2018幎ã®Kaggle Data Science Bowlãžã®æ·±å±€æµåå€æã®é©çš
åç §ããã³å ã®dockerized ã³ãŒãã«ããèšäºã®ç¿»èš³ãæ瀺ããŸãã ãã®ãœãªã¥ãŒã·ã§ã³ã䜿çšãããšãæ°åã®å°åã®åå è ç·æ°ã®äžã§ç«¶äºã®ç¬¬2段éã§ãã©ã€ããŒããªãŒããŒããŒãã®äžäœ100ã«å ¥ãããšãã§ããŸãã 競åä»ç€Ÿã®ã¿ãŒã²ããã¡ããªãã¯ãäžå®å®ã§ãããããã¿ã¹ã¯ã«åæ§ã®ãœãªã¥ãŒã·ã§ã³ã䜿çšããå Žåã¯ã以äžã§èª¬æããããã€ãã®ããããè¿œå ããããšã§ããã®çµæãå€§å¹ ã«æ¹åã§ãããšèããŠããŸãã
ãœãªã¥ãŒã·ã§ã³ãã€ãã©ã€ã³ã®èª¬æ
TLDR
ïŒ ç¿»èš³è ã®ã¡ã¢ -äžéšã®çšèªã¯ãã®ãŸãŸæ®ãããŠããŸããã€ãŸãããã·ã¢èªã«é©åãªé¡äŒŒç©ããããã©ããã¯ãŸã£ããããããŸããããããã«ã€ããŠç¥ã£ãŠããå Žåã¯ãã³ã¡ã³ããèšå ¥ããŠä¿®æ£ããŠãã ããïŒã
ãã®éäºã¯æ¯å¹ŽãããŒã¿ãµã€ãšã³ã¹ããŠã«ã®ã³ã³ãã¹ããéå¬ããŸãã æšå¹Žã¯ãšãŠãã¯ãŒã«ã§ãã ïŒ
- 3Dç»å圢åŒã®æ°ããèå³æ·±ããããã¯
- 䟡å€ã®ããä»äºã¯èºããã§ãã
- 倧èŠæš¡ãªããŒã¿ã»ãã-50 + GB;
- é æçãªè³ã
æ®å¿µãªãããæšå¹Žã³ã³ãã¹ããå§ãŸã£ããšããç§ã¯ãŸã åå ããæºåãã§ããŠããŸããã§ããã ä»å¹ŽãGoogleãCuggleãè²·åããåŸãæåã®ããŠã§ã€ã¯ã¢ããã³ãŒã«ãïŒããã€ãã®ããã£ãŒã«ãããŒãã- ããã«ãããŸã ïŒã«æ°ä»ãå§ããŸããã ç°¡åã«èšãã°ãæ©æ¢°åŠç¿ç«¶æäŒã¯ãã³ãã¥ããã£ãšç«¶æäŒã®äž»å¬è ã®äž¡æ¹ã«ãšã£ãŠçžäºã«æçã§ããããã«èŠããŸããããä»ã§ã¯æªãããšã«ããã€ãã®å¥åŠãªåŸåãèŠãããŸã-競æäŒãéåããŒã¿ã®ããŒã¯ã¢ããã®ããã®æŒç¿ã«ãªããããã³/ãŸãã¯è³ãé åçã§ã¯ãªããªãããã«æããŸãæ®éã«åå ããããã«å¿ èŠãªåªåã®éã«ã€ããŠïŒãããã«äžŠã¹ã/ãããã«å ¥ãããè³å/ãã³ãïŒã
ãã®ã³ã³ãã¹ãã®çµç¹ãæ°ã«å ¥ããªãã£ãçç±ïŒ
- 競äºã®ç¬¬1段éã§ã®å°ããªããŒã¿ã»ããïŒãã¬ãŒãã³ã°çšã®600ç»åãšæ€èšŒçšã®65ç»åïŒãšã競äºã®ç¬¬2段éã§ã®éåžžã«å€§ããªããŒã¿ã»ããïŒãã¹ãç®çã®ã¿ã®3000ç»åïŒã
- 2çªç®ã®æ®µéã§ã®ããŒã¿ã®é åžã¯ãæåã®æ®µéãšã¯äœã®é¢ä¿ããããŸããïŒããã«å€ªåã®æå笊ãä»ããŸãïŒã
- Cuggleã¯äžæ£è¡çºãããªãããšã§ãæåã§ãããã®ç¹å®ã®ç«¶äºã§ã¯ãããšãã°ã第2段éã®ããŒã¿ããªãªãŒã¹ããåŸã«ã¢ãã«ãåãã¬ãŒãã³ã°ã§ããŸãã
