ããã«ã¡ã¯ãHabrïŒ ãã®åé¡ãããè¯ãäŒçµ±ãå§ãŸããŸãããã£ã³ãã«#article_essenceã®Open Data Scienceã³ãã¥ããã£ã®ã¡ã³ããŒããã®ç§åŠèšäºã®ã¬ãã¥ãŒãæ¯æçºè¡ãããŸãã 誰ãããæ©ãããããåãåãããå Žåã¯ã ODSã³ãã¥ããã£ã«åå ããŠãã ããïŒ
èšäºã¯ãå人çãªèå³ããããŸãã¯é²è¡äžã®ã³ã³ãã¹ãã«è¿ãããã«éžæãããŸãã ããªããããªãã®èšäºãæäŸãããå ŽåããŸãã¯ããªããåžæãæã£ãŠããå Žå-ã³ã¡ã³ããæžãã ãã§ãç§ãã¡ã¯å°æ¥çã«ãã¹ãŠãèæ
®ã«å
¥ããããšããŸãã
ä»æ¥ã®èšäºïŒ
- ãã€ãºã«ãã£ããããããŸãã¯äœãããªãïŒåžå Žã§ã®æ©æ¢°åŠç¿
- 翻蚳ã§åŠãã ïŒæèåãããåèªãã¯ãã«
- AIã§ã¢ãã¡ãã£ã©ã¯ã¿ãŒãäœæããŸãïŒ
- LiveMapsïŒå°å³ç»åãã€ã³ã¿ã©ã¯ãã£ããªå°å³ã«å€æ
- ã©ã³ãã æ¶å»ããŒã¿ã®å¢åŒ·
- YellowFinãšéåé調æŽã®èžè¡
- æªéã¯ãã³ãŒããŒã®äžã«ãããŸã
- Generic Data Augmentationã䜿çšãã深局åŠç¿ã®æ¹å
- å¹ççãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®éã¿ãšæ¥ç¶ã®äž¡æ¹ãåŠç¿ãã
- å¯ãªç©äœæ€åºã®ããã®çŠç¹æ倱
- è£çŠãªå®ç©ãåããïŒéžæçå ±å埮調æŽã«ãããã£ãŒããã©ã³ã¹ãã¡ãŒåŠç¿
- ãã£ãŒããããã¯ãŒã¯ã®é«éé©å¿ã®ããã®ã¢ãã«ã«ãšããããªãã¡ã¿åŠç¿
1.ãã€ãºã«åãããããŸãã¯äœãããªãïŒåžå Žã§ã®æ©æ¢°åŠç¿
ãªãªãžãã«èšäº
æçš¿è
ïŒkt {at} ut {dot} ee
ããã¯ãéèåžå Žããã£ãã©ãŒãªã³ã°ã«ãã£ãŠäºæž¬ãããèšäºã®ã¬ãã¥ãŒã§ãã æçš¿ã®èè ïŒä»¥é-ZHDïŒã¯ã ãã®èšäºããã³é¡äŒŒã®èšäºã®æ¬¡ã®æçœãªãã³ã»ã³ã¹ãææããŠããŸãã
- ãã¹ãŠã®å®éšããæ倧å€ãååŸããæ¹æ³ã«ãã粟床ã€ã³ãžã±ãŒã¿ã®é åã ããã©ããããäžå€®å€ã¯ã©ã³ãã ãªäºæž¬ã«å¯Ÿå¿ããŠããŸãã
- çŸåšãŸã£ããååŒãããŠããªãïŒã€ãŸããäžå®ã®äŸ¡æ Œãæã£ãŠããïŒååã§åŸããããè¯ãçµæãã«ã€ããŠèªæ ¢ããŸãã äžè¬çã«ãZHDã¯ãã©ã³ãã ãªäºæž¬å€æ°ã§ã¯ãªãã 売買æŠç¥ãšååŒã¢ãã«ãæ¯èŒããããšãæšå¥šããŸãã
- èè ã¯ãååŒã«ææ°æããããããéå»5åéã®æé«å€ãšæäœå€ã®å¹³åã«çããäŸ¡æ Œã§ååŒãå®è¡ã§ãããšä»®å®ããŠãæŠç¥ãããµããããŸãã ãã®ãããã·ãã¥ã¬ãŒã·ã§ã³ã§ã¯ãæé«ã®å©çãæãæµåæ§ã®äœã楜åšããåŸãããŸãïŒå®éã«ã¯åžžã«å¹³åäŸ¡æ Œ5åã§è²©å£²ãããããšã«ã¯ã»ã©é ãããããã¹ãŠã®å©çã¯æµåæ§ã®äžå ¬å¹³ãªä»®å®ã«ãããç²åŸããããå¯èœæ§ãæãé«ãïŒã ããã«ãèè ã¯ãã¬ãã£ãã«ã·ãã¥ã¬ãŒãããããã¹ãŠã®ããšã«ã€ããŠæ²é»ããŠããå°æ°ã®ãæåãããã¢ãã«ã®ã¿ãèªã£ãŠããŸãã
- èè ã¯ãååŒæã®ååŒæéïŒååŒïŒååŒãããïŒã®å¯Ÿé¢ã»ãã·ã§ã³ãå«ãïŒãèæ ®ããŠããããZHDã«ãããšãããã¯ééã£ãŠããŸãã
2.翻蚳ã§åŠãã ïŒæèåãããåèªãã¯ãã«
â ãªãªãžãã«èšäº
â ã³ãŒã
æçš¿è
ïŒkt {at} ut {dot} ee
ç§ãã¡ã®æ代ã®è»¢å€ã¯æšæºçãªæè¡ã§ãã ImageNetã©ããããã°ã®åçš®ã§èšç·Žãããã°ãªãããååŸãã錻氎ã¿ã€ãã®èªèã®ããã«ã©ããã«ãã蟌ãããšã¯ããã¹ãŠã®æ¯èŠªã®ãã£ãããããŒã®ããã®æšæºããã°ã©ã ã§ãã ã¯ãŒãããã»ãã·ã³ã°ã®ã³ã³ããã¹ãã§ã¯ãéåžžã転éã®åŠç¿ã¯ããã»ã©æ·±ããªããWord2VecãGloVeãªã©ã®æºåãããã¯ãŒããã¯ãã«ã®äœ¿çšã«äŸåããŸãã
ãã®èšäºã®èè ã¯ã次ã®ããã«ããã¹ã転éã®åŠç¿ã1ã¬ãã«ã ãæ·±ããããšãææ¡ããŠããŸãã
- LSTMããŒã¹ã®seq2seqã¢ãã«ïŒãšã³ã³ãŒããŒ+ãã³ãŒããŒã«é ããç¶æ ã«æ³šæãæã£ããã³ãŒããŒïŒããã¬ãŒãã³ã°ããŠãããšãã°è±èªãããã€ãèªã«ç¿»èš³ããŸãã
- ãšã³ã³ãŒããŒã®ã¿ã䜿çšããŸãïŒLSTMã®åçŽãªåœ¢åŒïŒåã蟌ã¿ïŒword_idxsïŒïŒããã®ãšã³ã³ãŒããŒã¯äžé£ã®åèªãLSTMã®é ãããç¶æ ã®ã·ãŒã±ã³ã¹ã«å€æã§ããŸãããããã®é ãããç¶æ ã¯ã©ã³ãã ã«åãããªãããïŒå€æã¢ãã«ã¯ãã®æžè¡°ã§äœ¿çšããŸãïŒãééããªãæçšãªã·ã°ãã«ãããã«ãããŸãã
- 以äžã§ãGloVeã¯ãŒããã¯ãã«ã ãã§ãªãã翻蚳ãšã³ã³ãŒããŒãããããã«æ¥çããã察å¿ããLSTMé ããã¯ãã«ïŒã³ã³ããã¹ããã¯ãã«ãCoVeãšåŒã³ãŸãïŒã«ãã£ãŒãããä»ã®ããã¹ãã¢ãã«ãæ§ç¯ããŸãããã
ããã«ãèè ã¯ãã€ã¢ãã³ã·ã§ã³ãšmaxoutïŒæããã«ã以åã®ä»äºããç©ã¿äžããããïŒã䜿çšããŠãèªæã§ãªãã¢ãã«ãäœæããã©ã³ãã ãªåã蟌ã¿ãGloVeãGloVe + CoVeãGloVe + CoVe + CharNGramEmbeddingsããã£ãŒãããå Žåã®ããŸããŸãªã¿ã¹ã¯ã§ã®åäœãæ¯èŒããŸãã
