ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯
ãŸããå°ãã®çè«ã ç³ã¿èŸŒã¿ãšã¯äœã§ããïŒ ããã«ã€ããŠã¯å€ãã®è³æããã§ã«æžãããŠããã®ã§ãããã«ã€ããŠè©³ããã¯èª¬æããŸãããããŸã ç°¡åã«å®è¡ãã䟡å€ããããŸãã ã¹ã¿ã³ãã©ãŒã倧åŠããã®çŸããèŠèŠåã«ãããæ¬è³ªãææ¡ã§ããŸãã

åºæ
åŸã§ãäºããç解ã§ããããã«ãåºæ¬çãªæŠå¿µã玹ä»ããå¿ èŠããããŸãã 倧ããªãããªãã¯ã¹ã移åãããŠã£ã³ããŠã¯ãã£ã«ã¿ãŒãšåŒã°ããŸãïŒè±èªçã®ã«ãŒãã«ããã£ã«ã¿ãŒããŸãã¯æ©èœæ€åºåšã§ã¯ããããã®çšèªã®ç¿»èš³ãšãã¬ãŒã¹ãèŠã€ããããšãã§ããŸãããæãããªãã§ãã ããããã¹ãŠåãã§ãïŒã ãã£ã«ã¿ãŒã¯å€§ããªãããªãã¯ã¹ã®ã»ã¯ã·ã§ã³ã«éããããåå€ã«å¯Ÿå¿ãããã£ã«ã¿ãŒå€ãä¹ç®ãããŸãïŒã¡ã€ã³ãããªãã¯ã¹ã®é»ãæ°åã®äžãšå³ã®èµ€ãæ°åïŒã 次ã«ãå€æãããã¹ãŠãå ç®ãããåºåïŒããã£ã«ã¿ãŒåŠçæžã¿ãïŒå€ãååŸãããŸãã
ãŠã£ã³ããŠã¯ãè±èªã§ã¯ã¹ãã©ã€ããšåŒã°ãã倧ããªã¹ãããã«æ²¿ã£ãŠç§»åããŸãã ãã®ã¹ãããã¯æ°Žå¹³ããã³åçŽã«ããããšãã§ããŸãïŒåŸè ã¯ç§ãã¡ã«ãšã£ãŠæçšã§ã¯ãããŸãããïŒã
éèŠãªãã£ã³ãã«ã®ã³ã³ã»ããã玹ä»ããããšã¯æ®ã£ãŠããŸãã ç»åå ã®ãã£ã³ãã«ã¯ãå€ãã®äººã«ç¥ãããŠããåºæ¬è²ãšåŒã°ããŸããããšãã°ãåçŽã§äžè¬çãªRGBã«ã©ãŒã³ãŒãã£ã³ã°ã¹ããŒã ïŒèµ€-èµ€ãç·-ç·ãé-éïŒã«ã€ããŠè©±ããŠããå Žåããããã®3ã€ã®åºæ¬è²ã®ãã¡ãããããæ··åããããšã«ãããä»»æã®è²ãååŸã§ããŸãã ããã§ã®ããŒã¯ãŒãã¯ãæ··åãã§ãã3ã€ã®åºæ¬è²ã¯ãã¹ãŠåæã«ååšããããšãã°ãåžæã®è²ã®ãã£ã«ã¿ãŒã䜿çšããŠå€ªéœã®çœè²å ããååŸã§ããŸãïŒçšèªãæå³ãæãå§ããŠãããšæããŸããïŒïŒã

ãããŠãç»åãããããã®äžã«ãã£ã³ãã«ãããããã£ã«ã¿ãŒãæ£ããã¹ãããã§ãããééããããšãããããŸãã ç解ããå¿ èŠããããŸã-ãããã®ãã£ãã«ã§å®éã«äœããã¹ããïŒ ãããã®ãã£ãã«ã䜿çšããŠã次ã®ããšãè¡ããŸããåãã£ã«ã¿ãŒïŒã€ãŸããå°ããªãããªãã¯ã¹ïŒã¯ã3ã€ã®ãã£ãã«ãã¹ãŠã§åæã«å ã®ãããªãã¯ã¹ã«éããããŸãã çµæã¯åçŽã«èŠçŽãããŸãïŒèŠãã°è«ççã«ã¯ãæçµçã«ãã£ãã«ã¯å ã®é£ç¶ããç©ççã¹ãã¯ãã«ãæ±ãæ¹æ³ã§ãïŒã