- ããªããç§ãä¿¡ããŠããªããªããåå ããã³ãã¥ããã£ã®ã¡ã³ããŒã«å°ããŠãã ããã
- ïŒçµããè¿ãã«æ ¹æ ããªãããã«ããã®ãããªåé¡ãåé¿ããæ¹æ³ã説æããŸãïŒ;
- ãŸããã¿ãŒã²ããã¡ããªã㯠-ããã€ãã®ã¬ãã«ã®ç²ŸåºŠïŒ0.5ã0.95ïŒã§ã®å¹³åmAP-ã¯éåžžã«äžå®å®ã«åäœããŸãã ãã®ãããªã¡ããªãã¯ã®éžæããå€æãããšãäž»å¬è ã¯ããŒã¯ã¢ããã®ãçæ³ãã«æããã«èªä¿¡ãæã£ãŠããŸããããå®éã«ã¯ããã§ã¯ãããŸããã§ããã ããšãã°ãããŒã¯ã¢ãããååŸããããã1ãã¯ã»ã«ã ã暪ã«ã·ãããããšãé床ã¯1ãã0.6ã«äœäžããŸãã
æåã«ãããŒã¿ãéãããšããç§ã¯äžè¬çã«åå ããããããŸããã§ããã ã¡ã¬ãã€ãåäœã®ããªã¥ãŒã ã¯ãä¿¡é ŒããŸã£ããåºæ¿ããŸããã§ããã ãããããã®åŸãç§ã¯ãããããã詳ãã調ã¹ãããã§ã®ã¿ã¹ã¯ã¯instance segmentation
ã§ããããšã«æ°ä»ããŸããã ããŒã¿ã»ããã®ãµã€ãºãå°ããã«ãããããããã¿ã¹ã¯èªäœ- instance segmentation
-ã¯éåžžã«èå³æ·±ããã®ã§ãã ã»ã«ã®æ£ç¢ºãªãã€ããªãã¹ã¯ãäœæããã ãã§ãªããåäœããã»ã«ãåé¢ããããšãæåŸ
ãããŸãïŒç³ãèš³ãããŸããããã»ã«ã§ã¯ãªãæ žãååšããå¯èœæ§ããããŸãããããŒã¯ã¢ããã«ãã£ãŠå€æãããšããªãŒã¬ãã€ã¶ãŒèªèº«ãããã«ã€ããŠã¯ããããŸããïŒã äžæ¹ãããŒã¿ã»ããã®ãµã€ãºãšããŒã¯ã¢ããã®å質ã¯ãç¹ã«ç«¶äºã®äž»å¬è
ããã©ãã€ãã®ããŒã¿ãå«ãé¡äŒŒã®ããŒã¿ã»ãããæã£ãŠãããšå ±åããŠããããšãèãããšãå°ãäžååãªããã«èŠããŸããã
ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®åºæ¬çãªã¿ã¹ã¯ã ããã®ãªã¹ãã«ã¯ãçè«äžããªããžã§ã¯ãã®åé¡ããããŸãïŒå€å
žçãªã¿ã¹ã¯ã¯ãåçã§ç«ãšç¬ãèŠã€ããããšã§ãïŒ
ãã®æçš¿ã§ã¯ããã®åé¡ã解決ããããã®ã¢ãããŒãã説æããŸãã ãŸããã€ã³ã¹ã¿ã³ã¹ã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã®Deep Watershed Transformã®ã€ã³ã¹ãã¬ãŒã·ã§ã³ãäžããèšäºãšãã€ãã©ã€ã³ãå ±æããä»ã®ã¢ãããŒããšãœãªã¥ãŒã·ã§ã³ã«ã€ããŠè©±ããåæ§ã«ãã®ãããªç«¶äºãçæ³çã«ç·šæããæ¹æ³ã«ã€ããŠã®æèŠãå ±æããŸãã
EDAãŸãã¯MLãéæ³ã§ã¯ãªãçç±
ãã¬ãŒãã³ã°ããŒã¿ã»ããã«ã¯çŽ600åã®ç»åãšæ€èšŒããŒã¿ã»ãã65ãå«ãŸããŠããŸããã第2ã¹ããŒãžããã®é
延ãã¹ãããŒã¿ã»ããã«ã¯ã3000åã®ç»åãå«ãŸããŠããŸããã
