
ãããããããŒã¿åæã«æºãã£ãŠãã人ã®å€ãã¯ãRãšPythonãåæã«äœ¿çšã§ãããã©ãããèããããšãããã§ãããã ãããããªãããªããããå¿ èŠãªã®ã§ããããïŒ ãããžã§ã¯ãã«ãšã£ãŠæçšã§å¹æçãªã®ã¯ãã€ã§ããïŒ ã¯ããGoogleãçŽ100,500ã®ãªãã·ã§ã³ãäœæããå Žåãèšèªãçµã¿åãããæé©ãªæ¹æ³ãã©ã®ããã«éžæããŸããïŒ
ãããã®åé¡ãç解ããŠã¿ãŸãããã
ãªã
- ãŸããä»æ¥ã®ããŒã¿åæã«æã人æ°ã®ãã 2ã€ã®ããã°ã©ãã³ã°èšèªã掻çšããæ©äŒã§ãã å Žåã«ãã£ãŠã¯ãæã匷åã§å®å®ããRããã³Pythonã©ã€ãã©ãªãçµã¿åãããããšã§ãèšç®ã®å¹çãé«ããããçµ±èšã¢ãã«ãå®è£ ããããã®èªè»¢è»ã®çºæãåé¿ãããã§ããŸãã
- 第äºã«ãããŒã ïŒãŸãã¯èªåïŒã®ç°ãªã人ã ãç°ãªãèšèªã®ååãªç¥èãæã£ãŠããå Žåãããã¯ãããžã§ã¯ãã®é床ãšå©äŸ¿æ§ã®åäžã§ãã ããã§ã¯ãæ¢åã®RãšPythonããã°ã©ãã³ã°ã¹ãã«ã®åççãªçµã¿åããã圹ç«ã¡ãŸãã
æåã®æ®µèœã«ã€ããŠè©³ãã話ããŠã¿ãŸãããã 以äžã«ç¶ãèŠçŽã¯ç¢ºãã«äž»èŠ³çã§ãããè£è¶³ããããšãã§ããŸãã ããã¯ãèšèªãšå人çãªçµéšã®å©ç¹ã«é¢ããéèŠãªèšäºã®äœç³»åã«åºã¥ããŠäœæãããŸããã ããããç§ãã¡ãç¥ã£ãŠããããã«ãäžçã¯éåžžã«æ¥éã«å€åããŠããŸãã
Pythonã¯ãè³¢æãªããã°ã©ããŒã«ãã£ãŠäœæãããæ±çšèšèªã§ãããããŒã¿ãµã€ãšã³ã¹ã®çºå±ã«äŒŽããããŒã¿åæã®ç¹å®ã®ã¿ã¹ã¯ã«é©å¿ããåŸæã«ãªããŸããã ãããã£ãŠããã®èšèªã®äž»ãªå©ç¹ã¯æ¬¡ã®ãšããã§ãã ããŒã¿ãåæãããšãããã®äœ¿çšã¯æ¬¡ã®å Žåã«æé©ã§ãã
- Webã¹ã¯ã¬ã€ãã³ã°ãšã¯ããŒã«ïŒbeautifulsoupãScrapyãªã©ïŒ
- ããŒã¿ããŒã¹ãšã¢ããªã±ãŒã·ã§ã³ã®å¹æçãªäœæ¥ïŒsqlachemyãªã©ïŒ
- ã¯ã©ã·ãã¯MLã¢ã«ãŽãªãºã ã®å®è£ ïŒscikit-learnãpandasãnumpyãscipyãªã©ïŒ
- ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã¿ã¹ã¯
Rã®äž»ãªãã®ã¯ãã©ã€ãã©ãªã®åºç¯ãªã³ã¬ã¯ã·ã§ã³ã§ãã ãã®èšèªã¯ãç¹ã«åæ段éã§ã¯ãäž»ã«ããã°ã©ãã§ã¯ãªãçµ±èšåŠè ã®åªåã«ããéçºãããŸããã çµ±èšåŠè ã¯äžçæžåœåªåãã圌ãã®æ¥çžŸã¯ææŠããã®ãé£ããã
æåã«äŒè°ã«åå ããåã«äŒè°ã§æè¿èããæ°ããããããçµ±èšã¢ãã«ãè©Šãããšãçªç¶èããå Žåã¯ã
R package <INSERT NAME: new great stats model>
R package <INSERT NAME: new great stats model>
ãŸãã ããªãã®æåã®å¯èœæ§ã¯éåžžã«å€§ããã§ãïŒ ãããã£ãŠãRã®ééããªããã©ã¹ã¯ãé«åºŠãªçµ±èšåæã®å¯èœæ§ã§ãã ç¹ã«ãç§åŠãšå®è·µã®å€ãã®ç¹å®ã®åéïŒèšéçµæžåŠããã€ãªã€ã³ãã©ããã£ã¯ã¹ãªã©ïŒã ç§ã®æèŠã§ã¯ãçŸæç¹ã§ã®Rã§ã¯ãæç³»åã®åæã¯ããã«ãã£ãšçºå±ããŠããŸãã
RãPythonããåªããŠãããã1ã€ã®éèŠãªå©ç¹ã¯ãã€ã³ã¿ã©ã¯ãã£ãã°ã©ãã£ãã¯ã¹ã§ãã JSã®ç¥èããªããŠããããã·ã¥ããŒããšã·ã³ãã«ãªã¢ããªã±ãŒã·ã§ã³ãäœæããã³ã«ã¹ã¿ãã€ãºã§ããå¯èœæ§ã¯éåžžã«å€§ããã§ãã ãããä¿¡ããªãã§ãã ãã-ãªã¹ãããããã€ãã®ã©ã€ãã©ãªã®å¯èœæ§ã調ã¹ãããã«å°ãæéãè²»ãããŠãã ããïŒ
htmlwidgets
ã
flexdashboard
ã
shiny
ã
slidify
ã ããšãã°ãæåã¯ããã®èšäºã®è³æã¯slidifyã®ã€ã³ã¿ã©ã¯ãã£ããªãã¬ãŒã³ããŒã·ã§ã³ãšããŠç·šéãããŸããã
ããããçµ±èšåŠè ããããåªåããŠãã圌ãã¯ãã¹ãŠã«åŒ·ãããã§ã¯ãããŸããã Pythonã®ããã«ãã¡ã¢ãªç®¡çã®ãã®ãããªé«ãå¹çãéæããããšã¯ã§ããŸããã§ããã ããããRã§ã¯ã倧éã®ããŒã¿ã§å®è¡ãããé©åã§é«éãªã³ãŒããéåžžã«å¯èœã§ãã ããããPythonãããã¯ããã«å€ãã®åªåãšèªå·±ç®¡çãå¿ èŠã§ãã
åŸã ã«ããã¹ãŠã®éãããªããªããäž¡æ¹ã®èšèªããŸããŸãçžäºäº€æå¯èœã«ãªããŸãã Pythonã§ã¯ãèŠèŠåæ©èœãéçºããïŒ
seaborn
倧ããª
seaborn
ãŸãïŒã
puFlux
ã
pymaclab
ãªã©ïŒãè¿œå ãããŸãã.Rã§ã¯ãã¡ã¢ãªç®¡çå¹çãåäžããããŒã¿åŠçæ©èœãåäžããŠããŸãïŒ
data.table