çµæã«ãããšãCoVeãè¿œå ãããšã裞ã®GloVeã®ç²ŸåºŠãçŽ1ïŒ åäžããããã§ãã å¹æãå°ããå Žåãããã°ãè² ã®å ŽåããããŸãããCoVeã®ä»£ããã«CharNGramãã¢ãã«ã«è¿œå ãããšãåãããã以äžã®å¹æãåŸãããŸãã ãããã«ãããGloVe + CoVe + CharNGramsã®çµã¿åããã¯ãä»ã®ãã¹ãŠã®æ¹æ³ãããæ£ç¢ºã«æ©èœããŸãã
ç§ã®æèŠã§ã¯ãèè ã¯æ¯èŒãããã¿ã€ãã®åã蟌ã¿ïŒGloVe察CoVeïŒã®äžã«æžè¡°ãåãããã£ãããšæ§ç¯ãããã¢ãã«ãå°ç¡ãã«ãããšããäºå®ã«ãããCoVeãŠãŒãã£ãªãã£å¹æã®æž¬å®ã¯é床ã«ãããããããŸã説åŸåããªãããšãå€æããŸããã ãã£ãšãå®éšå®€ãã®æž¬å®ãèŠããã§ãã
3. AIã䜿çšããŠã¢ãã¡ãã£ã©ã¯ã¿ãŒãäœæããŸãã
â ãªãªãžãã«èšäº
â ãŠã§ããµã€ã
æçš¿è
ïŒkt {at} ut {dot} ee
çµµå³ä»ãã®ããŸããŸãªæ¥æ¬ã®ã²ãŒã ããã¢ãã¡ãã£ã©ã¯ã¿ãŒã®ããããã¡ã€ã«ããåéããGetchuãµã€ãããããŸãã ãããã®åçã¯ããŠã³ããŒãã§ããŸãã
åçã§é¡ãèŠã€ããã«ã¯ãç¹å®ã®ããŒã«ãlbpcascade animefaceãã䜿çšã§ããŸãã ãããã£ãŠãèè ã¯42kã®ã¢ãã¡ã®é¡ãåãåãããã³ã§ä¿®æ£ããæªãäŸã®4ïŒ ãæšãŠãŸããã
ã¢ãã¡åçã®ãç¬é¡ããã髪ã®è²ããªã©ã®ããããã£ãèªèã§ãããç¹å®ã®æ¢è£œã®CNNã¢ãã«Illustration2VecããããŸãã èè ã¯ãç»åã®ãããã¯ã解é€ããããã«ããã䜿çšãããããã«é¢å¿ã®ãã34ã®ã¿ã°ãéžæããŸããã
èè ã¯ããããã¹ãŠDRAGANã«æŒã蟌ãã ïŒKodaliããéåžžã®GANãšã¯ç°ãªããèè ã¯æããã«æ·±ããåçã«åºã¥ããŠããªãïŒã
äžããããå±æ§ã§åçãçæã§ããããã«ããããã«ãèè ã¯ACGANã®å Žåãšåãããã«ããŸãïŒ
- ãžã§ãã¬ãŒã¿ã«ã¯å±æ§ãã¯ãã«ãäŸçµŠãããŸãã
- 圌ãã¯åŒå¥è ã«ãã®ãã¯ãã«ãäºæž¬ãããŸãã
- ããã«ãå€å¥åšãæ£ããã¯ã©ã¹ãæšæž¬ããªãã£ãå²åã«å¿ããŠããžã§ãã¬ãŒã¿ãŒã«çœ°éãç§ãããŸãã
ãžã§ãã¬ãŒã¿ãŒãšãã£ã¹ã¯ãªãããŒã¿ãŒã¯ã©ã¡ãããããªãæ··ä¹±ããé©åœçãªSRResNetã§ãïŒãžã§ãã¬ãŒã¿ãŒã¯16ãããã¯ããã£ã¹ã¯ãªãããŒã¿ãŒã¯10ãããã¯ïŒã èè ã¯ããåŸé ãã«ã ã®èšç®ã«æãŸãããªããããããå ã§çžé¢ãããããããããèå¥åšããèå¥åšå±€ãåé€ããŸããã ç§ã¯ãã®åé¡ãå®å šã«ã¯ç解ããŠããŸããã§ãããã誰ãã«çªç¶æããã«ãªããã©ããã説æããŠãã ããã
ãã¹ãŠã0.0002ããéå§ããŠlrãæžãããŠAdamã«ãã£ãŠãã¬ãŒãã³ã°ãããŸããããã©ã®ãããã®æéãã¯ããŸãæ確ã§ã¯ãããŸããã
webappã®å Žåãäœæè
ã¯WebDNNïŒ https://github.com/mil-tokyo/webdnn ïŒã§ãããã¯ãŒã¯ãå€æãããããã¯ã©ã€ã¢ã³ãã®ãã©ãŠã¶ãŒã§ãã¹ãŠã®ç»åãçŽæ¥çæããŸãïŒïŒïŒã
4. LiveMapsïŒå°å³ç»åãã€ã³ã¿ã©ã¯ãã£ããªå°å³ã«å€æ
â ãªãªãžãã«èšäº
âèšäº-Best Short Paper Awart SIGIR 2017ã®åè³è
æçš¿è
ïŒ zevsone
å°å³ç»åãåæããé¢é£ãããã¥ãŒããŒããæœåºããããã®ãæ ¹æ¬çã«æ°ããã·ã¹ãã ïŒLiveMapsïŒãææ¡ãããŠããŸãã
ãã®ã·ã¹ãã ã§ã¯ãæ€çŽ¢ãšã³ãžã³ã䜿çšããŠååŸããç»åã«æ³šéãä»ããããšãã§ãããŠãŒã¶ãŒã¯ãªã³ã¯ããã©ã£ãŠãèŠã€ãã£ãç»åã«å¯Ÿå¿ããå Žæã®äžå¿ã«ããã€ã³ã¿ã©ã¯ãã£ãããããéããŸãã
LiveMapsã¯ããã€ãã®æ¹æ³ã§æ©èœããŸãã æåã«ãç»åãå°å³ãã©ããã確èªããŸãã
ãã¯ããã®å Žåãã·ã¹ãã ã¯ãã®ç»åã®äœçœ®æ
å ±ãç¹å®ããããšããŸãã å Žæãç¹å®ããããã«ãç»åããæœåºãããããã¹ãããã³èŠèŠæ
å ±ã䜿çšãããŸãã ãã®çµæãã·ã¹ãã ã¯ãç»åã«å¯ŸããŠèšç®ãããå°ççé åã衚瀺ããã€ã³ã¿ã©ã¯ãã£ããªããããäœæããŸãã
äžäœã®äœçœ®ããŒã¿ã»ããã®è©äŸ¡çµæã¯ãã·ã¹ãã ãè¯å¥œãªã«ãã¬ããžãéæããªãããéåžžã«æ£ç¢ºãªã€ã³ã¿ã©ã¯ãã£ãããããæ§ç¯ã§ããããšã瀺ããŠããŸãã
PSãã®ãããªç±ç·ããäŒè°ã§ãã¹ãã·ã§ãŒãããŒããŒè³ãåè³ããããšã¯æåŸ ããŠããŸããã§ããïŒä»å¹Žã®ç«¶äºçžæã®121ã·ã§ãŒãããŒããŒããã¹ãŠã®æ¥çã®å·šäººïŒã
5.ã©ã³ãã æ¶å»ããŒã¿ã®å¢åŒ·
â ãªãªãžãã«èšäº
egor.v.panfilov {at} gmail {dot} comãæçš¿
ãã®èšäºã¯ãç»åå¢åŒ·ã®æãåçŽãªæ¹æ³ã®1ã€ã§ããã©ã³ãã æ¶å»ïŒãã·ã¢èªã§ã¯ã©ã³ãã ãªé·æ¹åœ¢ã®æç»ïŒã®ç 究ã«å°å¿µããŠããŸãã