æåã®æ®µéã®ç»åã«ã¯ããŸããŸãªè§£å床ããããŸãã-ããèªäœã課é¡ã§ãã-ã©ã®ããã«ããããã¹ãŠã®ãŠãããŒãµã«ãã€ãã©ã€ã³ãæ§ç¯ããŸããïŒ
256x256 358 256x320 112 520x696 96 360x360 91 512x640 21 1024x1024 16 260x347 9 512x680 8 603x1272 6 524x348 4 519x253 4 520x348 4 519x162 2 519x161 2 1040x1388 1 390x239 1
ãã¬ãŒãã³ã°ããŒã¿ã®äžã«ã¯ãKå¹³åã䜿çšããŠç°¡åã«èŠã€ããããçŽ3ã€ã®ã¯ã©ã¹ã¿ãŒããããŸããã
- èæ¯ãé»ã®ç»åã
- è²çŽ ãå«ãç»å;
- èæ¯ãçœãç»åã
ããããRGBç»åãçœé»ã«å€æããããšããããªãã¯ãªãŒããŒããŒãã§åœ¹ç«ã€äž»ãªçç±ã§ããã
é»ã®ç»å
圢ç¶ãè²ããµã€ãºã®ç°ãªãã³ã¢ããªãšãŒã·ã§ã³
3000æã®ç»åã§ãã¹ãããŒã¿ã»ãããèŠèŠçã«è¡šç€ºãããšããããããã®ç»åã®50ïŒ ä»¥äžããã¬ãŒãã³ã°ããŒã¿ã»ãããšã¯ç¡é¢ä¿ã§ãããã³ãã¥ããã£åŽã§å€ãã®è«äºãšresã¿ãçããŠããŸããã ããã§ã¯ããããããšããã競ããæéãè²»ãããã¢ãã«ãæé©åãããã¬ãŒãã³ã°ããŒã¿ãšã¯ãŸã£ããç°ãªã3,000æã®åçãæã«å ¥ããŸãããã ç®æšãç°ãªãå¯èœæ§ãããããšã¯æããã§ãïŒç«¶æã®æ®µééã§ã®æåã«ããæ¡ç¹ã®é²æ¢ãå«ãïŒ-ããããããã¯ããŸãé¢åã§ã¯ãããŸããã
ãã¹ãããŒã¿ã»ããããã®æ³šç®ãã¹ããã¡ã€ã«ïŒ
èæ¯ã«ããå°ããªãã®ãæ žã«ãªãããšããå§ãããŸã
æ£çŽãªãšããããããäœã§ãããããããŸãã
çèã®ããã«èŠããŸãã ç¹°ãè¿ããŸããããããã®çœããã®ã¯ã«ãŒãã«ã§ããããããšãäžè¬çãªãã®ã§ããïŒ
å€ç©º...ãããã®ã³ã¢ãŸãã¯åãªããã€ãºã§ããïŒ
深局æµåå€æ
ããªãã¯ãããäœã§ãããããããªãå Žåã¯ã ããã«è¡ããŸã ã çŽæçã«ã¯ãåæ°Žmethodæ³ã¯éåžžã«ã·ã³ãã«ã§ããç»åããã¬ãã£ããªãå±±ã®é¢šæ¯ãïŒé«ã=ãã¯ã»ã«/ãã¹ã¯åŒ·åºŠïŒã«å€ããããŒã«ãæ¥ç¶ããããŸã§éžæããããŒã«ãŒã®ããŒã«ãæ°Žã§æºãããŸãã OpenCV
ãŸãã¯skimage
ãã¥ãŒããªã¢ã«ãèŠã€ããããšãã§ããŸãããéåžžã¯ãã¹ãŠæ¬¡ã®ãããªè³ªåãããŸãã
- ã©ã®ããã«ã©ãã«ãéžæããå¿ èŠããããŸããããæ°Žãæµåºãããå Žæã¯ã©ãããæ¥ãŸãã
- æµåã®å¢çãã©ã®ããã«æ±ºå®ããå¿ èŠããããŸããïŒ
- 颚æ¯ã®é«ããã©ã®ããã«æ±ºå®ããå¿ èŠããããŸããïŒ
Deep Watershed Transform ïŒDWTïŒã¯ããããã®åé¡ã®ããã€ãã解決ããã®ã«åœ¹ç«ã¡ãŸãã