ïŒã ããã§ã¯ãããšãã°ã Rããã³Pythonã®ããŒã¿ã䜿çšããåºæ¬æäœã®äŸãèŠãããšãã§ããŸãã ãããžã§ã¯ãã®èšèªãçµã¿åãããããšã«å©ç¹ã¯ãããŸãããããã¯ããªã次第ã§ãã
ãããžã§ã¯ãã®å®æœã®é床ãšå©äŸ¿æ§ãæ¹åããããšã«é¢ãã2çªç®ã®ãã€ã³ãã«ã€ããŠã¯ãããã§ã¯äž»ã«ãããžã§ã¯ãã®çµç¹ã«ã€ããŠè©±ããŸãã ããšãã°ããããžã§ã¯ãã«2人ã®äººãããŠã1人ã¯Rã§ãã倧ããããã匷ãããã1人ã¯Pythonã§ããŸãã ã³ãŒãã¬ãã¥ãŒãšä»ã®ã³ã³ãããŒã«ãäž¡æ¹ã®èšèªã«æäŸã§ããå Žåã¯ãååå è ãæé«ã®ã¹ãã«ã䜿çšã§ããããã«ã¿ã¹ã¯ãåæ£ããŠã¿ãããšãã§ããŸãã ãã¡ãããããŸããŸãªèšèªã§ç¹å®ã®åé¡ã解決ããçµéšãéèŠã§ãã
ããŒã¿ãæ±ãç 究ãããžã§ã¯ãã«ã€ããŠè©±ããŠããããšã¯æ確ã«ãã¹ãã§ãã ä»ã®åºæºã¯ææ決å®ã«ãšã£ãŠéèŠã§ãã çµåã¯ãã»ãšãã©ã®å Žåãèšç®ã®å®å®æ§ãšã¹ã±ãŒã©ããªãã£ã«åœ¹ç«ã¡ãŸããã ãããã£ãŠãç§ãã¡ã¯ã¹ã ãŒãºã«ããããŠãã€èšèªãçµã¿åãããããšããã䟿å©ããšããåé¡ã«é²ã¿ãŸãã
ãã€
äž¡æ¹ã®èšèªã®æ©èœãèãããšãRãšPythonã次ã®ããã«çµã¿åãããããšã§ã¡ãªãããåŸãããŸãã
- æ¢çŽ¢çããŒã¿åæ
- ãããã¿ã€ãã³ã°
- ããŸããŸãªç§åŠçããã³å®è·µçãªåéã§å¹ åºãã«ãã¬ããžãæã€ãããžã§ã¯ã/ã¿ã¹ã¯ã»ããã®å®è£
èšèªã®å¯èœãªçµã¿åããã®äŸã瀺ããŸãã
- å°ååŽååžå Žã®ç 究 ã Pythonã䜿çšããŠå
¬åŒHH.ru APIã«æ¥ç¶ãã Rã䜿çšããŠåŸåãšäŸåé¢ä¿ã調æ»ïŒ
xgboost
ãxgboostExplainer
ïŒ+èŠèŠåïŒMarkdownã¬ããŒãïŒ - ãã«ãŒã ããŒã°ããŒã¿ã«åºã¥ãã¢ããªã±ãŒã·ã§ã³ ã å
¬åŒAPIã«æ¥ç¶ããPythonïŒ
numpy
ãhtmlwidgets
ïŒã§ããŒã¿ãåŠçããçµæãRã®ããã·ã¥ããŒããŸãã¯å æ²¢ã®ããã¢ããªã±ãŒã·ã§ã³ã«åºåããŸãïŒflexdashboard
ãhtmlwidgets
ïŒ - ãœãŒã·ã£ã«ã¡ãã£ã¢ããŒã¿åæ ã Python +èšéçµæžåŠããããã¯ãŒã¯åæãèŠèŠåããŠã§ããµã€ãã䜿çšãã解æãšMLã¹ã¿ãã¯-Rã®äœ¿çš
- åã ã®ãã€ã³ãã§ã®è£œåã®éèŠãäºæž¬ããããã®ã¢ãã« ã PythonïŒMLã¢ã«ãŽãªãºã ïŒã䜿çšããŠåã ã®å Žæã®ååã®éèŠãäºæž¬ãããŠããã+ RïŒäžè¬åè¡¡ã¢ãã«ããã³æ§é varã¢ãã«ïŒã䜿çšããŠãã¯ãçµæžäºæž¬
- ãã¥ãŒã¹ãããŒã®åæ ã Rã®è§£æïŒ
rvest
ïŒ+ Pythonã®NLP + Rã®RMarkdown Parameterized Reports
ïŒRMarkdown Parameterized Reports
ïŒ
ãã¹ãŠã®äŸã¯å®éã®ãããžã§ã¯ãã§ãã
RãšPythonã®çµã¿åããã®å¯èœæ§ã«é¢ããæåã®ãã¬ãŒã³ããŒã·ã§ã³ãã2幎ãçµéããŸããããå®çšŒåç°å¢ã§èšèªãçµã¿åãããããšããå§ãããŸããã äºãã«å³å¯ã«çµã³ã€ããŠããªãã®ã¯ãã»ãŒ2ã€ã®åå¥ã®ãšã³ãã£ãã£/ã¢ãã«ã§ããå Žåãé€ããŸãã
R + Pythonã®ãããã¯ã·ã§ã³ãæŽãæµãã幞éãªäººããããªããã³ã¡ã³ãã§ã·ã§ã¢ããŠãã ããïŒ
ã©ããã£ãŠ
ä»ããæ€ åã«ã€ããŠçŽæ¥ã RãšPythonãçµã¿åãããã¢ãããŒãã®äžã§ã3ã€ã®äž»èŠãªã«ããŽãªãåºå¥ã§ããŸãã
- ã³ãã³ãã©ã€ã³ããŒã« ã ã³ãã³ãã©ã€ã³ã䜿çšããã¹ã¯ãªããã®å®è¡+ãã£ã¹ã¯äžã®ãã¡ã€ã«ã®äžéã¹ãã¬ãŒãžïŒãšã¢ã®ã£ãããåããïŒ
- RãšPythonã®ã€ã³ã¿ãŒãã§ãŒã¹ ã Rããã»ã¹ãšPythonããã»ã¹ãåæã«å®è¡ããã©ã³ãã ã¢ã¯ã»ã¹ã¡ã¢ãªïŒã¡ã¢ãªå ïŒã§ããŒã¿ã転éããŸã
- ãã®ä»ã®ã¢ãããŒã
ããããã®ã¢ãããŒãããã詳现ã«æ€èšããŠã¿ãŸãããã
ã³ãã³ãã©ã€ã³ããŒã«
ãã€ã³ãã¯ããããžã§ã¯ããRãŸãã¯Pythonã§å®è¡ãããæ¯èŒçç¬ç«ããå¥ã ã®éšåã«åå²ããäž¡æ¹ã®èšèªã«é©ããäœããã®åœ¢åŒã§ãã£ã¹ã¯ãä»ããŠããŒã¿ã転éããããšã§ãã
æ§æã§ã¯ããã¹ãŠãéåžžã«ç°¡åã§ãã ã¹ã¯ãªããã¯ã次ã®ã¹ããŒã ã«åŸã£ãŠã³ãã³ãã©ã€ã³ã䜿çšããŠå®è¡ãããŸãã
<cmd_to_run> <path_to_script> <any_additional_args>
<cmd_to_run>
-ã³ãã³ãã©ã€ã³ã䜿çšããŠRãŸãã¯Pythonã¹ã¯ãªãããå®è¡ããã³ãã³ã
<path_to_script>
-ã¹ã¯ãªããã®å Žæãã£ã¬ã¯ããª
<any_additional_args>
-ã¹ã¯ãªããå ¥åãžã®åŒæ°ã®ãªã¹ã
