSTMã»ã«ã䜿çšããèªåãšã³ã³ãŒããŒã§ãã æœåšçãªè³Œå ¥è ã®äžé£ã®è¡åãã©ã®ããã«ãšã³ã³ãŒããããã決å®ããããšã¯æ®ã£ãŠããŸãã 1ã€ã®ãªãã·ã§ã³ã¯one-hot-encodingã§ããã¢ã¯ã·ã§ã³ã¯1ã€ã«ãã£ãŠãšã³ã³ãŒããããã¢ã¯ã·ã§ã³ã®ãã®ä»ã®ä»£æ¿ã¯nullã§ãã
ããã§çºçããæåã®åé¡ã¯ã人ã ãããŒã±ãã£ã³ã°ãã¥ãŒã¹ã¬ã¿ãŒãåãåã£ãŠãããµã€ãã§è³Œå ¥ãããŸã§ã®çµè·¯ã§ãããé·ãã¯ç°ãªããŸãã 察åŠã¯ç°¡åã§ãããã¯ãã«ã®ã·ãŒã±ã³ã¹ã®åºå®é·ãååŸããè¶ éåãç Žæ£ããäžè¶³åããŒãã§åããŸãã ãããã¯ãŒã¯ã¯ãäžé£ã®ã€ãã³ãã®éå§æã«äœåãªãŒãã«æ³šæãæãå¿ èŠããªãããšãããã«ç解ããŸãã
ãããŠä»ãæçŽãåãåãããªã³ã¯ããã©ããè³Œå ¥ããã®ã«ç°ãªã人ãç°ãªãæéãå¿ èŠãšããããšãèæ ®ãã䟡å€ããããŸãã æéã¯äººéã®è¡åãç解ããäžã§éèŠãªåœ¹å²ãæãããŸãã ã¯ã©ã€ã¢ã³ãã®äžé£ã®ã¢ã¯ã·ã§ã³ã§æéãèæ ®ããæ¹æ³ åä¿¡è ã®ã¢ã¯ã·ã§ã³ããšã³ã³ãŒããããã¯ã¿ãŒã®è¿œå èŠçŽ ãšããŠãã€ãã³ãéã«äžæçãªéããè¿œå ããŸããã
ã€ãã³ãéã®å·®ãç§åäœã®å Žåãå Žåã«ãã£ãŠã¯ããã¯ãã«ã®æéæåã®å€ã10 3 -10 6ã«éãããããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ã«æªåœ±é¿ãåãŒããŸãã ããè¯ã解決çã¯ãã€ãã³ãéã®æéå·®ã®å¯Ÿæ°ã䜿çšããããšã§ãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãæåãããã«ã¯ã0ãã1ã®ç¯å²ã®æ°å€ã§äœæ¥ããããšããå§ãããŸãããããã£ãŠãæéå·®ã®å¯Ÿæ°ãæ£èŠåããåä¿¡è ã®ã¢ã¯ã·ã§ã³ãã¯ãã«ã®å¥ã®èŠçŽ ãšããŠè¿œå ããããšããå§ãããŸãã æåŸã®ã€ãã³ãã®æéå·®ã¯ãæåŸã®ã€ãã³ããšçŸåšã®æéã®å·®ãšã¿ãªãããšãã§ããŸãã
ãã©ã³ãã®1ã€ã§ãçŽ200,000人ã«é åžãããæ°åã®äŒæ¥ããããŒã¿ã»ãããåãåããŸããã ãããã£ãŠããã¬ãŒãã³ã°ãµã³ãã«ã¯ãã¡ãŒãªã³ã°åä¿¡è ã®äžé£ã®ã¢ã¯ã·ã§ã³ããšã³ã³ãŒãããçŽ200,000åã®ãã¯ãã«ã§æ§æãããŠããŸããã
çè«ããå®è·µãž
ãšã³ã³ãŒãã®æåã«ãäžé£ã®ã€ãã³ããã·ãŒã±ã³ã¹å šäœã«é¢ããæ å ±ãå«ããã¯ãã«ã«å€æããLSTMã»ã«ã®ã¬ã€ã€ãŒãé 眮ããŸãã äžé£ã®LSTMã¬ã€ã€ãŒãé£ç¶ããŠäœæããåŸã ã«ãã®ãµã€ãºãå°ããããããšãã§ããŸãã è¡šçŸããã¯ãã«ããäžé£ã®ã€ãã³ãã«è¿ãã«ã¯ããã®ãã¯ãã«ããã³ãŒããŒã®LSTMã¬ã€ã€ãŒã®å ¥åã«é©çšããåã«nåç¹°ãè¿ããŸãã ã±ã©ã§ã®ãã®ãããªãªãŒãã³ãŒããŒã®äžè¬çãªã¹ããŒã ã¯ãæåéãæ°è¡ãå æãã以äžã«äžããããŸãã ãã³ãŒããŒLSTMã¬ã€ã€ãŒã¯ããã¯ã¿ãŒã§ã¯ãªãã·ãŒã±ã³ã¹ãè¿ãå¿ èŠããããŸããããã¯ããã©ã¡ãŒã¿ãŒreturn_sequences = Trueã§ç€ºãããŸãã
from keras.layers import Input, LSTM, RepeatVector from keras.models import Model inputs = Input(shape=(timesteps, input_dim)) encoded = LSTM(latent_dim)(inputs) decoded = RepeatVector(timesteps)(encoded) decoded = LSTM(input_dim, return_sequences=True)(decoded) sequence_autoencoder = Model(inputs, decoded) encoder = Model(inputs, encoded)
