
åæããå Žå
æ²èŠ³è«è ã«ãããšã åžå Žã¯ãã©ã³ãã ãªããã»ã¹ã®ã¹ã±ãžã¥ãŒã«ãäœæããå人ïŒããã®ãã¬ãŒããŒïŒãEURUSDãã£ãŒããšåºå¥ã§ããªãã£ããããã§ããã€ãŸããåžå Žã§å®å®ããåå ¥ãåŸãããšã¯äžå¯èœã§ãã
ãªããã£ãã¹ãã¯ãããã«å察ããŸãã åžå Žãã©ã³ãã ã§ããå Žåãçžå Žã¯è¿æ1ãæ©ããŸããããç¡éã«è¡ããŸãã ãããã£ãŠãåžå Žã¯ã©ã³ãã ã§ã¯ãªããããã§çšŒãããšãã§ããŸãã å©ççã倧ããïŒãã£ãšããïŒæ¬åœã«å®å®ããåçæŠç¥ãèŠãŸããïŒ
çŸå®çã§ãããäž¡æ¹ã®æèŠããå©çãåŸãããšããŸãããïŒåžå Žãã©ã³ãã ã§ãããšä»®å®ãããã®ä»®å®ã«åºã¥ããŠããã¬ãŒãã£ã³ã°ã·ã¹ãã ã®åçæ§ã®éã©ã³ãã æ§ããã§ãã¯ããæ¹æ³è«ãæ§ç¯ããŸãã
ãã®èšäºã§æ€èšãããŠããææ³ã¯ããã¡ã³ããå€åœçºæ¿ããã®ä»ã®åžå Žã«å ±éã§ãã
åé¡ã®å£°æ
ç空äžã®ç圢銬ã«ã€ããŠã®ããç¥ããããžã§ãŒã¯ã®ãããã§ãçŽ æŽãããan話ãçãŸããŸãããããã¯çæ³ãæå³ããŸãããå®éã®ã¢ãã«ã§ã¯ãŸã£ããé©çšã§ããŸããã
ããã«ãããããããåé¡ã®æ£ããå®åŒåã«ããããç空äžã®çäœã¢ãã«ããé©çšããããšã«ãããããªãå ·äœçãªå®éçãªå©ç¹ãåŒãåºãããšãã§ããŸãã ããšãã°ãå®éã®åŠç¿å¯Ÿè±¡ã®ãç圢æ§ãã®åŠå®ãéããŠã
ç¹å®ã®åžå Žã§äœ¿çšãããååŒã·ã¹ãã ããããšããŸãã ãŸããåžå Žãã©ã³ãã ã§ã¯ãªããã·ã¹ãã ãååŒæ±ºå®ãè¡ãããã®ææšãšããŠåœè£ ãããä¹±æ°ãžã§ãã¬ãŒã¿ãŒã§ã¯ãªããã®ã䜿çšãããšããŸãã åå ¥ã®å®å®æ§ãè©äŸ¡ããããã«ãå©çå åã䜿çšããŸãã
ãã®ã·ã¹ãã ã®å®å®æ§ã«ã€ããŠè©±ãããã«ãå©çèŠå ã¯äœã§ããïŒ æããã«ãå©ççãé«ãã»ã©ãã·ã¹ãã ãä¿¡é Œããçç±ãå€ããªããŸãã ããããäžéã¯ããŸããŸãªæ¹æ³ã§ããŸããŸãªå°é家ã«ãã£ãŠæšå®ãããŠããŸãã æãäžè¬çãªãªãã·ã§ã³ïŒ> 2ïŒãŸããŸãïŒã> 5ïŒè¯ãã·ã¹ãã ïŒã> 10ïŒåªããã·ã¹ãã ïŒã ãŸã ãã®ãããªããªãšãŒã·ã§ã³ããããŸãïŒ