ãªãªãžãã«äœåã®äž»ãªåæ©
ã¢ã€ãã¢ã¯ãCNNã2ã€ã®ããšãåŠç¿ããããšã§ã-å¢çãšãšãã«ã®ãŒã¬ãã«ïŒå±±ã®é«ãïŒã瀺ãåäœãã¯ãã«
å®éã«ã¯ã WT
ïŒWatershed TransformïŒãé©çšããã ãã®å ŽåãããŒã»ã«ã»ã°ã¡ã³ããŒã·ã§ã³ãå€ãããå¯èœæ§ããããŸãã DWTã®èåŸã«ããçŽèŠ³ã¯ããã§ããCNNã¯ããå±±ã®é¢šæ¯ããèŠã€ããããã«æããããå¿
èŠããããŸãã
å ã®èšäºã®èè ã¯ã2ã€ã®å¥åã®VNGã¿ã€ãã®CNNã䜿çšããŠä»¥äžãååŸããŸããã
- ãšãã«ã®ãŒïŒãŸãã¯é¢šæ¯ã®é«ãïŒ;
- CNNããªããžã§ã¯ãã®ãšãã«ã®ãŒãšå¢çãåŠç¿ããã®ã«åœ¹ç«ã€ããªããžã§ã¯ãã®å¢çã«åããããããŸãã¯ãªããžã§ã¯ãã®å¢çããåããããåäœãã¯ãã«ã
å®éã«ã¯ã1ã€ã®ãããã¯ãŒã¯ã䜿çšããããšããè€æ°ã®å°èŠæš¡ãªãšã³ãããŒãšã³ããããã¯ãŒã¯ããã¬ãŒãã³ã°ããããšãã§ããŸã ã ç§ã®å Žåãç§ã¯ä»¥äžãçã¿åºãããããã¯ãŒã¯ã§éãã§ããŸããã
- ãã€ããªã»ã«ãã¹ã¯ã
- 䟵é£ã®ã¬ãã«ãç°ãªãããã€ãã®ãã¹ã¯ïŒ1.5.7ãã¯ã»ã«ïŒ;
- æ žã®äžå¿ïŒç§ã®å Žåã¯ç¹ã«åœ¹ç«ã¡ãŸããïŒ;
- åäžãã¯ãã«ïŒå°ãå©ãããããããŒã«ã«ïŒ;
- ããŒããŒïŒå°ãå©ãããããããŒã«ã«ïŒ;
ãããããããããã¹ãŠãšåºæ¥äºãçµã¿åãããããã«å°ãã®éæ³ãå¿ èŠã§ããããªãã¯ããšãã«ã®ãŒããæã£ãŠããŸãã ç§ã¯ã¢ãŒããã¯ãã£ãããŸãå®éšããŸããã§ããããDmitroïŒäžèšã®ãœãªã¥ãŒã·ã§ã³ã®äœè ïŒã¯ã2çªç®ã®CNNãè¿œå ããŠãè¯ãçµæãåŸãããªããšèšã£ãŠããŸããã
ç§ã«ãšã£ãŠãæé©ãªåŸåŠç ïŒåç
§ã«ããenergy_baseline
é¢æ°ïŒã¯ã次ã®ã¢ã¯ã·ã§ã³ã¢ã«ãŽãªãºã ã§ããã
- äºæž¬ãã¹ã¯ãš3ã¬ãã«ã®äºæž¬ãã¹ã¯ã䟵é£ã§èŠçŽããŸãã
- ã»ã«ã®äžå¿ãåå²ããã«ã¯ã0.4ã®ãããå€ãé©çšããŸãã
- èŠã€ãã£ãäžå¿ãå å¡«ã®ããŒã«ãŒãšããŠäœ¿çšããŸãã
- ã颚æ¯ã®é«ããã®å°ºåºŠãšããŠããã¹ã¯ã®å¢çãŸã§ã®è·é¢ã䜿çšããŸãã
æè¯ã®äŸã®1ã€-ã°ãªããã¯åäœããã³ã¢ãæ確ã«åé¢ã§ãã
åŠç¿ããåŸé
ã¯ãæµåãšããŠã®äœ¿çšã«ã¯é©ããŠããŸããã
ã³ã¢ã»ã³ã¿ãŒã®çŽæ¥æ€çŽ¢ãæ©èœããå ŽåããããŸããããå šäœçã«ã¯é床ã®åäžã«ã¯åœ¹ç«ã¡ãŸããã§ããã
ãã®ä»ã®ã¢ãããŒã
å人çã«ã¯ããã®ã¿ã¹ã¯ã®å¯èœãªã¢ãããŒãã4ã€ã®ã«ããŽãªã«åããŸãã