ãã1ã€è©³çŽ°ã«èšåããå¿ èŠããããŸããããããªãã§ã¯ããã«ç解ããããšã¯é£ãããªããŸãã ã©ãããæå³ã§ããïŒ ããã¯ãåããžã§ããå®è¡ããnåã®ãã£ã«ã¿ãŒãããããšãæå³ããŸãã 圌ãã¯çªã§ãããªãã¯ã¹ãæ©ãåããäœããèããŸãã ãªãã1ã€ã®ä»äºã2åè¡ãã®ã§ããããïŒ 1ã€ã§ã¯ãªã1ã€-ãã£ã«ã¿ãªã³ã°ãããªãã¯ã¹ã®åæåãç°ãªããããåŠç¿ããã»ã¹ã§ã¯ãç°ãªã詳现ã«æ³šæãæãå§ããŸãã ããšãã°ã1ã€ã®ãã£ã«ã¿ãŒã¯è¡ã調ã¹ããã1ã€ã®ãã£ã«ã¿ãŒã¯ç¹å®ã®è²ã調ã¹ãŸãã

ãœãŒã¹ïŒcs231n
ããã¯ã1ã€ã®ãããã¯ãŒã¯ã®1ã€ã®ã¬ã€ã€ãŒã®ããŸããŸãªãã£ã«ã¿ãŒã®èŠèŠåã§ãã 圌ãããŸã£ããç°ãªãç»åæ©èœãã©ã®ããã«èŠãŠããããèŠãŠãã ããã
ãã¹ãŠãç§ãã¡ã¯å ã«é²ãããã«çšèªã§æŠè£ ããŠããŸãã çšèªãšäžŠè¡ããŠãç³ã¿èŸŒã¿å±€ãã©ã®ããã«æ©èœããããèŠã€ããŸããã ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åºç€ã§ãã CNNã«ã¯å¥ã®ããŒã¹ã¬ã€ã€ãŒããããŸã-ããã¯ããããããŒãªã³ã°ã¬ã€ã€ãŒã§ãã
ããã説æããæãç°¡åãªæ¹æ³ã¯ãæ倧ããŒãªã³ã°ã§ãã ãããã£ãŠãæ¢ã«ç¥ãããŠããç³ã¿èŸŒã¿å±€ã§ã¯ããã£ã«ã¿ãŒè¡åã¯åºå®ãããŠãããåäžã§ããïŒã€ãŸããä¹ç®ããŠãå ¥åããŒã¿ã«åœ±é¿ããªãïŒãšæ³åããŠãã ããã ãããŠããã¹ãŠã®ä¹ç®çµæïŒæ¡ä»¶ã«å¿ããå ¥åããŒã¿ïŒãåèšãã代ããã«ãåçŽã«æ倧èŠçŽ ãéžæããŸãã ã€ãŸãããŠã£ã³ããŠå šäœããæã匷床ã®é«ããã¯ã»ã«ãéžæããŸãã ããã¯æ倧ããŒãªã³ã°ã§ãã ãã¡ãããé¢æ°ã®ä»£ããã«ãæ倧å€ã¯å¥ã®ç®è¡ïŒãŸãã¯ããã«è€éãªïŒé¢æ°ã§ãã

ãœãŒã¹ïŒcs231n
ãã®ããŒãã®è©³çŽ°ã«ã€ããŠã¯ãChris Olahã®æçš¿ããå§ãããŸãã
äžèšã¯ãã¹ãŠè¯å¥œã§ãããéç·åœ¢æ§ããªããã°ããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ç§ãã¡ã«ãšã£ãŠå¿ èŠãªæ®éçãªè¿äŒŒåšã®ç¹æ§ãæã¡ãŸããã ãããã£ãŠãç§ã¯ãããã«ã€ããŠããã€ãã®èšèãèšããªããã°ãªããŸããã ãªã«ã¬ã³ãã§å®å šã«æ¥ç¶ããããããã¯ãŒã¯ã§ã¯ãã·ã°ã¢ã€ããåæ²ç·æ£æ¥ãªã©ã®éç·åœ¢æ§ãããŒã«ãæ¯é ããŸãã

åºæ
ãããã¯åªããéç·åœ¢ã®æ»ãããªé¢æ°ã§ãããCNNã§ããŒã«ãæ¯é ãããã®ãšæ¯èŒããŠãããªãã®èšç®ãå¿ èŠã§ãïŒReLU-Rectified Linear Unitã ãã·ã¢èªã§ã¯ãReLUã¯éåžžãç·åœ¢ãã£ã«ã¿ãŒãšåŒã°ããŸãïŒåèªãã£ã«ã¿ãŒã䜿çšããã®ã«ãŸã ç²ããŠããŸãããïŒïŒã ããã¯ãæ»ããã§ã¯ãªãããšã«å ããŠãæãåçŽãªéç·åœ¢é¢æ°ã§ãã ãããããã®åŸãããã¯1ã€ã®åºæ¬æäœã§èšç®ãããèšç®ãã¬ãŒã ã¯ãŒã¯ã®éçºè ã¯ãããéåžžã«å¥œã¿ãŸãã