æ¡åŒµã¯ã4ã€ã®ãã©ã¡ãŒã¿ãŒã§ãã©ã¡ãŒã¿ãŒåãããŸããïŒïŒP_probïŒåç»åã«ããããé©çšãã確çãïŒP_areaïŒé åãµã€ãºïŒé¢ç©æ¯ïŒãïŒP_aspectïŒé åã¢ã¹ãã¯ãæ¯ãïŒP_valueïŒå€ã§æºããããïŒImageNetã®ã©ã³ãã /å¹³å0/255ã
èè ã¯ããã®å¢åŒ·æ¹æ³ã3ã€ã®ã¿ã¹ã¯ã«äžãã圱é¿ãè©äŸ¡ããŸããïŒïŒAïŒãªããžã§ã¯ãã®åé¡ãïŒBïŒãªããžã§ã¯ãã®æ€åºã©å人ã®åèå¥ã
ïŒAïŒ ïŒAlexNetããResNeXtã§çµãã6ã€ã®ã¢ãŒããã¯ãã£ã䜿çšãããŸããã ããŒã¿ã»ãã-CIFAR10 / 100ã æé©ãªãã©ã¡ãŒã¿ãŒå€ã¯æ¬¡ã®ãšããã§ããP_prob= 0.5ãP_aspect =åºãç¯å²ã§ãããã§ããã°1ïŒæ£æ¹åœ¢ïŒã§ã¯ãªããP_area = 0.02-0.4ïŒç»åã®2-40ïŒ ïŒãP_value = ImageNetã§ã©ã³ãã ãŸãã¯å¹³åã0ããã³255ã®å Žåãçµæã¯èããæªåããŸãã ãŸããæ¡åŒµïŒã©ã³ãã ã¯ãããã³ã°ãã©ã³ãã ããªããã³ã°ïŒããã³æ£ååïŒããããã¢ãŠããã©ã³ãã ãã€ãºïŒãä»ã®æ¹æ³ãšæ¯èŒããŸããïŒå¹çãäœäžãããããã«ããã¹ãŠãã©ã³ãã ã¯ãããã³ã°ãã©ã³ãã ããªããã³ã°ãã©ã³ãã æ¶å»ã§ãã ãã®ã¡ãœããã¯ããããããå®è¡ããŸãã äžè¬ã«ããã®æ¹æ³ã¯æã匷åã§ã¯ãããŸããããæé©ãªãã©ã¡ãŒã¿ãŒã䜿çšãããšã1ïŒ ã®ç²ŸåºŠãå®å®ããŠåŸãããŸãïŒ5.5ïŒ -> 4.5ïŒ ïŒã ãŸããéè€ãããªããžã§ã¯ãã«å¯Ÿããåé¡åšã®å ç¢æ§ãåäžãããšæžããŠããŸãïŒyou-dont-sayïŒã
ïŒBïŒ ïŒPASCAL VOC 2007 + 2012ã§Fast-RCNNã䜿çšããŸããã 3ã€ã®ã¹ããŒã ãå®è£ ããŸããïŒIREïŒã€ã¡ãŒãžå¯Ÿå¿ã®ã©ã³ãã æ¶å»ãç²ç®çã«ãŒãåããé åãéžæããŸãïŒãOREïŒãªããžã§ã¯ã察å¿ãããŠã³ãã£ã³ã°ããã¯ã¹ã®äžéšã®ã¿ããŒãåïŒãI + OREïŒäž¡æ¹ïŒ ãããã®æ¹æ³ã®éã«mAPã«å€§ããªéãã¯ãããŸããã çŽç²ãªFast-RCNNãšæ¯èŒãããšãçŽ5ïŒ ïŒVOC07ã§67-> 71ãVOC07 ââ+ 12ã§70-> 75ïŒã A-Fast-RCNNãšåãéã«ãªããŸãã æé©ãªãã©ã¡ãŒã¿ãŒã¯ãP_prob = 0.5ãP_area = 0.02-0.2ïŒ2-20ïŒ ïŒãP_aspect = 0.3-3.33ïŒæšªããã£ãŠããç¶æ ããç«ã£ãŠããç¶æ ãŸã§ïŒã§ãã
ïŒCïŒ ïŒMarket-1501 / DukeMTMC-reID / CUHK03ã§ID-discim.EmbeddingïŒIDEïŒãTriplet NetãSVD-NetïŒãã¹ãŠResNetã«åºã¥ããŠãããImageNetã§äºåã«ãã¬ãŒãã³ã°æžã¿ïŒã䜿çšããŸããã ãã¹ãŠã®ã¢ãã«ããã³ããŒã¿ã»ããã§ãã©ã³ã¯1ã§å°ãªããšã2ïŒ ïŒæ倧8ïŒ ïŒãmAPã§å°ãªããšã3ïŒ ïŒæ倧8ïŒ ïŒãå®å®ããŠå¢å ããŸãã ãã©ã¡ãŒã¿ãŒã¯ïŒBïŒãšåãã§ãã
äžè¬ã«ããã®æ¹æ³ã¯åçŽã§ãããç 究ãšèšäºã¯éåžžã«ç°¡æœã§è©³çŽ°ïŒ10ããŒãžïŒã§ãããå€æ°ã®ã°ã©ããšè¡šããããŸãã äžåœäººã«æºè¶³ããŠãäœãèšããŸããã
6. YellowFinãšéåé調æŽã®èžè¡
â ãªãªãžãã«èšäº
â éåéã«é¢ããè¿œå è³æ
æçš¿è
ïŒ Arech
ãã£ãšåã«èªãã ã®ã§ãéåžžã«éåžžã«è¡šé¢çã§ããäžæ¬¡å ã®å³å¯ã«åžã®äºæ¬¡é¢æ°ã®ç®çã§ãå€å žçãªéåéïŒBoris Polyakã®éåéïŒãææ ®æ·±ãå«ç ããåŸãåŠç¿çãšéåéä¿æ°ãã€ãªãäžå¹³çãã®ãããç¹å®ã®ãå ç¢ãªãé åã«åé¡ãããSGDã¢ã«ãŽãªãºã ã®æéã®åæãä¿èšŒãããŸãã ãããŠããã®ã¹ããŒãã¡ã³ãã¯ãå°ãªããšãããã€ãã®å±æé åã§ãããã€ãã®éåžé¢æ°ã«å¯ŸããŠåççã«äœããã®åœ¢ã§æºããããšãã§ããããšã瀺ãããŸãããããã¯ãäºæ¬¡è¿äŒŒã§å€å°è¿äŒŒã§ããŸãã 次ã«ã以åã®åŸé å€åã®å±¥æŽã®ç¥èã«åºã¥ããŠãäžçåŒã«å¿ èŠãªèª€å·®é¢æ°ã®è¡šé¢ç¹æ§ïŒåŸé åæ£ãäžéšã®ãäžè¬åããããè¡šé¢æ²çãããã³çŸåšã®ç¹ã®2次è¿äŒŒã®æ¥µå°å€ãŸã§ã®è·é¢ïŒãè¿äŒŒãããã¥ãŒããŒYellowFinãã¬ãã·ã¥ããããšã«ããŸããããããã®è¿äŒŒã®ãã¡ãSGDã§äœ¿çšããåŠç¿çãšéåéã®é©åãªå€ãåŸãããŸãã
ãŸãããããã¯ãŒã¯ã®éåæïŒåæ£ïŒãã¬ãŒãã³ã°ã®åé¡ãç 究ããç·ã¯ããã®ãããªæ¹æ³ã®äžè¬åïŒéã«ãŒãYellowFinïŒãææ¡ããŸãããããã¯ããã®ãããªæ¡ä»¶ã§ã®å®éã®å¢ããèšç»ããã倧ããããšãèæ ®ããŠããŸãã
ããããCIFAR10ããã³100ã§ç³ã¿èŸŒã¿110å±€ããã³164å±€ResNetããã¹ãããPTBãTSããã³WSJã§äžéšã®LSTMããã¹ãããŸããã çµæã¯èå³æ·±ãïŒAdamã«æ¯ã¹ãŠx1.18ããx2.8ã®å éïŒãããã€ãã®ããã«ãå®éšãã»ããã¢ããããããã®è³ªåããããŸã-競åä»ç€Ÿã®ä¿æ°ã®å€§ãŸããªéžæã+ emnipãåã¢ãŒããã¯ãã£ã§1åã®å®è¡ã+ãã¬ãŒãã³ã°ã»ããã®çµæã®ã¿ã衚瀺ãããŸã...èŠããã«ãäžçªäžã«å°éãããã®ããããŸã...