å©çèŠå ã«åžžã«æ©ãŸãããã®ã¯ãåžå Žã®ãã€ããã¯ã¹ãšè²¿æã®æ¿ãããèæ ®ããŠããªãããšã§ãã ãããã£ãŠãå©çå åã®éèŠæ§ãè©äŸ¡ããããã®å¥ã®ã¢ãããŒããææ¡ããŸããäºåã«æ±ºããããäºåã®å€ãšæ¯èŒããã®ã§ã¯ãªããå©çå åã¯ã§ããã ãé«ãããå¿ èŠããããŸãã ãåæ§ã®ååŒåŒ·åºŠãšãã©ãã£ãªãã£ãæã€ã©ã³ãã åžå Žã®ã©ã³ãã ã·ã¹ãã ã®å©çå åããäœãã¯ãªããŸããããã«å¿ããŠïŒå®éããçæ³çãªã¬ã¹ããŸãã¯ãç空ãã«ããããç圢ã®ãã¬ãŒããŒãã®ããããäœããªãïŒã
æ¯èŒã®ããã«çæ³çãªã¢ãã«ãæ§ç¯ããããšã ããæ®ã£ãŠããŸãã
ãçç¶ã®ãã¬ãŒããŒ...ã
ã©ã³ãã ãªååŒã·ã¹ãã ïŒãçç¶ã®ãã¬ãŒããŒãïŒãæ€èšããŠãããšããŸãã ã¢ãã«ã¯ã©ã³ãã ã§ãããããååŒã€ãã³ãã¯ä»¥åã®æ±ºå®ã«é¢ä¿ãªããã©ã³ãã ãªæç¹ã§çºçããŸãã ãã©ã³ã¶ã¯ã·ã§ã³ã®æ¹åãã©ã³ãã ã§ãïŒ0.5ã®è²©å£²ãŸãã¯è³Œå ¥ã®ç¢ºçïŒã ååŒéã¯äžå®ã§ãããäžè¬æ§ãæãªãããšãªããæçããã€ã³ãåäœã§æšå®ãããšæ³å®ããŠããŸãã
å¹³åãã©ã³ã¶ã¯ã·ã§ã³æéã
ãŸããã€ãã³ãã®ãã¢ãœã³ã¹ããªãŒã ãæ±ã£ãŠãããšããŸãã
ååŒæé
ã©ãã§
ååŒæ°
ã©ãã§
ã...ç空äžã
ããã§ããçç¶ã®ãã¬ãŒããŒããã€ãŸããç空ããã€ãŸãå®å šã«ã©ã³ãã ãªåžå Žã«ãšã£ãŠçæ³çãªç°å¢ãèããŠã¿ãŸãããã
çžå Žã®å€åã®æ£èŠååžã«ãã£ãŠåžå Žãèšè¿°ãããŠãããšä»®å®ããŸã
ã©ãã§
ããã¯ããã©ãŠã³ããã»ã¹ã®æ¢ç¥ã®æ¯çã§ãã
åŒïŒ2.1ïŒããã³ïŒ1.1ïŒãèæ ®ãããšããã©ã³ã¶ã¯ã·ã§ã³ã®çµæã¯ããã©ã³ã¶ã¯ã·ã§ã³ã®éå§ããçµäºãŸã§ã®æéã«ãããèŠç©ããã®ââå€åãšèŠãªãããæ¡ä»¶ä»ã確çã®ç©åãšããŠèª¬æãããŸãã
ãŸãã¯
Wolfram Mathematicaã䜿çšããŠãã®ç©åã解ããšã次ã®çµæãåŸãããŸãïŒ
ãŸãã¯
ã©ãã§
çµæã®ãã¿ãŒã³ã¯ã©ãã©ã¹ååžã§ãã
ãããã£ãŠãã©ã³ãã åžå Žã§ã®ã©ã³ãã ã·ã¹ãã ã®1ã€ã®ãã©ã³ã¶ã¯ã·ã§ã³ã®æçã¯ã ã©ãã©ã¹ååžãšçµæã®çµ¶å¯Ÿå€ã«ãã£ãŠèšè¿°ãããŸãã
ã©ãã§
ææ°ååžã¯ã«ã€äºä¹ååžã®ç¹æ®ãªã±ãŒã¹ã§ããããšãç¥ãããŠããŸãïŒ
ãããŸããã
ã©ãã§