ãã³ãœã«ã®æ¬¡å ãšæ··åãããªãå Žåããããã¯ãŒã¯ã¯ãã¬ãŒãã³ã°ããŸãã ããã«ãã¢ãã«ã®å質ãåäžãããããã«ããšã³ã³ãŒããšãã³ãŒãã®äž¡æ¹ã«ããã€ãã®è¿œå ã®LSTMã¬ã€ã€ãŒãè¿œå ããèªç¶ã«ãããã«ããã¯ããšããŠãã¥ãŒãã³ã®ããã€ãã®éåžžã®å®å šã«æ¥ç¶ãããã¬ã€ã€ãŒã䜿çšããããããã¢ãŠãããããæ£èŠåãããã³ãã¬ãŒãã³ã°ã®ããã®ä»ã®ããªãã¯ãå¿ããŸããã§ãããã¥ãŒã©ã«ãããã¯ãŒã¯ã
æ¯èŒã®ããã«ãåãããŒã¿ã»ããã§ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒConvolution Neural NetworksãCNNïŒã§ã¢ã¯ãã¥ãšãŒã¿ããã¬ãŒãã³ã°ããããšããŸããã ç³ã¿èŸŒã¿å±€ã¯ããªããžã§ã¯ãã®åäœã®ãã¿ãŒã³ã確ç«ããã¢ãã«ãã©ã¡ãŒã¿ãŒã®æ°ãæžããã®ã«åœ¹ç«ã¡ãåŠç¿ãå€§å¹ ã«é«éåããŸãã ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã€ããŠã¯ãHabréã«é¢ããèšäºïŒ ãã ã ãã ãããšãã°ãã ïŒããããŸãããããã£ãŠããããã«ã€ããŠã¯è©³ãã説æããŸããã æŠç¥çã«ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èªåãšã³ã³ãŒãã®ã¢ãŒããã¯ãã£ã¯æ¬¡ã®ãšããã§ãã
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model input_tensor = Input(shape=input_dim) x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_tensor) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Conv2D(8, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Conv2D(16, (3, 3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x) autoencoder = Model(input_tensor, decoded)
ãªããªã ãã³ãœã«èŠçŽ ã¯0ã1ã®ç¯å²ã®å€ããšãã®ã§ããã€ããªã¯ãã¹ãšã³ããããŒæ倱é¢æ°ã䜿çšã§ããŸãã
CNCã®èªåãšã³ã³ãŒããŒãå質ã¡ããªãã¯ã®èŠ³ç¹ãããã¬ãŒãã³ã°ããçµæã¯ãLSTMã®èªåãšã³ã³ãŒããŒãããããã«é«ããåŠç¿æéã¯èããé«éã§ãã
ããã«ãCNNãšLSTMã§èªåãšã³ã³ãŒããŒãäœæããããšãã§ããŸãããŸããããã€ãã®ç³ã¿èŸŒã¿å±€ã次ã«LSTMã«åºã¥ãèªåãšã³ã³ãŒããŒãç³ã¿èŸŒã¿å±€ã«åºã¥ããã³ãŒããŒã§çµãããŸãã ãã®ãããªèªåãšã³ã³ãŒããŒã¯ãäž¡æ¹ã®ã¢ãããŒãã®å©ç¹ãçµã¿åãããŸãã ç§ãã¡ã®çµéšã§ã¯ããã®ãããªèªåãšã³ã³ãŒããŒã¯CNNèªåãšã³ã³ãŒããŒããããããã«åªããŠãããæ€èšŒãµã³ãã«ã®å質ã¡ããªãã¯ã«é¢ããŠã¯LSTMèªåãšã³ã³ãŒããŒãããããªãåªããŠããŸãã
ãã¬ãŒãã³ã°åŸããšã³ã³ãŒããŒã¯ååä¿¡è ã®ã¢ã¯ã·ã§ã³ã®ã·ãŒã±ã³ã¹ãç¹åŸŽãã¯ãã«ã«å€æããŸãããããã£ãŠãäžé£ã®ã€ãã³ãã«å¯ŸããŠword2vecã®é¡äŒŒç©ãååŸããŸãã çµæã®ãã¯ãã«ã¯ãä»ã®äºæž¬ã¢ãã«ãã¯ã©ã¹ã¿ãªã³ã°ãè¡åã«è¿ã人ã ã®æ€çŽ¢ãããã³ç°åžžã®æ€çŽ¢ã«äœ¿çšã§ããŸãã