ãã®ãããªããšãé¡ã£ãŠããŸã
ç§ã¯ãããèªåã®libinã«ã«ããããããšãèããŠããŸããããèªå·±æ£èŠåãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒSELU + AlphaDropoutïŒã«åºå·ããŸãããããã¯å°ãåã«åãçµãã§ãããããç§ã®æã«å±ããŸã§éåžžã«æçšã§ããã ç§ã¯ãLesagneã®ã¹ã¬ããïŒ https://github.com/Lasagne/Lasagne/issues/856-çµæã®åçŸã«åé¡ããã人ïŒããã©ããŒããŠããŸããäžè¬ã«ãçµæã®åçŸã«é¢ãã詳现æ å ±ãåŸãããããšãæåŸ ããŠããŸãã ã ãã誰ããè©ŠããŠã¿ãã-chocakãå ±æããŠãã ããã
7.æªéã¯ãã³ãŒããŒã®äžã«ãããŸã
â ãªãªãžãã«èšäº
æçš¿è
ïŒ ternaus
åé¡ã¯ããã³ãŒããŒãååšããããŸããŸãªã¢ãŒããã¯ãã£ã«ãšã£ãŠãã©ã®UpSamplingãåªããŠããããç¹ã«ã»ã°ã¡ã³ããŒã·ã§ã³åé¡ãè¶ è§£åãè²ä»ãã深床ãå¢çæ€åºã§å°æ°ç¬¬5äœãäºãå€ãã®äººã®é ãæ©ãŸãããšã§ãã
GoogleãšUCLã®ã¡ã³ããŒã¯æ··ä¹±ããçµéšçã«ã誰ãåªããŠãããã確èªãããã®ããžãã¯ãèŠã€ããããšã«ããèšäºãæžããŸããã
ãã§ãã¯æžã¿-éããããããšãå€æããŸããããããžãã¯ã¯ããŸãèŠããŸããã
ã»ã°ã¡ã³ããŒã·ã§ã³ã®å ŽåïŒ
[1]転眮å€æ=ã¢ãããµã³ããªã³ã°+å€æã§ããã誰ããUnetã®èŠç¯ã§æ¿ãã䜿çšããŠããŸãã
[2]ã¹ããããããæ¥ç¶ã®ãã£ã¹ããã€ãŸããSegNet => Unetå€æã¯ãã³ã³ã¯ãªãŒãã®ãã£ã¹ãã匷åããŸãã ããã¯çŽæçã§ãããããã«ã¯æ°åããããŸãã
[3]ãã©ã³ã¹ããŒãºãããSeparable Transposedã®ããã«èŠããŸãããã»ã°ã¡ã³ããŒã·ã§ã³ã®ãªãã·ã§ã³ãå°ãªãæ¹ãããŸãæ©èœããŸãã #proj_carsã®äººã
ã«ããããã§ãã¯ããŠã»ããã
[4]ã»ã°ã¡ã³ããŒã·ã§ã³ã«é¢ãã圌ããææ¡ããç¬åµçãªåç·åœ¢å æ³ã¢ãããµã³ããªã³ã°ã¯ããããã[3]ã®ããã«æ©èœããŸãã ããããããã¯#proj_cars checkããããŒã ã«ãåããããŠããŸã
[5]ãããã¯çè«çã«ã¯äœããè¿œå ããå¯èœæ§ã®ããæ®ãã®æ¥ç¶ãã©ããã«æããŸãããæ£ç¢ºã«ã¯ããŸãæ確ã§ã¯ãªããéåžžã«äžç¢ºå®ã§åžžã«ã§ã¯ãªãè¿œå ããŸãã
ã»ã°ã¡ã³ããŒã·ã§ã³ã¿ã¹ã¯ã®å Žåãresnet 50ãããŒã¹ãšããŠäœ¿çšããäžãããã³ãŒããŒãè¿œå ããŸãã
ã€ã³ã¹ã¿ã³ã¹å¢çæ€åºã®åé¡ã«ã€ããŠã¯ãããŒã¯ã¢ããã¢ã«ãŽãªãºã ã®ãªãŒããŒãã£ãããå°ãªããããå€ãã®æ°å€ãåŸãããã¡ããªãã¯ãéžæããããšã«ããŸããã
ã€ãŸãDuring the evaluation, predicted contour pixels within three from ground truth pixels are assumed to be correct
ã ããã«ããããã¹ãŠã®ãã¯ã»ã«ãéèŠãªã¿ã¹ã¯ã«ãã¹ãŠãã©ã®ããã«è»¢éãããããšããçåãããã«çããŸãã ïŒããã§ã¯ã1ãã¯ã»ã«ã®åãã®ãã§ã³ã¹ãèŠã€ããããã®Kostinã®ãµãã©ã€ãããªãã¯ãšã人ã
ãè»ã®åé¡ã§åœå¢ã§+ -1ãã¯ã»ã«ã®ããã«æŠã£ãŠããæ¹æ³ãæãåºããŸãïŒ
[6]ãã¬ãŒãã³ã°ãããã¹ãŠã®ãããã¯ãŒã¯ã§ãã¹ã±ãŒã«ã¯0.0002ã®ãªãŒããŒã®L2æ£ååã䜿çšããŸã
Karpatyã¯ã以åããå®å®ããåæã®ããã«ãããåžžã«è¡ããšèšã£ãŠããããã§ãã ïŒç§ã¯ãããè©ŠããŠã¿ãå¿
èŠããããŸãã誰ãããããè¡ãããããç®ç«ã£ãäœããäžãããªããã¹ã¬ããã§ããã«ã€ããŠè©±ãã®ãããã§ãããïŒ
èŠçŽïŒ
[1]誰ãããã€ãããè¯ã質åãããããçããªãã£ãã
[2]圌ãã¯ãã¢ãããµã³ããªã³ã°ãè¡ãå¥ã®æ¹æ³ãææ¡ããŸãããããã¯ä»ã®æ¹æ³ãšåãããã«æ©èœããŸãã
[3]圌ãã¯ãã¹ããããããæ¥ç¶ã確å®ã«åœ¹ç«ã€ããšããããŠæã®äœçžã«å¿ããŠæ®çããããšã確èªããŸããã
GridProã#proj_carsã§èšãããšã1ãæåŸ ã£ãŠããŸãã
8. Generic Data Augmentationã䜿çšãã深局åŠç¿ã®æ¹å
â ãªãªãžãã«èšäº
egor.v.panfilov {at} gmail {dot} comãæçš¿
ãšãã°ã©ãïŒäžåœã®æ å ã¯ãé»å€§éžã§ã誰ã«ã§ãåºæ²¡ããŸãã 圌ãã¯ãŸã è¯ãã³ã³ãã¥ãŒã¿ãŒãæäŸããŠããªãã®ã¯äºå®ã§ããããã«ããŠã¹ã¯ç§ã«ãããã§ç¶ããŸãããšæžãããã«åœããŸããã
èè ã¯ãç»ååé¡åé¡ã«é¢ããç»åå¢åŒ·æ¹æ³ã®ãã³ãããŒã¯ãå®æœããããŸããŸãªã±ãŒã¹ã§ã®äœ¿çšã«é¢ããæšå¥šäºé ãéçºããããšããŸããã æåã®è¿äŒŒã§ã¯ããããã®ã¡ãœããã¯2ã€ã®ã«ããŽãªã«åé¡ãããŸãïŒGenericïŒäžè¬çã«é©çšå¯èœïŒããã³ComplexïŒãã¡ã€ã³æ å ±/çæã䜿çšïŒã ãã®èšäºã¯ãžã§ããªãã¯ã®ã¿ã察象ãšããŠããŸãã