- UNetã¢ãŒããã¯ãã£ã¹ã¿ã€ã«ã®ã¢ãããŒãïŒUNââet +äºåãã¬ãŒãã³ã°æžã¿Resnet34ãUNet +äºåãã¬ãŒãã³ã°æžã¿VGG16ãªã©ïŒ+ Deep Watershed TransformåŸåŠçã UNet ïŒåœŒã®ããšãã LinkNet ïŒã¯ãã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ã®åé¡ã解決ããå¿ èŠããããšããæ®éçã§ã·ã³ãã«ãªããŒã«ãšããŠç¥ãããŠããŸãã
- ãªã«ã¬ã³ãã¢ãŒããã¯ãã£ã ç§ã¯ãã®é¢é£æ§ã®äœãäœæ¥ã®ã¿ãèŠã€ããŸããïŒæ¢è£œã®PyTorch ã³ãŒãã®å¯çšæ§ãèæ ®ããŠããè©Šãæéã¯ãããŸããã§ããïŒã
- Mask-RCNNãªã©ã®ææ¡ããŒã¹ã®ã¢ãã«ã ãããã䜿çšããã®ã¯éåžžã«å°é£ã§ããïŒãããŠPyTorchã«é©åãªå®è£ ã¯ãããŸããïŒããã®ã¢ãããŒãã¯æåã«ããè¯ãçµæãäžãããšå ±åãããŸããããåŸã§æ¹åãããªãã·ã§ã³ã¯ã»ãšãã©ãããŸããã
- ä»ã®äººã¯ã ããã§èª¬æãããŠããã¢ãããŒããå°ããåéºçãã§ãïŒèªãã§ãã ãã-èè èªèº«ã¯ãããŸãããŸãæ©èœããŠããªãããã ãšæžããŠããŸãïŒã
ç§ã«ãšã£ãŠãDWT + UNetãéžæããããšã¯ãé¢åãªäœæ¥ãå¿ èŠãšããªããã®ãœãªã¥ãŒã·ã§ã³ãã·ã³ãã«ã§ïŒãã¹ã¯ã®è¿œå ãã£ãã«ãšããŠãšãã«ã®ãŒã¬ã€ã€ãŒãåçŽã«äŸçµŠã§ããïŒãäœæ¥ãä»ã®ã¿ã¹ã¯ã«ç°¡åã«è»¢éã§ããããã§ãã ååž°çãªUNetæ¡åŒµæ©èœãæ°ã«å ¥ã£ãŠããŸãããè©Šãæéã¯ãããŸããã§ããã
ç¹°ãè¿ãã®UNetã®å Žåãéåžžã®UNetãšæ¯èŒããŠæå¹ãª3ã€ã®æ°ããã³ã³ããŒãã³ãããããŸãã
- ConvLSTMã¬ã€ã€ãŒã
- ããŸãã«ãå€ãã®ã³ã¢ãåŠç¿ããå Žåã«CNNã«çœ°éãç§ãæ倱é¢æ°ã³ã³ããŒãã³ãã
- äºæž¬ãªããžã§ã¯ããšããŒã¯ã¢ããã®æé©ãªçµã¿åããã«ãã³ã¬ãªãŒèªã¢ã«ãŽãªãºã ã䜿çšããŸãã
ããã¯ãã¹ãŠæåã¯å§åçã«æããŸãããå°æ¥çã«ã¯ééããªãè©ŠããŠã¿ãŸãã ãã ãããã®æ¹æ³ã¯ã2ã€ã®ã¡ã¢ãªãŽã©ã©ã·ã£ã¹ã¢ãŒããã¯ãã£ïŒRNNãšãšã³ã³ãŒã/ãã³ãŒããããã¯ãŒã¯ïŒãçµã¿åãããŠããŸããããã¯ãå°ããªããŒã¿ã»ãããšæš©é以å€ã§ã¯å®éã«äœ¿çšããã®ã¯å®çšçã§ã¯ãããŸããã
説æConvLSTMã¬ã€ã€ãŒ
ãªã«ã¬ã³ãUnetã¢ãŒããã¯ãã£
ç§ã®ãã€ãã©ã€ã³
詳现ã¯ãã¡ãã§ç¢ºèªã§ããŸãããç§ã®ã¢ãããŒãã¯æ¬¡ã®ãšããã§ãã
- VGG16ãšã³ã³ãŒããŒãåããUnetïŒãªããžããªãŒã«ã¯å€ãã®ç°ãªããšã³ã³ãŒããŒããããŸãïŒ;
- æ·±ãåæ°Žç;