ããŠãããªããšç§ã¯ãã§ã«ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãããžã§ã³ã®ä»çµã¿ãªã©ã«ã€ããŠèª¬æããŸããã ããããæè©ã¯ã©ãã§ããããããšãæ¥ç¥ããã«ããªãã欺ããã®ã§ããïŒ ããããç§ã¯ããªããã ãŸããŸããã§ããã
ããã¹ããžã®ç³ã¿èŸŒã¿ã®é©çš

ãã®å³ã¯ãCNNã䜿çšããŠããã¹ããæäœããæ¹æ³ãã»ãŒå®å šã«èª¬æããŠããŸãã ã¯ã£ããããªã æ£ããããŸãããã ãŸãæåã«ã質åã¯æ¬¡ã®ãšããã§ããã©ããããããªãã¯ã¹ãååŸããã®ãã CNNã¯è¡åã§åäœããŸããïŒ ããã§å°ãæ»ã£ãŠãåã蟌ã¿ãšã¯äœããèŠããŠããå¿ èŠããããŸãïŒããã«ã€ããŠã¯å¥ã®èšäºããããŸãïŒã
èŠããã«ãåã蟌ã¿ãšã¯ãããå€æ¬¡å 空éã®ç¹ããªããžã§ã¯ãããã®å Žåã¯åèªã«ãããã³ã°ããããšã§ãã ãã®ãããªåã蟌ã¿ã§ããããæãããç¥ãããŠããäŸã¯ãWord2Vecã§ãã ãšããã§ã
word2vec(âkingâ) - word2vec(âmanâ) + word2vec(âwomanâ) ~= word2vec(âqueenâ)
ãããªã»ãã³ãã£ãã¯ããããã£ããããŸãã ãããã£ãŠãããã¹ãå ã®ååèªã«åã蟌ã¿ãè¡ãããã¹ãŠã®ãã¯ãã«ãè¡ã«é 眮ããŠãç®çã®ãããªãã¯ã¹ãååŸããŸãã

次ã®ã¹ãããã§ã¯ããããªãã¯ã¹ã¯è¯å¥œã§ãçµµã®ããã«èŠããããšããããŸã-åã2次å ã§ãã ãã©ããïŒ åŸ ã£ãŠãåçã«ãã£ãšãã£ã³ãã«ããããŸãã ç»åãããªãã¯ã¹ã«ã¯ãå¹ ãé«ãããã£ã³ãã«ã®3ã€ã®æ¬¡å ããããŸãã ãããŠããã«ïŒ ãããŠãããã«ã¯å¹ ã®ã¿ããããŸãïŒã»ã¯ã·ã§ã³ã®ã¿ã€ãã«ç»åã§ã¯ã衚瀺ã®äŸ¿å®äžãããªãã¯ã¹ã転眮ãããŸãïŒ-ããã¯æäžã®ããŒã¯ã³ã®ã·ãŒã±ã³ã¹ã§ãã ãããŠ-ããããé«ãã§ã¯ãªãããã£ã³ãã«ã ãã£ã³ãã«ãéžã°ããçç± åèªã®åã蟌ã¿ã¯å®å šã«æå³ããããããåã ã®ãã£ã¡ã³ã·ã§ã³ã¯äœãæããŸããã
ããŠããããªãã¯ã¹ãèšç®ããç³ã¿èŸŒã¿ã«ã€ããŠããã«è©³ãã説æããŸããã ç³ã¿èŸŒã¿ã¯1ã€ã®è»žïŒå¹ ïŒã«ã®ã¿æ²¿ã£ãŠé²ãããšãã§ããŸãã ãããã£ãŠãæšæºã®ç³ã¿èŸŒã¿ãšåºå¥ããããã«ã1次å ïŒ1Dç³ã¿èŸŒã¿ïŒãšåŒã°ããŸãã
ãããŠä»ãç¥ç§çãªMax Over Time Poolingãé€ããŠãã»ãšãã©ãã¹ãŠãæ確ã«ãªã£ãŠããŸãã ããã¯ã©ããªç£ã§ããïŒ ããã¯äžèšã§æ¢ã«èª¬æããæ倧ããŒãªã³ã°ã§ãããäžåºŠã«ã·ãŒã±ã³ã¹å šäœã«é©çšãããŸãïŒã€ãŸãããŠã£ã³ããŠã®å¹ ã¯ãããªãã¯ã¹ã®å¹ å šäœã«çãããªããŸãïŒã