ãã®èšäºã®ãã¹ãŠã®å®éšã¯ãZFNetïŒããã©ZFNetã®æé©ãªãã¬ãŒãã³ã°æ¹æ³ã«é¢ããèšäºã®æçãªéšåã®ååïŒã䜿çšããŠãCaltech-101ïŒã¯ã©ã¹101ã9144ç»åïŒã§è¡ãããŸããã DL4jã䜿çšããŠ30ã®æ代ãæããŸããã èæ ®ãããå¢åŒ·æ¹æ³ïŒïŒ1ïŒå¢åŒ·ãªããïŒ2-4ïŒå¹ŸäœåŠçïŒæ°Žå¹³å転ãå転ïŒ-30床ããã³+ 30床ïŒãããªãã³ã°ïŒ4ã³ãŒããŒããªãã³ã°ïŒãïŒ5-7ïŒãã©ãã¡ããªãã¯ïŒè²ã®ãããããšããžåŒ·èª¿ïŒSobelãã£ã«ã¿ãŒã®çµæãç»åã«è¿œå ïŒãPCAã空æ³ïŒç»åã®äž»æåã匷åïŒã
çµæïŒããŒã¹ã©ã€ã³ã«å¯ŸããŠïŒtop1 / top5ïŒ48.1ïŒ / 64.5ïŒ ïŒïŒaïŒããªããã³ã°ã¯+ 1/2ïŒ ãäžãããã粟床ã®åºãããå¢å ããããïŒbïŒå転ã¯+ 2ïŒ ãäžãããïŒcïŒããªãã³ã°ã¯+ 14ïŒ ãäžãããïŒ dïŒã«ã©ãŒãžãã¿ãŒ+ 1.5 / 2.5ïŒ ãïŒdeïŒãšããžåŒ·èª¿ããã³+ 1/2ïŒ ã®æŽŸæãªPCAã ããªã㡠幟äœåŠçãªæ¹æ³ã®äžã§ã¯ããªãã³ã°ãå ã«ããã枬å çãªæ¹æ³ã®äžã«ã¯è²ã®ãžãã¿ãŒããããŸãã çµè«ãšããŠãäœè ã¯ãããªãã³ã°ã®å¢åŒ·äžã®ç²ŸåºŠã®å€§å¹ ãªæ¹åã¯ãããŒã¿ã»ãããå ã®4åã§ãããšããäºå®ã«ããå¯èœæ§ããããšæžããŠããŸãïŒãã©ã³ã¹ã¯éåœã§ã¯ãããŸããïŒã ããžãã£ããã-圌ãã¯ã¢ãã«ã®ç²ŸåºŠãè©äŸ¡ãããšãã5åã®äº€å·®æ€èšŒãå¿ããŸããã§ããã ãªããããã®å¢åŒ·æ¹æ³ïŒç¹ã«äººæ°ã®ãããã®ãå«ãïŒã®äžããå ·äœçã«éžã°ããã®ãã次ã®èšäºã§æããã«ãªããŸãã
9.å¹ççãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®éã¿ãšæ¥ç¶ã®äž¡æ¹ãåŠç¿ãã
â ãªãªãžãã«èšäº
egor.v.panfilov {at} gmail {dot} comãæçš¿
ãã®èšäºã§ã¯ãææ°ã®DNNã¢ãŒããã¯ãã£ïŒç¹ã«CNNïŒã«ãããªãœãŒã¹æ¶è²»ã®åé¡ãèæ ®ããŠããŸãã äž»ãªåé¡ã¯ãåçã¡ã¢ãªãžã®ã¢ã¯ã»ã¹ã§ãã ããšãã°ã20 Hzã§10åã®æ¥ç¶ãããå¹²æžãããã¯ãŒã¯ã¯ãçŽ13 Wãæ¶è²»ããŸãã
èè ã¯ãã¢ã¯ãã£ããªãã¥ãŒãã³ãšãããã¯ãŒã¯æ¥ç¶ã®æ°ãæžããããã®åªå®æ¹æ³ãææ¡ããŠããŸãã ïŒ1ïŒå®å šãªããŒã¿ã»ããã§ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããïŒ2ïŒç¹å®ã®ã¬ãã«ä»¥äžã®éã¿ã§éä¿¡ããã¹ã¯ããïŒ3ïŒå®å šãªããŒã¿ã»ããã§æ®ãã®æ¥ç¶ãåãã¬ãŒãã³ã°ããŸãã ã¢ã°ã¬ãã·ãïŒ1ã€ã®ã¢ãããŒãã®å ŽåïŒãã«ãŒãã³ã°ã®çµæã¯ãããã«æªãïŒããšãã°ãImageNetäžã®AlexNetã®å Žåã5å察9åïŒãããã¹ãããïŒ2ïŒããã³ïŒ3ïŒãæ°åç¹°ãè¿ãããšãã§ããŸãã ããªãã¯ïŒéã¿ã®L2æ£èŠåã䜿çšããŠãåãã¬ãŒãã³ã°äžã®ããããã¢ãŠããæžãããåŠç¿çãäœäžãããCONVã¬ã€ã€ãŒãšFCã¬ã€ã€ãŒãå¥ã ã«ããªã«ããŠåãã¬ãŒãã³ã°ããã¹ãããïŒ2ïŒã®çµæã«åŸã£ãŠãããïŒéæ¥ç¶ïŒãã¥ãŒãã³ãç Žæ£ããŸã
å®éšã¯ãMnetistã®Lenet-300-100ãLenet-5ãããã¯ãŒã¯ãAlexNetãImageNetã®VGG-16ã䜿çšããŠCaffeã§å®è¡ãããŸããã MNISTïŒãŠã§ã€ããšFLOPã®æ°ã12å ã«æžããããã«ãŒãã³ã°ãã¢ãã³ã·ã§ã³ã¡ã«ããºã ã®ç¹æ§ã瀺ããŠããããšãçºèŠããŸããïŒãšããžã§ããã«ã«ããããŸãïŒã ImageNet㧠ïŒAlexNetã¯75æéãã¬ãŒãã³ã°ãã173æéåãã¬ãŒãã³ã°ããVGG-16ã¯5åããŒã«ã¢ããããŠåãã¬ãŒãã³ã°ããŸããã ééã§ã¯ãFLOP'am ã§ãããã9åãš13åã 3.3åãš5åçµãããšãã§ããŸããã èå³æ·±ããããã¡ã€ã«ã¯ããªã³ã¯ãã©ã®ããã«ããŒã«ããããã§ãïŒæåã®CONVã¬ã€ã€ãŒã¯2åæªæºã«å§çž®ããã次ã®CONVã¬ã€ã€ãŒã¯3以äžïŒæ倧12ïŒãé衚瀺FCã¯10-20åãæåŸã®FCã¬ã€ã€ãŒã¯4åã§ãã
çµè«ãšããŠãèè
ã¯ããŸããŸãªãã«ãŒãã³ã°æ¹æ³ã®æ¯èŒçµæãæ瀺ããŸãïŒL1ãL2æ£èŠåãè¿œå ãã¬ãŒãã³ã°ããããªããCONVã«å¿ããŠãFCã«å¿ããŠïŒã èŠããã«ãããªã«ããã«ã¯æ ãããã®ã§ãL1ã§ãããã¯ãŒã¯ãåŠç¿ããã¬ã€ã€ãŒã®ååãåçŽã«æšãŠãããšãã§ããŸãã æ notã§ãªãå Žå-L2ã®ã¿ããã«ãŒãã³ã°ãšåãã¬ãŒãã³ã°ã5åãŸã§ç¹°ãè¿ããŸãã ãããŠæåŸã«ãèè
ãšãšãã«ã¹ã±ãŒã«ããŸã°ããªåœ¢ã§ä¿åãããšããªãŒããŒããããæ倧16ïŒ