次ã®è¡šã¯ãã³ãã³ãã©ã€ã³ããã¹ã¯ãªãããå®è¡ããæž¡ãããåŒæ°ãèªã¿åãããšããã詳现ã«ç€ºããå³ã§ãã ã³ã¡ã³ãã¯ãåŒæ°ãªã¹ããæžã蟌ãŸãããªããžã§ã¯ãã®ã¿ã€ãã瀺ããŸãã
ã³ãã³ã | Python | R |
---|---|---|
Cmd | python path/to/myscript.py arg1 arg2 arg3
| Rscript path/to/myscript.R arg1 arg2 arg3
|
åŒæ°ãååŸãã | # list, 1st el. - file executed
| # character vector of args
|
èå³ã®ããæ¹ã®ããã«ãéåžžã«è©³çŽ°ãªäŸã以äžã«ç€ºããŸãã
Pythonã®Rã¹ã¯ãªãã
ãŸããåçŽãªRã¹ã¯ãªããã
ããŠããªã¹ãããæ倧æ°ã決å®ãã
ãšããååãä»ã
次ã«ãPythonã§å®è¡ããcmdã䜿çšããŠãæ°å€ã®ãªã¹ããæž¡ããŠæ倧å€ãèŠã€ããŸãã
ãŸããåçŽãªRã¹ã¯ãªããã
max.R
ããŠããªã¹ãããæ倧æ°ã決å®ãã
max.R
ãšããååãä»ã
max.R
# max.R randomvals <- rnorm(75, 5, 0.5) par(mfrow = c(1, 2)) hist(randomvals, xlab = 'Some random numbers') plot(randomvals, xlab = 'Some random numbers', ylab = 'value', pch = 3)
次ã«ãPythonã§å®è¡ããcmdã䜿çšããŠãæ°å€ã®ãªã¹ããæž¡ããŠæ倧å€ãèŠã€ããŸãã
# calling R from Python import subprocess # Define command and arguments command = 'Rscript' path2script = 'path/to your script/max.R' # Variable number of args in a list args = ['11', '3', '9', '42'] # Build subprocess command cmd = [command, path2script] + args # check_output will run the command and store to result x = subprocess.check_output(cmd, universal_newlines=True) print('The maximum of the numbers is:', x)
Rããã®Pythonã¹ã¯ãªãã
æåã«ãåçŽãªPythonã¹ã¯ãªãããäœæããŠãããã¹ãæååãéšåã«åå²ãããsplitstr.pyããšåŒã³ãŸãã
ããã§ãcmdã䜿çšããŠRã§å®è¡ããããã¹ãæååãæž¡ããŠç®çã®ãã¿ãŒã³ãåé€ããŸãã
æåã«ãåçŽãªPythonã¹ã¯ãªãããäœæããŠãããã¹ãæååãéšåã«åå²ãããsplitstr.pyããšåŒã³ãŸãã
# splitstr.py import sys # Get the arguments passed in string = sys.argv[1] pattern = sys.argv[2] # Perform the splitting ans = string.split(pattern) # Join the resulting list of elements into a single newline # delimited string and print print('\n'.join(ans))
ããã§ãcmdã䜿çšããŠRã§å®è¡ããããã¹ãæååãæž¡ããŠç®çã®ãã¿ãŒã³ãåé€ããŸãã
# calling Python from R command = "python" # Note the single + double quotes in the string (needed if paths have spaces) path2script ='"path/to your script/splitstr.py"' # Build up args in a vector string = "3523462---12413415---4577678---7967956---5456439" pattern = "---" args = c(string, pattern) # Add path to script as first arg allArgs = c(path2script, args) output = system2(command, args=allArgs, stdout=TRUE) print(paste("The Substrings are:\n", output))
ããã¹ã¯ãªããããå¥ã®ã¹ã¯ãªããã«æ å ±ã転éããéã®äžéãã¡ã€ã«ã®ä¿åã«ã¯ãç®çãšå¥œã¿ã«å¿ããŠå€ãã®åœ¢åŒã䜿çšã§ããŸãã äž¡æ¹ã®èšèªã«ã¯ãå圢åŒãæäœããããã®ã©ã€ãã©ãªããããŸãïŒåã©ã€ãã©ãªã¯ãããŸããïŒã
Rããã³Pythonã®ãã¡ã€ã«åœ¢åŒ
äžå®¹é | Python | R |
---|---|---|
ãã©ãããã¡ã€ã« | ||
csv | CSVãã³ã | ãªãŒããŒãdata.table |
json | json | jsonlite |
ã€ã ã« | PyYaml | ã€ã ã« |
ããŒã¿ããŒã¹ | ||
SQL | sqlalchemyãpandasqlãpyodbc | sqliteãRODBSãRMySQLãsqldfãdplyr |
NoSQL | ãã¢ã³ãŽ | ã¢ã³ãŽ |