ããã¹ãçšã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äœ¿çšäŸ

ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãããŒã¹ãŸãã¯ã·ãŒã±ã³ã¹å šäœã確èªããããããäœããã®çµè«ãåºãå¿ èŠãããå Žåã«é©ããŠããŸãã ã€ãŸãããããã¯ãããšãã°ãã¹ãã ã®æ€åºã調æ§ã®åæãååä»ããšã³ãã£ãã£ã®æœåºãªã©ã®ã¿ã¹ã¯ã§ãã èšäºã®æ§æ解æã¯é£ããå ŽåããããŸãããã¥ãŒã©ã«ãããã¯ãŒã¯ã«ç²ŸéããŠããå Žåã¯ããã®ã»ã¯ã·ã§ã³ãã¹ãããã§ããŸãã
[2]ã§ãYoon Kimã¯ãCNNãç°ãªãããŒã¿ã»ããã®ãªãã¡ãŒãåé¡ããã®ã«é©ããŠããããšã瀺ããŠããŸãã äžèšã®ã»ã¯ã·ã§ã³ã説æããããã«äœ¿çšãããåçã¯ã圌ã®äœåããã®ãã®ã§ãã Word2Vecã§åäœããŸãããæåãçŽæ¥äœ¿çšããããšãã§ããŸãã
[3]ã§ã¯ãèè ã¯æåã«çŽæ¥åºã¥ããŠããã¹ããåé¡ããåŠç¿ããã»ã¹ã§ã®åã蟌ã¿ãåŠç¿ããŸãã 倧èŠæš¡ãªããŒã¿ã»ããã§ã¯ãåèªãåŠçãããããã¯ãŒã¯ãããåªããçµæã瀺ããŸããã
ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯ãRNNãšæ¯èŒããŠå€§ããªæ¬ ç¹ããããŸã-åºå®ãµã€ãºã®å ¥åã§ã®ã¿æ©èœããŸãïŒãããã¯ãŒã¯å ã®è¡åã®ãµã€ãºã¯æäœäžã«å€æŽã§ããªãããïŒã ããããäžèšã®ç 究ã®èè [1]ã¯ãã®åé¡ã解決ããããšãã§ããŸããã ãã®ããããã®å¶éã¯åé€ãããŸããã
[4]ã§ã¯ãèè ã¯æåã«çŽæ¥åºã¥ããŠããã¹ããåé¡ããŸãã 70æåã®ã»ããã䜿çšããŠãåæåãã¯ã³ããããã¯ãã«ãšããŠè¡šãã1014æåã®åºå®ããã¹ãé·ãèšå®ããŸããã ãããã£ãŠãããã¹ãã¯ãµã€ãº70x1014ã®ãã€ããªãããªãã¯ã¹ã§è¡šãããŸãã ãããã¯ãŒã¯ã¯åèªã«ã€ããŠã®èããæãããããããæåã®çµã¿åãããšèŠãªããäºåã«èšç·ŽãããWord2Vecãã¯ãã«ã®å Žåã®ããã«ãåèªã®æå³çè¿æ¥æ§ã«é¢ããæ å ±ã¯ãããã¯ãŒã¯ã«æäŸãããŸããã ãããã¯ãŒã¯ã¯ã1d convãmax-poolingã¬ã€ã€ãŒã2ã€ã®å®å šã«æ¥ç¶ãããããããã¢ãŠãã¬ã€ã€ãŒã§æ§æãããŠããŸãã 倧èŠæš¡ãªããŒã¿ã»ããã§ã¯ãåèªãåŠçãããããã¯ãŒã¯ãããåªããçµæã瀺ããŸããã ããã«ããã®ã¢ãããŒãã«ãããååŠçã¹ããããå€§å¹ ã«ç°¡çŽ åãããã¢ãã€ã«ããã€ã¹ã§ã®äœ¿çšã«è²¢ç®ããå¯èœæ§ããããŸãã