ã«ãªããŸãããããã¯ãŒã¯ã10åå°ããå Žåã¯ããã»ã©éèŠã§ã¯ãããŸããã
10.é«å¯åºŠãªããžã§ã¯ãæ€åºã®çŠç¹æ倱
â ãªãªãžãã«èšäº
æçš¿è
ïŒkt {at} ut {dot} ee
ãåç¥ã®ããã«ãæ©æ¢°åŠç¿ã§ã¢ãã«ãæ€çŽ¢ããããã»ã¹ã¯ãç¹å®ã®å®¢èŠ³çæ倱é¢æ°ã®æé©åã«äŸåããŸãã æãåçŽãªæ倱é¢æ°ã¯ããã¬ãŒãã³ã°ã»ããã®ãšã©ãŒã®å²åã§ãããæé©åãé£ãããçµæãçµ±èšçã«æªããããå®éã«ã¯ç°ãªã代çæ倱ã䜿çšããŸãïŒãšã©ãŒå¹³æ¹ã確ç察æ°ããã€ãã¹é床ããã®ææ°ããã³ãžæ倱ãªã©ã ãã¹ãŠã®ä»£çæ倱ã¯å調ãªé¢æ°ã§ããããšã©ãŒå€ã倧ãããªãã»ã©ãšã©ãŒã«ããã«ãã£ã課ããŸãã æ倱ã¯ââãã¿ãŒã²ããå€æ°ã®ååžã®ã¿ã€ããšããŠè§£éã§ããŸãïŒããšãã°ã誀差ã®2ä¹ã¯ã¬ãŠã¹ååžã«å¯Ÿå¿ããŸãïŒã
äœåã®èè ã¯ããã©ãŒã ã®ä»£çæ倱
æ倱ïŒpãyïŒïŒ=-ïŒ1-pïŒ^ã¬ã³ããã°ïŒpïŒy == 1ã®å Žå-p ^ã¬ã³ããã° ïŒ1-pïŒ
䜿çšããã³å ¬éãããããšã¯ãããŸããã ãªãç§ãã¡ã¯ãã®ãããªæ倱ã ãã䜿çšããå¿ èŠããããŸããïŒãããŠæé»ã®ååžã®æå³ã¯äœã§ããïŒèè ã¯ç¥ããŸããããããã¯åœŒãã«ãšã£ãŠã¯ãŒã«ãªããã§ã äœåãªãã©ã¡ãŒã¿ã¬ã³ããããããã®å©ããåããŠããç°¡åããªäŸã®ããã«çœ°éã®éãå€ããããšãã§ããŸãã èè ã¯ããã®æ©èœããçŠç¹æ倱ããšåŒã³ãŸããã
èè ã¯ã1ã€ã®ããŒã¿ã»ãããš1ã€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãã«ãéžæããŸãããããã©ã¡ãŒã¿ãŒå€ã調æŽãããšãéåžžã®ã¯ãã¹ãšã³ããããŒïŒã¯ã©ã¹ã«ãã£ãŠéã¿ä»ããããïŒã®ä»£ããã«ãã®ãããªæ倱ã䜿çšããå Žåã®ãã©ã¹ã®å¹æãçµæã¿ãã«è¡šç€ºãããŸãã å®éãã»ãšãã©ã®èšäºã§ã¯ããªããžã§ã¯ãæ€åºã«RetinaNetã䜿çšããããšãæ€èšããŠããŸãããããã¯æ倱é¢æ°ã®éžæã«ããŸãäŸåããŠããŸããã
ãã®èšäºã¯ããã¹ãŠã®åå¿è ãã¢ã«ãããŒãžã®éãèªãããã«å¿ èŠã§ãã 圌女ã¯é ã®äžã«è¯ãã¢ã€ãã¢ããªããšãã«èª¬åŸåã®ããåºçç©ãæžãæ¹æ³ãå®ç§ã«èª¬æããŸãã
代æ¿æèŠ
ããªãã®æãèŠãŠãã ããïŒç·ã¯æ€åºã§æž¬å®ãããæšæºã®ããªãè€éãªããŒã¿ã»ããã®ãããããåãããã«ããã€ãã¹ã«ïŒä»ã®èª°ããã§ããéãçµãåºãããšãããã®ïŒã®ãªãåçŽãªãããã¯ãŒã¯ãåããæ倱ãé©çšããŠããã«ãã«ãã¹ã±ãŒã«ãªãã®åäžã¢ãã«ã®çµæãåŸãŸããä»ã®ããªãã¯ã¯ããã®ããŒã¿ã»ããã®ä»ã®ãã¹ãŠã®ãã®ãããé«ãã1段éã®ãã¹ãŠã®ãããã¯ãŒã¯ãšãããé«åºŠãª2段éã®ãããã¯ãŒã¯ãå«ãŸããŸãã ãããæ倱ã®åé¡ã§ãããä»ã®äœãã§ã¯ãªãããšã確èªããããã«ã圌ãã¯ä»¥åã«ã¯ãŒã«ã§ãã¡ãã·ã§ããã«ãªãã¯ããã¯ã§ãã£ãä»ã®ãªãã·ã§ã³ãè©ŠããŸãã-ã¯ãã¹ãšã³ããããŒãOHEMã®ãã©ã³ã¹ãåããçµæãç¬èªã«å®å®ããŠé«ãããŸããã ç§ãã¡ã¯èªåã®ãã©ã¡ãŒã¿ãŒãã²ãããæé©ã«æ©èœãããªãã·ã§ã³ãèŠã€ããããã«ãã®çç±ãå°ã説æããããšããŸããïŒ2æªæºã®ã¬ã³ãã¯ããªãæ»ãããªååžãäžãã2ã€ä»¥äžã®çœ°éã¯éåžžã«éããªããŸãïŒ2ã€ã§ãå®éã«ã¯æ£ãããå Žåãããã¯é©ãã¹ãããšã§ãïŒäœåïŒïŒã
ãã¡ããã40ã®ãããã¯ãŒã¯ãªãã·ã§ã³ã100äžã®ãã€ããŒãã©ã¡ãŒã¿ãŒãªãã·ã§ã³ãæ¢ç¥ã®ãã¹ãŠã®ããŒã¿ã»ããã10åã®ã¯ãã¹æ€èšŒã10åæ¯èŒããããšãã§ããŸãããã©ãã ãæéããããããã€åºçã®æºåãã§ããããã€ãç°ãªãã®ãã¢ã€ãã¢ã®ïŒ
ããã§ã¯ãã¹ãŠãç°¡åã§ãã1ã€ã®ã³ã³ããŒãã³ããå€æŽããç¹å®ã®ããŒã¿ã»ããã§SoTAãããåªããçµæãåŸãŸããã çµæã¯ä»ã®äœãã§ã¯ãªããå€åã«ãã£ãŠåŒãèµ·ãããããšç¢ºä¿¡ããŸããã ãã£ã³ã
代æ¿æèŠ
ãããããèšäºãRetinaNetãã¬ãŒã³ããŒã·ã§ã³ãšããŠäœçœ®ä»ããããå Žåãç§ã®æèŠã§ã¯ããŸã£ããç°ãªãæ¹æ³ã§è¡šç€ºãããããšãè¿œå ãã䟡å€ããããŸãã çµå±ã®ãšãããå®éã«ã¯äž»ã«RetinaNetã®äœ¿çšäŸãšããŠæ§ç¯ãããŠããŸãã ãªããããçªç¶æ倱ãšå¥åŠãªã¿ã€ãã«ã«éç¹ã眮ããŠããã®ããç§ã¯å人çã«ç解ããŠããŸããã ãã®æ倱ã«ã€ããŠè¡šæãããè«æã確èªãã客芳çãªæž¬å®å€ã¯ãŸã ãããŸããã
ãã¶ããããšãã°ãRetinaNetã¯ããæ·±å»ãªåœ¢åŒã§ãèè ã®é åºãå€ããŠå ¬éãããäºå®ã§ãããããã¯ãµãŒãããŒãã£ã®å®éšã®çµæã§ãããåŠçãããŸãåããããè¿œå ã®åºçç©ãšããŠçºè¡ããããšã決å®ããŸããã ãã®å Žåããããã¯äœåãªç©åãèã空æ°ããåžãåºãæ¹æ³ã®äŸã§ãã