- çœé»åçãžã®å€æã
transfer learning
ãªã©ãå€ãã®å°ããªããã¯ã - 256x256ã®ã©ã³ãã ã¯ãããã§ã¢ãã«ããã¬ãŒãã³ã°ããŸãã
- ç»åã®ãµã€ãºå€æŽã®äºæž¬ïŒåçã®ãµã€ãºã64ã§é€ç®ãããããã«ïŒïŒ ããããããã¯æªãéžæã§ã ïŒ;
ãã€ãã©ã€ã³å
šäœ
ãã®ãã€ãã©ã€ã³ã®çµæã倧å¹
ã«æ¹åããå Žåã¯ã VGG-16
ãšã³ã³ãŒããŒãResnet152
ã«çœ®ãæããå¿
èŠããããŸãã競åã®åå è
ã«ãããšããã®ãšã³ã³ãŒããŒã¯é
延æ€èšŒã§ããå®å®ããåäœãããŸãã ãŸããæåŸã®ã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ãšããŠsoftmax
ãsigmoid
ã«çœ®ãæããsoftmax
ããŒãããå¢çãå°ãªããªããŸãã
ãããŠä»ãçè«äžããã®ãããªç«¶äºãã©ã®ããã«çµç¹ãã¹ããã«ã€ããŠ
èŠããã«ãTopCoderãã©ãããã©ãŒã ã®è¿·æãªç¬éãèæ ®ãããšããã®èŠ³ç¹ããã®SpaceNetã¯ã»ãŒå®ç§ã§ããã
- ãã©ã³ã¹ã®åãããã¬ãŒãã³ã°ã»ãããšãã¹ãã»ãããæã€å€§èŠæš¡ãªããŒã¿ã»ããã
- å€éšããŒã¿ã®å¶éãã¯ãªã¢ããŸãã
- äž»å¬è ã«ããæ€èšŒã®ããã®ã³ãŒãã®ãããã³ã°ãšããªãŒãºã
- 第1段éãšç¬¬2段éã®éã«ã¢ãã«ã®è¿œå ãã¬ãŒãã³ã°ã¯ãããŸããã
- åçŸå¯èœãªçµæ;
è¬èŸ
ãã€ãã®ããã«ãå®ãã®ããè°è«ãšãã³ãããããDmytroã«æè¬ããŸãïŒ
åç §ïŒ
- ã«ã°ã«ã³ã³ãããŒãž
- Github決å®ã³ãŒã
- ã€ã³ã¹ã¿ã³ã¹ã®ã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã®æ·±å±€æµåå€æ
- ç»åã®ã»ã°ã¡ã³ããŒã·ã§ã³ãšæ°åŠçãªåœ¢æ
- U-NetïŒçç©å»åŠç»åã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã®ç³ã¿èŸŒã¿ãããã¯ãŒã¯
- æ©èœè»¢éïŒå¹ççãªã»ãã³ãã£ãã¯ã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã®ãšã³ã³ãŒããŒè¡šçŸã®æŽ»çš
- ãã¯ã»ã«ãããªããžã§ã¯ãã·ãŒã±ã³ã¹ãŸã§ïŒå埩çãªã»ãã³ãã£ãã¯ã€ã³ã¹ã¿ã³ã¹ã®ã»ã°ã¡ã³ããŒã·ã§ã³ãšãããžã§ã¯ãããŒãž
- ãã¹ã¯r-cnn
- ã€ã³ã¹ã¿ã³ã¹ã®åã蟌ã¿ïŒææ¡ãªãã®ã»ã°ã¡ã³ããŒã·ã§ã³
- ãªã«ã¬ã³ãã€ã³ã¹ã¿ã³ã¹ã»ã°ã¡ã³ããŒã·ã§ã³ïŒConvLSTMïŒ
- TernausNetïŒç»åã»ã°ã¡ã³ããŒã·ã§ã³ã®ããã«ImageNetã§äºåãã¬ãŒãã³ã°ãããVGG11ãšã³ã³ãŒããŒãåããU-Net
- æ žã¢ã¶ã€ã¯