å¥ã®ç 究[5]ã§ã¯ãèè ã¯ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®ãã¹ããã©ã¯ãã£ã¹ã䜿çšããŠãNLPã§ã®CNNã®é©çšãæ¹åããããšããŠããŸãã è¿å¹Žã®ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®äž»ãªåŸåã¯ããããã¯ãŒã¯ã®æ·±ããšãäºãã«é£æ¥ããŠããªãå±€ãæ¥ç¶ããããããã¹ããããªã³ã¯ïŒResNetãªã©ïŒã®è¿œå ã§ãã èè ã¯ãåãååãNLPã«ãé©çšãããããšã瀺ãã16次å åã蟌ã¿ã®æåã«åºã¥ããŠCNNãæ§ç¯ãããããã¯ãŒã¯ã§èª¿æ»ããŸããã ç°ãªãæ·±ãïŒ9ã17ã29ã49ã®å€æå±€ïŒã®ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããã¹ããããªã³ã¯ãå®éšããŠãããããçµæã«ã©ã®ããã«åœ±é¿ãããã調ã¹ãŸããã 圌ãã¯ããããã¯ãŒã¯ã®æ·±ããå¢ãããšéžæããããŒã¿ã»ããã®çµæãæ¹åãããããæ·±ããããããã¯ãŒã¯ïŒ49å±€ïŒã®ããã©ãŒãã³ã¹ã¯äžçšåºŠã®æ·±ãïŒ29å±€ïŒãããäœããšçµè«ä»ããŸããã ã¹ããããªã³ã¯ã䜿çšãããšã49å±€ã®ãããã¯ãŒã¯çµæãæ¹åãããŸãããã29å±€ââã®ãããã¯ãŒã¯ã€ã³ããã¯ã¹ãè¶ ããããšã¯ãããŸããã§ããã
ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã«ãããCNNã®ãã1ã€ã®éèŠãªæ©èœã¯ã1ã€ã®å€§ããªããŒã¿ã»ããïŒå žåçãªäŸã¯ImageNetïŒã§ãã¬ãŒãã³ã°ããããããã¯ãŒã¯ãŠã§ã€ããä»ã®ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã¿ã¹ã¯ã§äœ¿çšã§ããããšã§ãã [6]ã§ã¯ãèè ã¯ãã¯ãŒãåã蟌ã¿ã䜿çšããCNNã䜿çšããŠããã¹ããåé¡ããã¿ã¹ã¯ã«ããããããã®ååã®é©çšå¯èœæ§ã調ã¹ãŠããŸãã ãããã¯ãŒã¯ã®ç¹å®ã®éšåïŒåã蟌ã¿ãã³ã³ããŒã¬ã€ã€ãŒãå®å šã«æ¥ç¶ãããã¬ã€ã€ãŒïŒã®è»¢éããéžæããããŒã¿ã»ããã®åé¡çµæã«ã©ã®ããã«åœ±é¿ããããç 究ããŸãã 圌ãã¯ãNLPã¿ã¹ã¯ã§ã¯ããããã¯ãŒã¯ãäºåã«ãã¬ãŒãã³ã°ããããœãŒã¹ã®ã»ãã³ãã£ãã¯ãªè¿æ¥ãéèŠãªåœ¹å²ãæãããŠãããã€ãŸããæ ç»ã¬ãã¥ãŒã§ãã¬ãŒãã³ã°ããããããã¯ãŒã¯ãå¥ã®æ ç»ã¬ãã¥ãŒããŒã¿ã»ããã§ããŸãæ©èœãããšçµè«ä»ããŠããŸãã ããã«ã圌ãã¯åèªã«åãåã蟌ã¿ã䜿çšãããšè»¢éã®æåãå¢å ããã¬ã€ã€ãŒãããªãŒãºããã«ãã¿ãŒã²ããããŒã¿ã»ããã§ã¬ã€ã€ãŒããã¬ãŒãã³ã°ããããšãæšå¥šããŠããããšã«æ³šæããŸãã
å®çšäŸ
CNNã§ææ åæãè¡ãæ¹æ³ãå®éã«èŠãŠã¿ãŸãããã Kerasã«ã€ããŠã®èšäºã§åæ§ã®äŸãèŠãŠããã®ã§ãç§ã¯ããªãã«éããã¹ãŠã®è©³çŽ°ã«ã€ããŠãããã§ã¯ç解ãã¹ãéèŠãªæ©èœã®ã¿ãæ€èšããŸãã