ãããã®æ°éã®æ¯çã¯æ¬¡ã®ããã«ãªããŸãã
ã©ãã§
次ã«ã次ã®æ°éãæ€èšããŸãã
ãã®å€ã¯ããæ£èŠåãããå©çèŠå ããã€ãŸãååŒããšã®å¹³åæ倱ã«å¯Ÿããå¹³ååå ¥ã®æ¯çãšããŠè§£éã§ããŸãã ãã®æ°éã®ååžãèŠãŠã¿ãŸãããïŒ
åŸãããå€ãèªç±åºŠã®æ°ã«æ£èŠåãããéã®ã«ã€2ä¹ã®æ¯çã¯ã ãã£ãã·ã£ãŒååžãæã¡ãŸãã
ãããã£ãŠããã°ããã¥ãŒãã®ååžãçµ±èš
æªç¥ã®å Žåã®äžè¬åã«é²ãåã«
ã...å®ç§ãªã¬ã¹ã®äžã
次ã«ãããå°ãè€éãªç¶æ³ãèããŠã¿ãŸããããåžå Žãäžè¬åããããã©ãŠã³éåã§ããå Žåã§ãã ã€ãŸããã©ã³ãã ãšã¯ç°ãªããã¡ã¢ãªããããŸãã ãã®å ŽåãåŒïŒ2.2ïŒã¯æ¬¡ã®åœ¢åŒãåããŸãã
ã©ãã§
ã§
ç°ãªãåžå Žã¯ãããŒã¹ãææšã®ç°ãªãå€ã«ãã£ãŠç¹åŸŽä»ããããããã«ããããã¯æã å€åããå¯èœæ§ããããŸãã æç³»åã®å€ããããŒã¹ãææ°ãèšç®ã§ããŸãã ãããã£ãŠãå©ççãè©äŸ¡ãããšãã¯ãå€ãèæ ®ããããšãã§ããŸã
ã©ã³ãã ååŒæŠç¥ãããŒã¹ãã€ã³ãžã±ãŒã¿ãŒHã䜿çšããŠåžå Žã§æ©èœãããšä»®å®ãã ïŒ3.1ïŒãèæ ®ããŠãåŒïŒ2.3ïŒã¯æ¬¡ã®åœ¢åŒãåããŸãã
æããã«ã
æ®å¿µãªãããåæ圢åŒã®åŒïŒ3.2ïŒã¯çµ±åãããŠããŸããã ãããã£ãŠãHurstã€ã³ãžã±ãŒã¿ãŒã䜿çšããåžå Žã§ã®ã©ã³ãã ååŒã®å ŽåãååŒã®éå§æãšçµäºæã®çžå Žã®å·®ã®çµ¶å¯Ÿå€ã®ååžïŒååŒã®çµ¶å¯ŸçµæïŒãèŠã€ãã
Pythonã䜿çšããŠã·ãã¥ã¬ãŒã·ã§ã³ãè¡ããŸããã
ã¢ããªã³ã°ã¯æ¬¡ã®ããã«å®è¡ãããŸã
1ïŒã·ãã¥ã¬ãŒã·ã§ã³ãã©ã¡ãŒã¿ãŒãèšå®ããŸãã
2ïŒ ææ°ååžããã©ã³ãã å€æ°ã®ãµã³ãã«distEãšãããªã¥ãŒã Nã®æ£èŠååžéã®ãµã³ãã«distNãããããçæããŸãã
3ïŒé¢ä¿ïŒ3.1 ïŒãäžããããå Žåããã¹ããµã³ãã«distTãäœæããŸããåãµã³ãã«ã®å€ã¯ãdistNãšdistEã®å¯Ÿå¿ããå€ããèšç®ãããŸãã
4ïŒçµæã®ååžã®å Žåããã¹ãã°ã©ã ã¯Måã®ç¯å²ïŒç¯å²å ã®ãããæ°ïŒããäœæãããŸãã åŸããããã¹ãã°ã©ã ãããKåã®æåã®ç¯å²ãéžæãããŸãããããã®æ°ã¯ãŒãã§ã¯ãããŸããã ãŸããæåã®ç¯å²ã®ãããæ°ãæ£èŠåããŸãã