ãã§ã¶ãŒ | ||
ããŒã¿ãã¬ãŒã çš | 矜 | 矜 |
ãã³ã㌠| ||
numpyãªããžã§ã¯ãçš | numpy | Rcppcnpy |
ãã¡ãããã¯ã©ã·ãã¯åœ¢åŒã¯ãã©ãããã¡ã€ã«ã§ãã å€ãã®å Žåãcsvã¯æãã·ã³ãã«ã§äŸ¿å©ã§ä¿¡é Œæ§ã®é«ããã®ã§ãã æ¯èŒçé·æéæ å ±ãæ§é åãŸãã¯ä¿åããå Žåãããããæè¯ã®éžæã¯ããŒã¿ããŒã¹ïŒSQL / NoSQLïŒã«ä¿åããããšã§ãã
Rãšã®éã§
numpy
ãªããžã§ã¯ããé«éã§è»¢éããããã«ãé«éã§å®å®ãã
RCppCNPy
ã©ã€ãã©ãªããããŸãã ãã®äœ¿çšäŸã¯ããã«ãããŸã ã
åæã«ãRãšPythonã®éã§æ¥ä»ãã¬ãŒã ã転éããããã«ç¹å¥ã«éçºããã
feather
圢åŒããããŸãã ãã®åœ¢åŒã®æåã®æ©èœã¯ãRãšPythonã®ã·ã£ãŒãåãäž¡æ¹ã®èšèªã§ã®åŠçã®å®¹æããããã³éåžžã«é«éãªæžã蟌ã¿ãšèªã¿åãã§ãã ã¢ã€ãã¢ã¯çŽ æŽãããã§ãããå®è£ ã«ã¯æã èµ·ããããã«åŸ®åŠãªéãããããŸãã ãã®ãã©ãŒãããã®éçºè ã¯ãé·æçãªãœãªã¥ãŒã·ã§ã³ã«ã¯ãŸã é©ããŠããªããšç¹°ãè¿ãè¿°ã¹ãŠããŸãã ãã©ãŒããããæäœããããã«ã©ã€ãã©ãªãæŽæ°ãããšãããã»ã¹å šäœãå£ããå€§å¹ ãªã³ãŒãå€æŽãå¿ èŠã«ãªãå ŽåããããŸãã
ãããåæã«ãRãšPythonã§ã®ãã§ã¶ãŒã®æžã蟌ã¿ãšèªã¿åãã¯éåžžã«é«éã§ãã 1,000äžè¡ã®ãã¡ã€ã«ã®èªã¿åã/æžã蟌ã¿é床ã®ãã¹ãæ¯èŒãäžã®å³ã«ç€ºããŸãã ã©ã¡ãã®å ŽåããåŸæ¥ã®csv圢åŒã§äœæ¥ããå Žåã
feather
ããŒã©ã€ãã©ãªãããå€§å¹ ã«é«éã§ãã
Rããã³Pythonã®ãã§ã¶ãŒããã³CSV圢åŒãšé床ã®æ¯èŒ
ãã¡ã€ã« ïŒããŒã¿ãã¬ãŒã ã1,000äžè¡ã ã©ã€ãã©ãªããšã«10åã®è©Šè¡ã
R ïŒCSVã¯ã
ããã³
ä»ããŠ
ã
ã ãã§ã¶ãŒã§ã®äœæ¥ãæéã§ããããšãå€æããŸãããã
é床
é«ã
ãŸããã åæã«ãRåãã«featherãã»ããã¢ããããŠæäœããã®ã¯å°é£ã§ãããµããŒãã¯çãããã§ãã
1幎å
æåŸã«æŽæ°ãããŸããã
Python ïŒ
ã䜿çšããCSVã®èªã¿åã/æžã蟌ã¿ã é床ã®å€§å¹ ãªåäžãé¡èã§ããããšãå€æããPython 3.5ã®åœ¢åŒã§ã®äœæ¥ã«åé¡ã¯ãããŸããã§ããã
ããã§éèŠãªã®ã¯ãé床ã¯RãšPythonã§å¥ã ã«ããæ¯èŒã§ããªãããšã§ãã ãã¹ãå šäœãRããå®è¡ããããããæçµçãªå³é¢ãäœæããã®ã«äŸ¿å©ãªãããèšèªéã¯äžæ£ç¢ºã«ãªããŸãã

ãã¡ã€ã« ïŒããŒã¿ãã¬ãŒã ã1,000äžè¡ã ã©ã€ãã©ãªããšã«10åã®è©Šè¡ã
R ïŒCSVã¯ã
data.table
ããã³
dplyr
ä»ããŠ
data.table
ã
dplyr
ã ãã§ã¶ãŒã§ã®äœæ¥ãæéã§ããããšãå€æããŸãããã
data.table
é床
data.table
é«ã
data.table
ãŸããã åæã«ãRåãã«featherãã»ããã¢ããããŠæäœããã®ã¯å°é£ã§ãããµããŒãã¯çãããã§ãã
feather
1幎å
feather
æåŸã«æŽæ°ãããŸããã
Python ïŒ
pandas
ã䜿çšããCSVã®èªã¿åã/æžã蟌ã¿ã é床ã®å€§å¹ ãªåäžãé¡èã§ããããšãå€æããPython 3.5ã®åœ¢åŒã§ã®äœæ¥ã«åé¡ã¯ãããŸããã§ããã
ããã§éèŠãªã®ã¯ãé床ã¯RãšPythonã§å¥ã ã«ããæ¯èŒã§ããªãããšã§ãã ãã¹ãå šäœãRããå®è¡ããããããæçµçãªå³é¢ãäœæããã®ã«äŸ¿å©ãªãããèšèªéã¯äžæ£ç¢ºã«ãªããŸãã
ãŸãšãããš
ã¡ãªãã
- ã·ã³ãã«ãªæ¹æ³ã§ãããããå€ãã®å Žåæé
- äžéçµæãèŠãã ã
- ã»ãšãã©ã®åœ¢åŒã®èªã¿åã/æžã蟌ã¿æ©èœã¯ãäž¡æ¹ã®èšèªã§å®è£ ãããŠããŸã
çæ
- èšèªéã®ç§»è¡ã®æ°ãå¢ãããšãèšèšã¯ããã«æ±ãã«ãããªãã管çãé£ãããªããŸãã
- ããŒã¿éã®å¢å ã«äŒŽããã¡ã€ã«ã®æžã蟌ã¿/èªã¿åãé床ã®å€§å¹ ãªæ倱
- èšèªéã®çžäºäœçšã®ã¹ããŒã ãšäžéãã¡ã€ã«ã®åœ¢åŒãäºåã«åæããå¿ èŠæ§
RãšPythonã®ã€ã³ã¿ãŒãã§ãŒã¹
ãã®ã¢ãããŒãã¯ã1ã€ã®èšèªãå¥ã®èšèªããçŽæ¥èµ·åããããšã§æ§æãããæ å ±ã®å éšïŒã¡ã¢ãªå ïŒéä¿¡ãæäŸããŸãã
RãšPythonã䞊眮ããã®ã§ã¯ãªãçµã¿åãããããšãèããŠããæ代ã«ãå€ãã®ã©ã€ãã©ãªãäœæãããŸããã ãããã®ãã¡ãæåããWindowsãªãã¬ãŒãã£ã³ã°ã·ã¹ãã ã®äœ¿çšãå«ãããŸããŸãªãã©ã¡ãŒã¿ãŒã«èæ§ãããã®ã¯2ã€ã ãã§ãã ãããããããã®ååšã¯ãã§ã«æ°ããèŠéãéããèšèªãçµã¿åãããããã»ã¹ãå€§å¹ ã«ä¿é²ããŸãã