ãŸããKequ Sequenceã³ã³ã»ãããå¿ èŠã«ãªããŸãã å®éãããã¯Kerasã«ãšã£ãŠäŸ¿å©ãªåœ¢åŒã®ã·ãŒã±ã³ã¹ã§ãã
x_train = tokenizer.texts_to_sequences(df_train["text"]) x_test = tokenizer.texts_to_sequences(df_test["text"]) x_val = tokenizer.texts_to_sequences(df_val["text"])
ããã§ã
text_to_sequences
ã¯ãaïŒããŒã¯ã³åãã€ãŸãæååãããŒã¯ã³ã«åå²ããbïŒåããŒã¯ã³ããã£ã¯ã·ã§ããªå ã®çªå·ã§çœ®ãæããããšã«ãããããã¹ããæŽæ°ã®ã·ãŒã±ã³ã¹ã«å€æããé¢æ°ã§ãã ïŒãã®äŸã®èŸæžã¯ããªã³ã³ãã€ã«ãããŠããŸããå®å šãªã©ãããããã§ã³ã³ãã€ã«ããããã®ã³ãŒããïŒ
次ã«ãçµæã®ã·ãŒã±ã³ã¹ãæŽåããå¿ èŠããããŸã-æãåºãããã«ãCNNã¯å¯å€ããã¹ãé·ã®æäœæ¹æ³ããŸã ç¥ãããããã¯ãŸã ç£æ¥å©çšã«è³ã£ãŠããŸããã
x_train = pad_sequences(x_train, maxlen=max_len) x_test = pad_sequences(x_test, maxlen=max_len) x_val = pad_sequences(x_val, maxlen=max_len)
ãã®åŸããã¹ãŠã®ã·ãŒã±ã³ã¹ã¯åãæšãŠãããããé·ãã
max_len
ãŸã§ãŒããåã蟌ãŸããŸãã
ãããŠä»ãå®éã«æãéèŠãªã®ã¯ã¢ãã«ã®ã³ãŒãã§ãïŒ
model = Sequential() model.add(Embedding(input_dim=max_words, output_dim=128, input_length=max_len)) model.add(Conv1D(128, 3)) model.add(Activation("relu")) model.add(GlobalMaxPool1D()) model.add(Dense(num_classes)) model.add(Activation('softmax'))
æåã®ã¬ã€ã€ãŒã¯
Embedding
ãæŽæ°ïŒå®éã«ã¯ãåäœã®å ŽæãèŸæžå ã®åèªã®æ°ã«å¯Ÿå¿ããã¯ã³ããããã¯ãã«ïŒãå¯ãªãã¯ãã«ã«å€æããŸãã ãã®äŸã§ã¯ãåã蟌ã¿ã³ãŒãã®ãµã€ãºïŒãã¯ãã«ã®é·ãïŒã¯128ãèŸæžã®åèªã®æ°ã¯
max_len
ãã·ãŒã±ã³ã¹ã®åèªã®æ°ã¯
max_len
ã§ããããã¯ãäžèšã®ã³ãŒãããæ¢ã«ããã£ãŠããŸãã
åã蟌ã¿åŸã¯1次å ã®ç³ã¿èŸŒã¿å±€
Conv1D
ã§ãã ãã®äžã®ãã£ã«ã¿ãŒã®æ°ã¯128ã§ããããã£ã«ã¿ãŒã®ãŠã£ã³ããŠã®å¹ ã¯3ã§ããã¢ã¯ãã£ããŒã·ã§ã³ã¯æ確ã§ãªããã°ãªããŸãã-ããã¯ReLUã®ãæ°ã«å ¥ãã§ãã
ReLUã®åŸã
GlobalMaxPool1D