èªåãšã³ã³ãŒããŒïŒt-SNEïŒã䜿çšããŠåä¿¡ããæåã®åä¿¡è ã®è¡åãã¯ãã«ã®2次å 空éãžã®æ圱ã èµ€ãç¹-è¿ãå°æ¥ã«è³Œå ¥ããåä¿¡è ãéãç¹-è³Œå ¥ããªãã£ãåä¿¡è ã äžæŽ»æ§ãªã¬ã·ããšã³ããåªå¢ãªé åããããå°æ¥ã®ãã€ã€ãŒãéäžããŠããé åãããããšãããããŸãã
ãã®å Žåãåä¿¡è ãæçŽãè³Œå ¥ããå¯èœæ§ãäºæž¬ããã¢ãã«ãæ§ç¯ããŸããã å€ãã®åºæ¬çãªç¹åŸŽã«é¢ããã¢ãã«ã¯roc-auc 0.74-0.77ãäžãã人éã®è¡åã«é¢äžãããã¯ãã«ãè¿œå ãããšãroc-aucã¯0.84-0.88ã«éããŸããã
æãéèŠãªæ©èœã®ãªã¹ãã§ã¯ãLSTMãšCNNã«åºã¥ã2ã€ã®èªåãšã³ã³ãŒããŒã®æ©èœãäž»èŠãªäœçœ®ãå ããŠããŸãã
ãã®ã¿ã¹ã¯ã«CNNããŒã¹ã®èªåãšã³ã³ãŒããŒã䜿çšãããšããè¯ãçµæãåŸãããããšãèªããªããã°ãªããŸããããLSTMããŒã¹ã®èªåãšã³ã³ãŒããŒã¯äœæ¬¡å ã®ãã¯ãã«ãæäŸããå°ãäœåãªãã«ã¢ããroc-aucãèš±å¯ããŸããã CNN + LSTMãªãŒãã³ãŒããŒã«åºã¥ããæ©èœã䜿çšããå Žåãroc-aucã¯0.82ã0.87ã®ç¯å²ã§ååŸãããŸãã
2ã€ã®ã¢ãã«ã®ROCæ²ç·ã®æ¯èŒïŒäž»ãªæ©èœ0.74-0.77ã«åºã¥ãroc-aucã¢ãã«ãäž»ãªæ©èœã«åºã¥ãroc-aucã¢ãã«ãããã³èªåãšã³ã³ãŒããŒ0.84-0.88ã«çœ²åããŸãã
çµè«
ç§ãã¡ã®çµéšã«ããã人éã®è¡åã¯ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®èªåã³ãŒãã£ã³ã°ã䜿çšããŠãšã³ã³ãŒãã§ãããšããäºå®ã確èªãããŸããããã®å Žåãã¡ãŒãªã³ã°åä¿¡è ã®äžé£ã®è¡åã¯LSTMããã³CNNã¢ãŒããã¯ãã£ã®èªåã³ãŒãã£ã³ã°ã䜿çšããŠãšã³ã³ãŒããããŸããã ãã®ã¢ãããŒãã®é©çšã¯ãã¬ã¿ãŒã®éä¿¡ã«éå®ãããŸããããªããžã§ã¯ãã®ãšã³ã³ãŒããããåäœã¯ã人éã®åäœãåŠçããå¿ èŠãããä»ã®ã¿ã¹ã¯ã§äœ¿çšã§ããŸãïŒäžæ£è¡çºã®æ€çŽ¢ãæµåºã®äºæž¬ãç°åžžã®æ€çŽ¢ãªã©ã
ææ¡ãããã¢ãããŒãã¯ã人éã®è¡åãã¢ãã«åããå¿ èŠãããå Žåãå€åãªãŒãã³ãŒããŒã«åããŠéçºã§ããŸãã
CNNããŒã¹ã®èªåãšã³ã³ãŒããŒã¯ãèæ ®ãããã¿ã¹ã¯ã«LSTMãããããŸã察åŠãããšããäºå®ã«ãããè¡åãã¿ãŒã³ã«ãããã€ãã³ãéã®æéçé¢ä¿ã«åºã¥ãå åãããããã®ã¿ã¹ã¯ã®ããæçãªå åãæœåºã§ãããšæ³å®ããããšãã§ããŸãã ããã«ãããããããæºåãããããŒã¿ã»ããã§ã¯ãäž¡æ¹ã®ã¢ãããŒãã䜿çšããããšãå¯èœã§ãããäž¡æ¹ã®ãªãŒããšã³ã³ãŒããŒã®æ©èœãçµã¿åãããŠäœ¿çšââããããšã®åèšå¹æã«ãããroc-aucã0.01-0.02å¢å ããŸãã
ãããã£ãŠããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãããããèªåèªèº«ããããå®çŸããåã§ãã£ãŠããè³Œå ¥ããåŸåãããããšãå人ã®è¡åããç解ããããšãã§ããŸãã ç§ãã¡ã®äžçã®ãã©ã¯ã¿ã«æ§ã®é©ãã¹ãäŸïŒäººéã®ãã¥ãŒãã³ã¯ãä»ã®äººã®ãã¥ãŒãã³ã®çµæãäºæž¬ããããã«ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãæŽçããã®ã«åœ¹ç«ã¡ãŸãã
ã¡ãªã¿ã«ãåœç€Ÿã«ã¯ç©ºãããããŸãïŒ