5ïŒåŸããããã¹ãã°ã©ã ã«åºã¥ããŠãååžã¿ã€ããè¿äŒŒãããŸãã
import matplotlib.pyplot as plt import numpy as np from scipy import stats def testH(N, M, H, p): distE = np.random.exponential(1, N) distN = np.random.normal(0, 1, N) distT = abs(distN * distE**H) if p == 1: plt.figure(1) plt.hist(distT, M) plt.title('H='+str(H)) [y, x] = np.histogram(distT, M) K = 0; for i in range(M): if y[i] > 0: K = i else: break y = y * 1.0 / y[0] x = x[1:K] y = y[1:K] return getCoeff(x, y, p, 'H='+str(H))
ããŒã¹ãææ°0.1ã0.3ã0.5ã0.7ã0.9ã«ã€ããŠåŸãããååžã®ãã¹ãã°ã©ã ã®äŸã以äžã«ç€ºããŸãã





ãã¹ãã°ã©ã ã®äžè¬çãªå€èŠ³ã¯ãååŸããååžãå®æ°ãŸã§ã次ã®åœ¢åŒã®é¢æ°ã§èšè¿°ã§ããããšã瀺ããŠããŸãã
ååžãã©ã¡ãŒã¿ãŒãæ€çŽ¢ããã«ã¯ã次ã®ã¢ã«ãŽãªãºã ã䜿çšããŸãã
1ïŒäžããŸããã
2ïŒæ¬¡ã«ãæåã®ç¯å²ãç¡èŠããŠãå€æãå®è¡ããŸãã
3ïŒæå°äºä¹æ³ã䜿çšããŠãç·åœ¢ååž°ãã©ã¡ãŒã¿ãŒãèŠã€ããŸã
4ïŒåä¿¡ã«åºã¥ããŠ
ãã©ã¡ãŒã¿
ä¿æ°ãèšç®ããæé ã®ãªã¹ãã以äžã«ç€ºããŸãã
def getCoeff(x, y, p, S): X = np.log(x) Y = np.log(-np.log(y)) n = len(X) k = (sum(X) * sum(Y) - n * sum(X * Y)) / (sum(X) ** 2 - n * sum(X ** 2)) b = (sum(Y) - k * sum(X)) / n if p == 1: plt.figure(2) plt.plot(np.exp(X), np.exp(-np.exp(Y)), 'b', np.exp(X), np.exp(-np.exp(k * X + b)), 'r') plt.title(S) plt.show() return k
以äžã¯ã0.1ã0.3ã0.5ã0.7ã0.9ã®ããŒã¹ãå€ïŒéç·ïŒãšãã®ã¢ãã«ïŒèµ€ç·ïŒã®ãã¹ãã°ã©ã ã®ãšã³ãããŒãã®äŸã§ãã





ããŒã¹ãææ°ã0.5ãã倧ããå Žåãã¢ããªã³ã°ã®ç²ŸåºŠã¯é«ããªããŸãã