ãããã«ãããç§èªèº«ããã®èšäºããæãåºãããšã¯ã§ããŸãããã¿ã€ãã«ãšããã¹ãã§çŽæãããŠãããã©ãã§ããã®ãããªæ倱ãã²ããã°ãããªãã¯å¹žãã«ãªããŸããã
è«æãRetinaNetã¯COCOã§ããŸãæ©èœããŸãïŒããã«æ倱ããããŸãïŒïŒãããããç§ã¯ææ ¢ã§ããŸãã
11.å¯ããå®ç©ãåããïŒéžæçå ±å埮調æŽã«ãããã£ãŒããã©ã³ã¹ãã¡ãŒåŠç¿
â ãªãªãžãã«èšäº
â ã³ãŒã
æçš¿è
ïŒ movchan74
èè ã¯ãå°ããªããŒã¿ã»ããã§ç»åãåé¡ããåé¡ã«çŠç¹ãåãããŸããã ãã®å Žåã®å žåçãªã¢ãããŒãã¯æ¬¡ã®ãšããã§ããImageNetã§äºåã«ãã¬ãŒãã³ã°ãããCNNãååŸããããŒã¿ã»ããã§åãã¬ãŒãã³ã°ããŸãïŒãŸãã¯ãå®å šã«æ¥ç¶ãããåé¡ã®ã¿ãåãã¬ãŒãã³ã°ããŸãïŒã ãããåæã«ããããã¯ãŒã¯ã¯ããã«åãã¬ãŒãã³ã°ãããåžæãã粟床å€ã«éããŸããã èè ã¯ãã¿ãŒã²ããããŒã¿ã»ããïŒã¿ãŒã²ããããŒã¿ã»ãããååãªããŒã¿ã§ã¯ãªãããã以äžã®ããŒã¿ã»ããTãšåŒã³ãŸãïŒã ãã§ãªããå€æ°ã®ç»åïŒéåžžã¯ImageNetïŒãå«ãè¿œå ã®ãœãŒã¹ããŒã¿ã»ããïŒä»¥äžãSããŒã¿ã»ãããšåŒã³ãŸãïŒã䜿çšããŠ2ã€ã®ããŒã¿ã»ããã§ãã«ãã¿ã¹ã¯ããã¬ãŒãã³ã°ããããšãææ¡ããŸãåæã«ïŒããŒã¿ã»ããããšã«1ã€ãã€ãCNNã®åŸã«2ã€ã®ããããè¡ããŸãïŒã
ããããèè ãããã£ãããã«ããã¬ãŒãã³ã°ã«SããŒã¿ã»ããå šäœã䜿çšããã®ã¯è¯ãèãã§ã¯ãããŸããããSããŒã¿ã»ããã®ç¹å®ã®ãµãã»ããã䜿çšããæ¹ãé©åã§ãã
次ã®ãã¬ãŒã ã¯ãŒã¯ãååŸããŸãã
- SãšTã®2ã€ã®ããŒã¿ã»ããã䜿çšããŸããTã¯å°æ°ã®äŸãå«ãããŒã¿ã»ããã§ãããåé¡åšãååŸããå¿ èŠããããŸããSã¯å€§ããªè£å©ããŒã¿ã»ããïŒéåžžImageNetïŒã§ãã
- ãµãã»ããã®ç»åãã¿ãŒã²ããããŒã¿ã»ããTã®ç»åã«è¿ããªãããã«ãããŒã¿ã»ããSããç»åã®ãµãã»ãããéžæããŸããæãè¿ããã®ãéžæããæ¹æ³ãèããŠã¿ãŸãããã
- ããŒã¿ã»ããTãšéžæããããµãã»ããSã®ãã«ãã¿ã¹ã¯ãããã¯ãŒã¯ãåŠç¿ããŸãã
ããŒã¿ã»ããSã®ãµãã»ãããéžæããæ¹æ³ãæ€èšããŠã¿ãŸããããèè ã¯ãããŒã¿ã»ããTããåãµã³ãã«ãææ¡ããSããç¹å®ã®æ°ã®è¿åãèŠã€ãããããããã®ã¿åŠç¿ããŸãã è¿æ¥æ§ã¯ãäœã¬ãã«ã®AlexNetãã£ã«ã¿ãŒãŸãã¯Gaborãã£ã«ã¿ãŒã®ãã¹ãã°ã©ã éã®è·é¢ãšããŠå®çŸ©ãããŸãã 空éã³ã³ããŒãã³ããèæ ®ããªãããã«ããã¹ãã°ã©ã ãååŸãããŸãã
äœã¬ãã«ãã£ã«ã¿ã䜿çšãããçç±ã®èª¬æã¯æ¬¡ã®ãšããã§ãã
- ããŒã¿ãå€ããããäœã¬ãã«ã®ç³ã¿èŸŒã¿å±€ããã¬ãŒãã³ã°ããæ¹ãè¯ãããšããããããããã®äœã¬ãã«ãã£ãŒãã£ã®å質ã«ãã£ãŠãé«ã¬ãã«ã®ãã£ãŒãã£ã®å質ã決ãŸããŸãã
- äœã¬ãã«ãã£ã«ã¿ãŒã䜿çšããŠåæ§ã®ç»åãæ€çŽ¢ãããšããã¬ãŒãã³ã°çšã®ãµã³ãã«ãããå€ãèŠã€ããããšãã§ããŸãã ã»ãã³ãã£ã¯ã¹ã¯ã»ãšãã©èæ
®ãããŸããã
æ£çŽã«èšããšãç§ã¯ãããã®èª¬æã¯ããŸã奜ãã§ã¯ãããŸãããããã®ãããªèšäºã§ã¯ã ãã¡ãããç§ã¯äœããç解ããŠããªãã£ããããŸãã¯ç解ããŠããªããããããŸããã ããã¯ãã¹ãŠããäœã¬ãã«ã®ç¹æ§ã«å¿ããŠç»åãéžæããåæ©ã¯2ã€ãããŸãããšããèšèã®åŸã«2ããŒãžã§èª¬æãããŠããŸãã
è¿ãç»åã®æ€çŽ¢ã®ãã®ä»ã®æ©èœïŒ
- ãã¹ãã°ã©ã ã¯ãå¹³åããŠãããŒã¿ã»ããå šäœã§ã»ãŒåãéã1ã€ã®ãã³ã«å ¥ãããã«æ§ç¯ãããŸãã
- ãã¹ãã°ã©ã éã®è·é¢ã¯ãKLçºæ£ã䜿çšããŠèšç®ãããŸãã
èè ã¯ãAlexNetãšGaborãã£ã«ã¿ãŒã®ããŸããŸãªç³ã¿èŸŒã¿å±€ãè©Šããè¿ããµã³ãã«ãæ€çŽ¢ããŸãããAlexNetã®1 + 2ã®ç³ã¿èŸŒã¿å±€ã䜿çšãããšæé©ã«æ©èœããŸããã
èè ã¯ãTã®åãµã³ãã«ã®ããŒã¿ã»ããSããé¡äŒŒã®ãµã³ãã«ã®æ°ãéžæããå埩çãªæ¹æ³ãææ¡ããŸãããæåã«ãTããåã ã®ãµã³ãã«ããšã«æå®ãããæ°ã®æè¿åãååŸããŸãã次ã«ããã¬ãŒãã³ã°ãå®è¡ãããµã³ãã«ã®èª€å·®ã倧ããå Žåããã®æè¿åã®æ°ãå¢ãããŸããµã³ãã«ã æãè¿ãè¿åãã©ã®ããã«æ¡å€§ããããã¯ãåŒ6ããæããã§ãã
ãã¬ãŒãã³ã°ã®ç¹åŸŽã®ã ããããäœæãããšããTããŒã¿ã»ãããããµã³ãã«ãã©ã³ãã ã«éžæããéžæããåãµã³ãã«ã«ã€ããŠãæãè¿ãé£ã®1ã€ãååŸããŸãã