åèšèªãå¥ã®èšèªã§åŒã³åºãããã«ãå質ã®é«ãé ã«3ã€ã®ã©ã€ãã©ãªã以äžã«ç€ºããŸãã
Pythonããã®R
æã人æ°ã®ããå®å®ããå®å®ããã©ã€ãã©ãªã¯
rpy2
ã§ãã ããã«åäœãã
pandas
ã®å ¬åŒããã¥ã¡ã³ãã®äžéšãšããŠé©åãªèª¬æãããã å¥ã®ãµã€ãã«ãããŸãã äž»ãªæ©èœã¯ã
pandas
ãšã®çµ±åã§ãã èšèªéã§æ å ±ãéä¿¡ããããã®éèŠãªãªããžã§ã¯ãã¯ã
data frame
ã§ãã æã人æ°ã®ããR
ggplot2
èŠèŠåããã±ãŒãžã®çŽæ¥ãµããŒãã宣èšãããŠããŸãã ããªãã¡ Pythonã§ã³ãŒããæžãã«ã¯ãPython IDEã§çŽæ¥ã°ã©ããåç §ããŠãã ããã ãã ãã
ggplot2
䜿çšããããŒãã¯ãWindowsã§ãžã£ã ã«ãªããŸãã
ãããã
rpy2
ã¯1ã€ã®æ¬ ç¹ããã
rpy2
-ãã¥ãŒããªã¢ã«ã®åŠç¿ã«æéãè²»ããå¿ èŠãããããã§ãã 2ã€ã®èšèªã§æ£ããåäœããã«ã¯ãéä¿¡äžã«ãªããžã§ã¯ãã®ã¿ã€ãã®æ§æãšãããã³ã°ã«æãããªãã¥ã¢ã³ã¹ãããããããããå¿ èŠã§ãã ããšãã°ãPythonããRãžã®å ¥åã«æ°å€ã転éãããšã1ã€ã®èŠçŽ ããæ°å€ã§ã¯ãªããã¯ãã«ãååŸãããŸãã
äžã®è¡šã®2çªç®ã«ãã
pipe
ã©ã€ãã©ãªã®äž»ãªå©ç¹ã¯ãé床ã§ãã ãã€ããä»ããå®è£ ã¯ãå¹³åããŠäœæ¥ãå®éã«ã¹ããŒãã¢ãããïŒãã®ãããã¯ã«é¢ããJSSã®èšäºããããŸãïŒãR-Pythonã§ã®pandasãªããžã§ã¯ãã®æäœã®ãµããŒããå©çšå¯èœã«ãªã£ãŠããŸãã ããããå©çšå¯èœãªæ¬ ç¹ã«ãããã©ã€ãã©ãªã¯ç¢ºå®ã«2äœã«ã·ããããŸãã äž»ãªæ¬ ç¹ã¯ãPythonçµç±ã§Rã«ã©ã€ãã©ãªãã€ã³ã¹ããŒã«ããããã®äžååãªãµããŒãã§ãã Rã§éæšæºã©ã€ãã©ãªã䜿çšããå ŽåïŒããã³Rã¯ããã ãã§å¿ èŠãªå Žåãå€ãïŒããããã€ã³ã¹ããŒã«ããŠåäœãããã«ã¯ããã¹ãŠã®äŸåé¢ä¿ãé çªã«ïŒ!!!ïŒããŠã³ããŒãããå¿ èŠããããŸãã ãŸããäžéšã®å³æžé€šã§ã¯çŽ100500ãšå°ããªã«ãŒãããããŸãã 2çªç®ã®éèŠãªæ¬ ç¹ã¯ãã°ã©ãã£ãã¯ã®äžäŸ¿ãªäœæ¥ã§ãã äœæãããã¹ã±ãžã¥ãŒã«ã¯ããã£ã¹ã¯äžã®ãã¡ã€ã«ã«æžã蟌ãããšã«ãã£ãŠã®ã¿è¡šç€ºã§ããŸãã 3çªç®ã®æ¬ ç¹ã¯ãäžååãªããã¥ã¡ã³ãã§ãã ãžã£ã ãæšæºã»ããã®å¢çã®ããå€åŽã§çºçããå Žåã解決çã¯ããã¥ã¡ã³ããŸãã¯stackoverflowã®ã©ã¡ãã«ãèŠã€ãããªãããšããããããŸãã
pyrserve
ã©ã€ãã©ãª
pyrserve
䜿ãããã
pyrserve
ãæ©èœãããªãå¶éãããŠããŸãã ããšãã°ãããŒãã«è»¢éã¯ãµããŒãããŠããŸããã éçºè ãã©ã€ãã©ãªãæŽæ°ããã³ãµããŒãããããšããå€ãã®èŠæããããŸãã ããŒãžã§ã³0.9.1ã¯ã2幎以äžäœ¿çšå¯èœãªæåŸã®ããŒãžã§ã³ã§ãã
å³æžé€š | ã³ã¡ã³ã |
---|---|
rpy2 | -Cã¬ãã«ã®ã€ã³ã¿ãŒãã§ãŒã¹
-ãã³ãã®çŽæ¥ãµããŒã -ã°ã©ãã£ãã¯ã®ãµããŒãïŒ+ ggplot2ïŒ -Windowsã®åŒ±ããµããŒã |
ãã€ã㌠| -Pythonã³ãŒã
-ãã€ãã®äœ¿çšïŒå¹³åçã«é«éïŒ -éæ¥ãã³ãã®ãµããŒã -éãããã°ã©ãã£ãã¯ã¹ã®ãµããŒã -äžååãªããã¥ã¡ã³ã |
serve | -Pythonã³ãŒã
-ãã€ãã®äœ¿çšïŒå¹³åçã«é«éïŒ -éæ¥ãã³ãã®ãµããŒã -éãããã°ã©ãã£ãã¯ã¹ã®ãµããŒã -äžååãªããã¥ã¡ã³ã -äœã¬ãã«ã®ãããžã§ã¯ããµããŒã |
Rããã®Python
ãããŸã§ã§æé«ã®ã©ã€ãã©ãªã¯ãRStudio
reticulate
å ¬åŒéçºã§ãã ãã®äžã®çæã¯ãŸã 衚瀺ãããŠããŸããã ããããå©ç¹ã¯ååã§ãïŒã¢ã¯ãã£ããªãµããŒããæ確ã§äŸ¿å©ãªããã¥ã¡ã³ããã¹ã¯ãªããããã³ãšã©ãŒã®çµæã®ã³ã³ãœãŒã«ãžã®å³æåºåããªããžã§ã¯ãã®ç°¡åãªè»¢éïŒã¡ã€ã³ãªããžã§ã¯ãã¯æ¥ä»ãã¬ãŒã ã§ãïŒã ç©æ¥µçãªãµããŒãã«é¢ããŠãç§ã¯å人çãªçµéšããäŸãæããŸããstackoverflowãšgithub / issuesã§è³ªåã«çããå¹³åé床ã¯çŽ1åã§ãã åäœããã«ã¯ããã¥ãŒããªã¢ã«ããæ§æãåŠç¿ããåã ã®pythonã¢ãžã¥ãŒã«ãæ¥ç¶ããŠé¢æ°ãèšè¿°ã§ããŸãã ãŸãã¯ã
py_run
é¢æ°ãä»ããŠPythonã§åå¥ã®ã³ãŒããå®è¡ããŸãã RããPythonã¹ã¯ãªãããç°¡åã«å®è¡ããå¿ èŠãªåŒæ°ãæž¡ããŠããã¹ãŠã®ã¹ã¯ãªããåºåãå«ããªããžã§ã¯ããååŸã§ããŸãã
å質ã®2çªç®ã¯ã
rPython