ä»ãäŸåé¢ä¿ãèŠã€ããŸã
å€ã®ã¢ãã«åã«äœ¿çšããŸãã
if __name__ == "__main__": N = 1000000; M = 100; Z = np.zeros((99, 2)) for i in range(99): Z[i, 0] = (i + 1) * 0.01 for j in range(20): W = float('nan') while np.isnan(W): W = testH(N, M, (i + 1) * 0.01, 0) Z[i, 1] += W Z[i, 1] *= 0.05 print Z[i, :] X = Z[:, 0].T Y = Z[:, 1].T plt.figure(1) plt.plot(X, Y) plt.show()
çµæã®äŸåé¢ä¿ã®åœ¢åŒã¯æ¬¡ã®ãšããã§ãã

ã°ã©ãã¯æªãã ã·ã°ã¢ã€ãã«äŒŒãŠãããããã·ã°ã¢ã€ãã®åœ¢ã®ãã¿ãŒã³ãæ¢ããŸãã
æå°äºä¹æ³ã«ããæ°å€æå°åæé ã«ããã次ã®çµæãåŸãããŸãã
åèš2次誀差ã¯çŽ0.005ã§ãã
以äžã¯å®éšäŸåã®ã°ã©ãã§ã

ååŸããèŠåæ§ã¯ã次ã®å Žåã«ã®ã¿æå¹ã§ããããšã«æ³šæããŠãã ããã
ããã§ãæšå®å€ã«ã€ããŠïŒ3.3ïŒããã³ïŒ3.4ïŒãèæ ®ã«å ¥ããŸã
次ã«ïŒ
ããã¯ãèªç±åºŠã®æ°ãæã€ã¬ã³ãååžãæã€éã®ç¢ºçå¯åºŠã®é¢æ°ã§ã
äžéçµæãèŠçŽããã«ã¯ïŒ
ããŒã±ããããŒã¹ãæ å ±ãæã€
ïŒ3.7ïŒã«ãããšãæ°é
ãããŸããã
ãããŠ
èªç±åºŠã®éãæã€ã«ã€äºä¹ååžãæã€
ãããã£ãŠãå€ïŒ
ãã£ãã·ã£ãŒååžc
å€ãšåŒã¶
æçµçãªäžè¬å
ããã§ãã©ã³ãã ãªåžå Žã§ãçç¶ã®ãã¬ãŒããŒãã調ã¹ãæ£èŠåãããå©ççã®ååžãèŠã€ããŸããã 次ã«ãçµæã¯ã枬å®å¯èœãªéã§ããããŒã¹ãææ°ã§è¡šãããä»»æã®ãã©ã¯ã¿ã«æ¬¡å ãæã€åžå Žã®å Žåã«äžè¬åãããŸããã
ããã§ãäžè¬åæ£èŠåå©çä¿æ°ãšåŒã°ããå€ãåŸãããŸãããããã¯ããã©ã³ã¶ã¯ã·ã§ã³ã®çµæã«é¢ããæ å ±ã䜿çšããŠèšç®ãããŸãïŒã¡ãªã¿ã«ãã¹ãã¬ãããèæ ®ããããã«èª¿æŽããããšãå¿ããªãã§ãã ããïŒæ倱ããæžç®ããŠåå ¥ã«å ç®ããŸãïŒã æ¹æ³è«ã®æ±çšæ§ãé«ããããã«ããã©ã³ã¶ã¯ã·ã§ã³ã®éã¯äžå®ãšèŠãªããããããã¹ãŠããã€ã³ãã§æž¬å®ããŸãã å¹³åãã©ã³ã¶ã¯ã·ã§ã³æéãšãã©ã³ã¶ã¯ã·ã§ã³çµæã®ååžã®æšæºåå·®ãæ£èŠåããããšãå¿ããªãã§ãã ããã