以äžã®ããŒã¿ã»ããã§å®éšãè¡ãããŸããïŒStanford Dogs 120ãOxford Flowers 102ãCaltech 256ãMIT Indoor67ãSOTAã®çµæã¯ãã¹ãŠã®ããŒã¿ã»ããã§åŸãããŸããã ããŒã¿ã»ããã«å¿ããŠãåé¡ç²ŸåºŠã2ïŒ ãã10ïŒ ã«äžããããšãå€æããŸããã
12.ãã£ãŒããããã¯ãŒã¯ã®é«éé©å¿ã®ããã®ã¢ãã«ã«äŸåããªãã¡ã¿åŠç¿
â ãªãªãžãã«èšäº
â ã³ãŒã
æçš¿è
ïŒrepyevsky {at} gmail {dot} com
ã¡ã¿ãã¬ãŒãã³ã°ã«é¢ããèšäºïŒèè
ã¯ãç¹å®ã®äžè¬ã¯ã©ã¹ããã®æ°ããã¿ã¹ã¯ã解決ããããã«ã以åã®çµéšãšå°éã®æ°ããæ
å ±ãçµã¿åãããŠã¢ãã«ã«æããããšãæãã§ããŸãã
èè ãéæãããããšãæ確ã«ããããã«ãã¢ãã«ã®è©äŸ¡æ¹æ³ã説æããŸãã
åé¡ã®ãã³ãããŒã¯ãšããŠã2ã€ã®ããŒã¿ã»ãã OmniglotãšminiImagenetã䜿çšãããŸãã æåã«ãããã€ãã®ã¢ã«ãã¡ãããããã®ææžãæåã¯åèšã§çŽ1600ã¯ã©ã¹ã§ãã¯ã©ã¹ããšã«20ã®äŸããããŸãã Imagenetã® 2çªç®ã®100ã¯ã©ã¹-ã¯ã©ã¹ããšã«600æã®åçã RLã«é¢ããã»ã¯ã·ã§ã³ããããŸãããç§ã¯èŠãŠããŸããã
ãã¬ãŒãã³ã°ã®åã«ããã¹ãŠã®ã¯ã©ã¹ã¯äºãã«çŽ ãªã»ããtrain
ã validation
ããã³test
åããããŸãã æ€èšŒã®ããã«ãããšãã°ã test
ã¯ã©ã¹ïŒãã¬ãŒãã³ã°äžã«ã¢ãã«ã«è¡šç€ºãããªãã£ãïŒããã5ã€ã®ã©ã³ãã ã¯ã©ã¹ïŒ 5-way learning ïŒãéžæãããŸãã éžæãããã¯ã©ã¹ã®ããããã«ã€ããŠãããã€ãã®äŸããµã³ããªã³ã°ãããã©ãã«ã¯é·ã5ã®ã¯ã³ããããã¯ãã«ã«ãã£ãŠãšã³ã³ãŒããããŸããåã¯ã©ã¹ã®ãããªãäŸã¯ã A
ãšB
2ã€ã®éšåã«åå²ãããŸãB
A
äŸã¯åçã®ããã¢ãã«ã瀺ãã B
äŸã¯åé¡ã®æ£ç¢ºæ§ãæ€èšŒããããã«äœ¿çšãããŸãã ãããã£ãŠã ã¿ã¹ã¯ã圢æãããŸãã èè
ã¯accuracy
èŠaccuracy
ã
ãããã£ãŠãæ°åã®å埩/æ°ããäŸã§ãæ°ããã¿ã¹ã¯ïŒã¯ã©ã¹ã®æ°ããã»ããïŒã«é©å¿ããããã«ã¢ãã«ãæããå¿ èŠããããŸãã
ãã¹ãã§RNNãŸãã¯ãã³ãã©ã¡ããªãã¯ã¡ãœããã䜿çšããæ©èœåã蟌ã¿ïŒkæè¿åãªã©ïŒã䜿çšããããšãã以åã®äœåãšã¯ç°ãªããèè ã¯ãåŸé ã¢ãã«ã«ãã£ãŠãã¬ãŒãã³ã°ãããŠããå Žåãæšæºã¢ãã«ã®ãã©ã¡ãŒã¿ãŒãæ§æã§ããã¢ãããŒããææ¡ããŠããŸãã
éèŠãªã¢ã€ãã¢ïŒæ°ããã¿ã¹ã¯ã§æè¯ã®çµæãåŸãããããã«ã¢ãã«ã®éã¿ãæŽæ°ããã
çŽæïŒã¢ãã«å ã§ãããŒã¿ã»ããã®ãã¹ãŠã®ã¯ã©ã¹ã®å ¥åããŒã¿ã®æ®éçãªè¡šçŸãååŸããŸããããã«ãããã¢ãã«ã¯æ°ããã¿ã¹ã¯ã«ãã°ããé©å¿ã§ããŸãã
äžçªäžã®è¡ã¯æ¬¡ã®ãšããã§ãã ã¢ãã«F(x, p)
ã«1åã®å埩ã§æ°ããã¿ã¹ã¯F(x, p)
åŠç¿ãããŸãïŒ 1ã·ã§ãã åŠç¿ ïŒã 次ã«ããã¬ãŒãã³ã°ã®ããã«ããã¹ããšåãã¿ã¹ã¯ããã¬ãŒãã³ã°ã¯ã©ã¹ããæºåããå¿
èŠããããŸãã ããã«ãããŒãA
ã®äŸã§ã¯ã loss
ãšãã®åŸé
ãèæ
®ãããã¬ãŒãã³ã°ã1åç¹°ãè¿ããŸãããã®çµæãäžéã®æŽæ°ãããéã¿p' = p - a*grad
ãšã¢ãã«ã®æ°ããããŒãžã§ã³F(x, p')
ãååŸããŸãã B
F(x, p')
ã®loss
ãèæ
®ããåæéã¿p
ã«é¢ããŠãããæå°åããŸãã å®éã®æ°ããéã¿ãã€ãŸãå埩ã®çµãããååŸããŸãã åŸé
ããã®åŸé
xxibitãã«ãŠã³ãããããšã2次å°é¢æ°ã衚瀺ãããŸãã
å®éãè€æ°ã®ã¿ã¹ã¯ãäžåºŠã«çæãããã¡ã¿ãããã«çµ±åãããŸãã ããããã«å¯ŸããŠãç¬èªã®p'
ãããç¬èªã®loss
ãèæ
®ãããŸãã 次ã«ããããã®total_loss
ã¯ãã¹ãŠtotal_loss
ã§åèšããtotal_loss
ãããã¯ã p
ã«é¢ããŠãã§ã«æå°åãããŠããŸãã
èè ã¯ã以åã®äœåïŒå°ããªç³ã¿èŸŒã¿ãããã¯ãŒã¯ãšå®å šã«æ¥ç¶ããããããã¯ãŒã¯ïŒã®åºæ¬ã¢ãã«ã«ã¢ãããŒããé©çšããäž¡æ¹ã®ããŒã¿ã»ããã§SOTAãåãåããŸããã
åæã«ãã¡ã¿ãã¬ãŒãã³ã°çšã®è¿œå ãã©ã¡ãŒã¿ãŒãªãã§æçµã¢ãã«ãååŸãããŸãã ãã ãã2次å°é¢æ°ãå«ããªã©ãå€æ°ã®èšç®ã䜿çšãããŸãã èè
ã¯ã miniImagenetã« 2çªç®ã®æŽŸçç©ãããããããããšããŸãã ã åæã«ã accuracy
ã¯ã»ãŒåããŸãŸã§ãèšç®ã¯33ïŒ
å éããŸããã ããããããã¯ã ReLU
ãåºåç·åœ¢é¢æ°ã§ããããã®2次å°é¢æ°ãã»ãšãã©åžžã«ãŒãã§ãããšããäºå®ã«ãããã®ã§ãã
Tensorflowäœæè ã³ãŒã ã ããã§ã¯ãå éšåŸé ã¹ãããã¯æåã§è¡ãããå€éšåŸé ã¹ãããã¯AdamOptimizerã䜿çšããŠè¡ãããŸãã
yuli_semenovaãç·šéããŠããã ãããããšãããããŸãã