ã©ã€ãã©ãªã§ãã äž»ãªå©ç¹ã¯ãæ§æãåçŽã§ããããšã§ãã ããŒã ã¯4ã€ã ãã§ãRãšPythonã䜿çšãããŠã£ã¶ãŒãã§ãã ããã¥ã¡ã³ãã¯é ããããšããããŸããããã¹ãŠãæ確ã«ãç°¡åã«ããããŠç°¡åã«è¿°ã¹ãããŠããŸãã äž»ãªæ¬ ç¹ã¯ãããŒã¿ãã¬ãŒã éä¿¡ã®æ²ç·å®è£ ã§ãã RãšPythonã®äž¡æ¹ã§ãæž¡ããããªããžã§ã¯ããããŒãã«ã«ãªãããã«è¿œå ã®æé ãå¿ èŠã§ãã 2çªç®ã®éèŠãªæ¬ ç¹ã¯ãé¢æ°ã®çµæãã³ã³ãœãŒã«ã«åºåã§ããªãããšã§ãã RããçŽæ¥Rããäœããã®pythonã³ãã³ããå®è¡ãããšãæ£åžžã«å®è¡ããããã©ãããããã«ç解ã§ããªããªããŸãã ããã¥ã¡ã³ãã«ããPythonã³ãŒãã®å®è¡çµæã確èªããã«ã¯ãPythonèªäœã«ã¢ã¯ã»ã¹ããŠç¢ºèªããå¿ èŠããããšããèè ããã®è¯ãäžç¯ããããŸããã Windowsããã®ããã±ãŒãžã®æäœã¯ãèŠçãéããŠã®ã¿å¯èœã§ãããå¯èœã§ãã 䟿å©ãªãªã³ã¯ã¯è¡šã«ãããŸãã
Rcpp
ã©ã€ãã©ãªã§3äœã ããã¯å®éã«ã¯éåžžã«è¯ããªãã·ã§ã³ã§ãã ååãšããŠãC ++ã䜿çšããŠRã§å®è£ ããããã®ã¯ãå®å®ããŠãå¹ççãã€è¿ éã«åäœããŸãã ãããããããç解ããã«ã¯æéãããããŸãã ãã®ããããªã¹ãã®æåŸã«ç€ºãããŠããŸãã
è¡šã®å€ã§ã RSPythonã«èšåã§ããŸãã ã¢ã€ãã¢ã¯è¯ãã£ã-åäžã®ããžãã¯ãšæ§æãåããäž¡åŽã®åäžãã©ãããã©ãŒã -ããããå®è£ ã¯å€±æããŸããã ãã®ããã±ãŒãžã¯2005幎以éãµããŒããããŠããŸãããäžè¬çã«ã¯ãã¹ãã£ãã¯ã䜿çšããŠå€ãããŒãžã§ã³ãèµ·åããã³èµ·åã§ããŸãã
å³æžé€š | ã³ã¡ã³ã |
---|---|
ç¶²ç¶ | -åªããããã¥ã¡ã³ã
-掻çºãªéçºïŒ2016幎8æ以éïŒ -ããžãã¯æ©èœ |
rPython | -JSONãä»ããããŒã¿è»¢é
-éæ¥çãªããŒãã«è»¢é - åªããããã¥ã¡ã³ã -Windowsã®åŒ±ããµããŒã -ãã°ãã°ã¢ãã³ã³ãããèœã¡ã |
Rcpp | -C ++çµç±ïŒ Boost.Pythonããã³Rcpp ïŒ
-ç¹å®ã®ã¹ãã«ãå¿ èŠ è¯ãäŸã§ã |
以äžã®æãäžè¬çãª2ã€ã®ã©ã€ãã©ãªã®è©³çŽ°ãªäœ¿çšäŸã§ãã
PythonãšRã®ã€ã³ã¿ãŒãã§ãŒã¹ïŒrpy2
ç°¡åã«ããããã«ãæåã®äŸã§æå®ãããRã¹ã¯ãªãã
max.R
from rpy2.robjects import pandas2ri # loading rpy2 from rpy2.robjects import r pandas2ri.activate() # activating pandas module df_iris_py = pandas2ri.ri2py(r['iris']) # from r data frame to pandas df_iris_r = pandas2ri.py2ri(df_iris_py) # from pandas to r data frame plotFunc = r(""" library(ggplot2) function(df){ p <- ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + geom_point(aes(color = Species)) print(p) ggsave('iris_plot.pdf', plot = p, width = 6.5, height = 5.5) } """) # ggplot2 example gr = importr('grDevices') # necessary to shut the graph off plotFunc(df_iris_r) gr.dev_off()
RããPythonãžã®ã€ã³ã¿ãŒãã§ãŒã¹ïŒç¶²ç¶
ç°¡åã«ããããã«ãæåã®äŸã§æå®ãããŠããPythonã¹ã¯ãªãã
ãŸãã
splitstr.py
ãŸãã
library(reticulate) # aliasing the main module py <- import_main() # set parameters for Python directly from R session py$pattern <- "---" py$string = "3523462---12413415---4577678---7967956---5456439" # run splitstr.py from the slide 11 result <- py_run_file('splitstr.py') # read Python script result in R result$ans # [1] "3523462" "12413415" "4577678" "7967956" "5456439"
ãŸãšãããš
ã¡ãªãã
- æè»ã§ã€ã³ã¿ã©ã¯ãã£ããªæ¹æ³
- ã©ã³ãã ã¢ã¯ã»ã¹ã¡ã¢ãªã®ãã¬ãŒã ã¯ãŒã¯å ã§ã®ãªããžã§ã¯ãã®é«éçžäºè»¢é
çæ
- ãã¥ãŒããªã¢ã«ãèªãå¿ èŠããããŸãïŒ
- ãªããžã§ã¯ãã®æ¯èŒå¯èœæ§ã®åŸ®åŠããšèšèªéã§ã®è»¢éæ¹æ³
- 倧éã®ããŒã¿ã転éããããšãé£ããå ŽåããããŸãã