ã¬ã€ã€ãŒãç»å ŽããŸãã ãã®å Žåã®ãã°ããŒãã«ããšã¯ãçä¿¡ã·ãŒã±ã³ã¹ã®å šé·ã«æ²¿ã£ãŠååŸãããããšãæå³ããŸããã€ãŸããåè¿°ã®æ倧æéããŒãªã³ã°ãšã¯ç°ãªããŸãã ãšããã§ããªãOver TimeãšåŒã°ããã®ã§ããïŒ åèªã®é åºã¯èªç¶ãªé åºã§ãããããäžéšã®åèªã¯é³å£°/ããã¹ãã®æµãã®æ©ã段éã§ãã€ãŸãæéã®æ©ã段éã§å°çããŸãã
æçµçã«åŸãã¢ãã«ã¯æ¬¡ã®ãšããã§ãã

ç»åã«èå³æ·±ãç¹åŸŽããããŸããç³ã¿èŸŒã¿å±€ã®åŸãã·ãŒã±ã³ã¹ã®é·ãã¯40ã§ã¯ãªã38ã«ãªããŸããããªãã§ããïŒ ç§ãã¡ã¯è©±ããããããã£ã³ã°ã䜿çšããªãã£ããããSvetaããããè¶ ããããšãã§ããããã«ãå ã®ãããªãã¯ã¹ã«ããŒã¿ãäºå®äžãè¿œå ãã§ããæè¡ã§ãã ãããŠãããããªããšãé·ãã3ã§ã1ã«çããã¹ãããã®ããã¿èŸŒã¿ã¯ãå¹ 40ã®ãããªãã¯ã¹ã«æ²¿ã£ãŠ38ã¹ãããããäœæã§ããŸããã
ããŠãçµæãšããŠäœãåŸãããŸãããïŒ ç§ã®ãã¹ãã§ã¯ããã®åé¡åã®å質ã¯0.57ã§ãããããã¡ããããã»ã©ã§ã¯ãããŸããã ããããå°ãåªåããã°ãç§ã®çµæãç°¡åã«æ¹åã§ããŸãã ã©ãã
PSïŒãã®èšäºãEvgeny Vasiliev somesnmãšBulat Suleymanov khansuleymanã«æžããŠãããŠããããšãã
æåŠ
[1] BaiãS.ãKolterãJZãããã³KoltunãVãïŒ2018ïŒã ã·ãŒã±ã³ã¹ã¢ããªã³ã°ã®ããã®äžè¬çãªç³ã¿èŸŒã¿ããã³ãªã«ã¬ã³ããããã¯ãŒã¯ã®çµéšçè©äŸ¡ã arxiv.org/abs/1803.01271
[2] KimãY.ïŒ2014ïŒã æåé¡ã®ããã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã èªç¶èšèªåŠçã®çµéšçæ¹æ³ã«é¢ãã2014幎äŒè°ïŒEMNLP 2014ïŒã1746â1751ã®è°äºé²ã
[3] HeigoldãG.ãNeumannãG.ãããã³van GenabithãJ.ïŒ2016ïŒã 圢æ åŠçã«è±å¯ãªèšèªã®æåããã®ç¥çµåœ¢æ åŠçã¿ã°ä»ãã arxiv.org/abs/1606.06640
[4]ããã¹ãåé¡ã®ããã®æåã¬ãã«ã®ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã ãã£ã³ã»ãžã£ã³ããžã£ã³ãã»ãã£ãªãã€ã³ã»ã«ã¯ã³arxiv.org/abs/1509.01626
[5]ããã¹ãåé¡ã®ããã®éåžžã«æ·±ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ã ã³ããŠãHã·ã¥ãŠã§ã³ã¯ãLãããŒãYã¬ã¯ã³arxiv.org/abs/1606.01781
[6]ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããããã¹ãåé¡ã®ããã®è»¢ç§»åŠç¿ã®å®åè åãã¬ã€ãã T SemwalãG MathurãP YenigallaãSB Nair arxiv.org/abs/1801.06480