- 匱ãWindowsãµããŒã
- ã©ã€ãã©ãªããŒãžã§ã³éã®äžå®å®æ§
ãã®ä»ã®ã¢ãããŒã
å¥ã®ã«ããŽãªãšããŠãèšèªãçµåããããã®ããã€ãã®æ¹æ³ãã©ãããããã®ç¹å¥ãªæ©èœãšåã ã®ãã©ãããã©ãŒã ã䜿çšããããšæããŸãã 以äžã®ãªã³ã¯ã®ã»ãšãã©ã¯å®çšçãªäŸã§ããããšã«æ³šæããŠãã ããã
ã©ããããããéžæãããšãã¯ã次ã䜿çšã§ããŸãã
- åè¿°ã®rpy2ã«å ããŠãå€å
žçãªjupyterããã³
R majic
æ§æã äžè¬çã«ã¯ç°¡åã§ãããç¹°ãè¿ããŸãããæ§æã®åŠç¿ã«ã¯å°ãæéããããå¿ èŠããããŸãã å¥ã®ãªãã·ã§ã³ïŒIRKernel
ã€ã³ã¹ããŒã«ãIRKernel
ã ãã ãããã®å Žåãã«ãŒãã«ãåå¥ã«å®è¡ãããã£ã¹ã¯ãžã®æžã蟌ã¿ãä»ããŠãã¡ã€ã«ã転éããããšããã§ããŸããã - RããŒã æ¢ã«è¿°ã¹ã
reticulate
ã©ã€ãã©ãªãã€ã³ã¹ããŒã«ããã©ãããããã®åã»ã«ã«äœæããèšèªãæå®ããã ãã§ååã§ãã 䟿å©ãªããšïŒ - Apache Zeppelinã 圌ãã¯ããã䟡å€ãããã䜿çšããã®ã«ã䟿å©ã ãšèšããŸã ã
çŽ æŽãããBeaker Notebooksãããžã§ã¯ãããããJupyterãšZeppelinã®äž¡æ¹ã«äŒŒãã€ã³ã¿ãŒãã§ãŒã¹ã§èšèªéã移åããã®ã«éåžžã«äŸ¿å©ã§ããã ã€ã³ã¡ã¢ãªãªããžã§ã¯ãã転éããããã«ãèè ã¯å¥ã®
beaker
ã©ã€ãã©ãªãäœæããŸããã ããã«ãçµæãããã«ïŒäžè¬ã«ïŒå ¬éã§ããŸãã ããããäœããã®çç±ã§ãããããã¹ãŠã¯ãã¯ãååšãããå€ãåºçç©ãåé€ãããŸã-éçºè ã¯BeakerXãããžã§ã¯ãã«æ³šåããŸããã
RãšPythonãçµã¿åãããããšãå¯èœã«ããç¹å¥ãªãœãããŠã§ã¢ã®äžã§ã¯ã匷調衚瀺ããå¿ èŠããããŸãã
- åªãããªãŒãã³ãœãŒã¹H2Oãã©ãããã©ãŒã ã補åã¯ã®ããã®å¥ã ã®ã©ã€ãã©ãªã³ãã¯ã¿ãå¿ èŠãšPythonã®ããšã®ããã«Rã
- SASæ©èœ
- Cloudera
æ¡åŒµäŸ
èšäºã®æåŸã§ãRãšPythonã䜿çšãããšäŸ¿å©ãªå°ããªç 究åé¡ã解決ãã詳现ãªäŸãåæããããšæããŸããã¿ã¹ã¯ã
èšå®ãããŠãããšä»®å®ããŸãïŒ2013幎以æ¥ãéèæ¿çã¬ãžãŒã ãšããŠã€ã³ãã¬ãŒã·ã§ã³ã¿ãŒã²ãã£ã³ã°ïŒãŸãã¯é¡äŒŒç©ïŒãå®è£ ããŠããåœã®ã€ã³ãã¬çãšçµæžæé·çãæ¯èŒãã-ãã®å¶åºŠã®ãã·ã¢ãžã®å°å ¥ã®æŠç®ã§ãã
åé¡ãè¿ éã«è§£æ±ºããå¿ èŠããããŸãããPythonã®ã¿ã§é«éèªã¿èŸŒã¿ãè¡ããRã§åŠçããã³èŠèŠåããããšãèŠããŠããŸãã
ãããã£ãŠãæãæ¯ã£ãŠRããŒãããã¯ãéå§ããæäžäœã»ã«ã«ãpythonããšæžã蟌ã¿ãäžçéè¡ã®Webãµã€ãããããŒã¿ãããŠã³ããŒãããŸããããŒã¿ã¯CSVçµç±ã§éä¿¡ãããŸãã
PythonïŒäžçéè¡ã®Webãµã€ãããããŒã¿ãããŒããã
import pandas as pd import wbdata as wd # define a period of time start_year = 2013 end_year = 2017 # list of countries under inflation targeting monetary policy regime countries = ['AM', 'AU', 'AT', 'BE', 'BG', 'BR', 'CA', 'CH', 'CL', 'CO', 'CY', 'CZ', 'DE', 'DK', 'XC', 'ES', 'EE', 'FI', 'FR', 'GB', 'GR', 'HU', 'IN', 'IE', 'IS', 'IL', 'IT', 'JM', 'JP', 'KR', 'LK', 'LT', 'LU', 'LV', 'MA', 'MD', 'MX', 'MT', 'MY', 'NL', 'NO', 'NZ', 'PK', 'PE', 'PH', 'PL', 'PT', 'RO', 'RU', 'SG', 'SK', 'SI', 'SE', 'TH', 'TR', 'US', 'ZA'] # set dictionary for wbdata inflation = {'FP.CPI.TOTL.ZG': 'CPI_annual', 'NY.GDP.MKTP.KD.ZG': 'GDP_annual'} # download wb data df = wd.get_dataframe(inflation, country = countries, data_date = (pd.datetime(start_year, 1, 1), pd.datetime(end_year, 1, 1))) print(df.head()) df.to_csv('WB_data.csv', index = True)
次ã«ãããŒã¿ã¯Rã§ååŠçãããŸãïŒããŸããŸãªåœã®ã€ã³ãã¬ã®åºããïŒæå°/æ倧/å¹³åïŒããã³çµæžæé·ã®å¹³åçïŒå®è³ªGDPæé·çïŒããŸããäžéšã®åœã®ååãããçãååã«å€æŽããŸããããã«ãããåŸã§ã¬ã³ããªã³ã°ãããããªããŸãã
RïŒããŒã¿ã®ååŠç
library(tidyverse) library(data.table) library(DT) # get df with python results cpi <- fread('WB_data.csv') cpi <- cpi %>% group_by(country) %>% summarize(cpi_av = mean(CPI_annual), cpi_max = max(CPI_annual), cpi_min = min(CPI_annual), gdp_av = mean(GDP_annual)) %>% ungroup cpi <- cpi %>% mutate(country = replace(country, country %in% c('Czech Republic', 'Korea, Rep.', 'Philippines', 'Russian Federation', 'Singapore', 'Switzerland', 'Thailand', 'United Kingdom', 'United States'), c('Czech', 'Korea', 'Phil', 'Russia', 'Singap', 'Switz', 'Thai', 'UK', 'US')), gdp_sign = ifelse(gdp_av > 0, 'Positive', 'Negative'), gdp_sign = factor(gdp_sign, levels = c('Positive', 'Negative')), country = fct_reorder(country, gdp_av), gdp_av = abs(gdp_av), coord = rep(ceiling(max(cpi_max)) + 2, dim(cpi)[1]) ) print(head(data.frame(cpi)))
次ã«ãå°ããªã³ãŒããšRã䜿çšããŠãèªã¿ããã楜ãããã£ãŒããäœæããã€ã³ãã¬ã¿ãŒã²ãã£ã³ã°ã¢ãŒãã䜿çšããåœã®ã€ã³ãã¬ãšGDPã®æ¯èŒã«é¢ããå ã®è³ªåã«çããããšãã§ããŸãã
RïŒèŠèŠå
library(viridis) library(scales) ggplot(cpi, aes(country, y = cpi_av)) + geom_linerange(aes(x = country, y = cpi_av, ymin = cpi_min, ymax = cpi_max, colour = cpi_av), size = 1.8, alpha = 0.9) + geom_point(aes(x = country, y = coord, size = gdp_av, shape = gdp_sign), alpha = 0.5) + scale_size_area(max_size = 8) + scale_colour_viridis() + guides(size = guide_legend(title = 'Average annual\nGDP growth, %', title.theme = element_text(size = 7, angle = 0)), shape = guide_legend(title = 'Sign of\nGDP growth, %', title.theme = element_text(size = 7, angle = 0)), colour = guide_legend(title = 'Average\nannual CPI, %', title.theme = element_text(size = 7, angle = 0))) + ylim(floor(min(cpi$cpi_min)) - 2, ceiling(max(cpi$cpi_max)) + 2) + labs(title = 'Average Inflation and GDP Rates in Inflation Targeting Countries', subtitle = paste0('For the period 2013-2017'), x = NULL, y = NULL) + coord_polar() + theme_bw() + theme(legend.position = 'right', panel.border = element_blank(), axis.text.x = element_text(colour = '#442D25', size = 6, angle = 21, vjust = 1)) ggsave('IT_countries_2013_2017.png', width = 11, height = 5.7)

極座æšç³»ã®çµæã®ã°ã©ãã¯ã2013幎ãã2017幎ãŸã§ã®ã€ã³ãã¬å€ã®åºãããšãGDPã®å¹³åå€ïŒã€ã³ãã¬çïŒã瀺ããŠããŸããåã¯æ£ã®GDPæé·çãæå³ããäžè§åœ¢ã¯è² ã®GDPæé·çãæå³ããŸãã
å šäœãšããŠããã®æ°åã¯ãä»ã®åœãšæ¯èŒãããã·ã¢ã®ã€ã³ãã¬æšçå¶åºŠã®æåã«ã€ããŠããã€ãã®äºåçãªçµè«ãåŒãåºãããšãå¯èœã«ããŸããããããããã¯ãã®èšäºã®ç¯å²å€ã§ããèå³ãããã°ããããã¯ã«é¢ããããŸããŸãªè³æãžã®ãªã³ã¯ãæäŸã§ããŸãã
çµè«
- RãšPythonãçµã¿åãããããšãå¯èœã§ãããå¿
èŠã§ãïŒ
ç¹ã«ç 究ããŒã¿ã®åæãšãããã¿ã€ãã³ã°çš - ãããžã§ã¯ãã®ç®çã«åºã¥ããŠãçµã¿åããæ¹æ³ã®éžæã«æ³šæããŠãã ããã
- ã³ãã³ãã©ã€ã³ããŒã«ïŒã·ã³ãã«ã§ãããããããééããªãæ©èœããŸãã
- !
- feather!
- Interfacing R and Python: , .
- â , .
- :
rpy2
reticulate
.
- . !