çŸæç¹ã§åŸããããã¹ãŠã®çµæã¯ãæ¢ç¥ã®æ°ã®åçæ§ã®ããååŒãšæ倱ãçããããååŒã«çµã³ä»ããããŠããŸããããã¯ãæ¢ç¥ã®åèšååŒæ°ã®äºé ååžãæã€ã©ã³ãã å€æ°ã§ããã ãã¢ãœã³ã«åŸã£ãŠååžããã©ã³ãã å€æ°ã§ããããŸãã
æ°ããè¡šèšæ³ã玹ä»ããŸãã äžããããåçæ§ã®ããæ°ã«å¯Ÿããäžè¬åãããæ£èŠåãããå©çä¿æ°ïŒ3.8ïŒ
次ã«ãåçæ§ã®ããååŒãšæ倱ã䌎ãååŒã®æ°ã®äºé ååžãããã³åååŒã§åçãŸãã¯æ倱ãçºçãããå¯èœæ§ãèæ ®ããŠãå€ãå°å ¥ããŸã
ã©ãã§
å®éã«ã¯ãååã«å€§ãã
ã©ãã§
ããã§ããã©ã³ã¶ã¯ã·ã§ã³ã®æ°ãåç §ããã«ãäžè¬çãªæ£èŠåãããå©çèŠå ãèæ ®ããŸãããå¹³åååŒåŒ·åºŠã®ã¿ãèæ ®ããŸã
ãŸãã¯ãç¯å²å ã®èæ ®ããããã©ã³ã¶ã¯ã·ã§ã³æ°ã«ã€ããŠ
çµæã®ååžã䜿çšããŠãæ¢ç¥ã®å¹³åååŒæéãšæ¢ç¥ã®ãã©ãã£ãªãã£ãšããŒã¹ãã€ã³ãžã±ãŒã¿ãŒãæã€æ¢ç¥ã®åžå Žæéã®ååŒåŒ·åºŠã§ïŒ3.8ïŒã«åŸã£ãŠèšç®ãããäžè¬åæ£èŠåå©çå åã®æææ§ãæ€èšŒã§ããŸãã ãã¹ãã¢ããªã±ãŒã·ã§ã³ã®æ¹æ³è«ã¯ã ãã£ãã·ã£ãŒãã¹ãã®å ŽåãšãŸã£ããåãã§ãã ãããå®è¡ããã«ã¯ãå¯åºŠé¢æ°ãïŒ4.1ïŒ ïŒãŸãã¯ïŒ4.1 *ïŒ ïŒã§ãã£ãã·ã£ãŒååžé¢æ°ã«çœ®ãæããèšç®ãããäžè¬åå©çå åã®å€ãåŒæ°ãšããŠçœ®ãæããã ãã§ååã§ãã åŸããã確çå€ã¯å€ãšæ¯èŒããå¿ èŠããããŸã
ãããã«
ãã®ä»äºã§ææ¡ãããã¢ãããŒãã¯ãåžå Žã®ãã©ãã£ãªãã£ãšãã©ã¯ã¿ã«ç¹æ§ããªãã³ã«ååŒã®åŒ·åºŠãšãã©ã³ã¶ã¯ã·ã§ã³ã®å¹³åæéãèæ ®ã«å ¥ããäžè¬åãããæ£èŠåãããå©çå åã®æ§ç¯ã«åºã¥ããŠãã©ã³ãã ãªæ¹æ³ã§åæ§ã®çµæãåŸã確çã«é¢ããŠéæãããçµæã®æææ§ã®çµ±èšçãã¹ããæ§ç¯ããããšãå¯èœã«ããŸãã ãã¹ãã䜿çšãããšãã·ã¹ãã ã®ä¿¡é Œæ§ã瀺ãããã«å¿ èŠãªæ¡ä»¶ãæºãããŠããããšã«ã€ããŠãç¹å®ã®éèŠåºŠã§è©±ãããšãã§ããŸãã ããããåŸãããçµæã¯ååãªæ¡ä»¶ã§ã¯ãããŸãã...
æ®å¿µãªãããç§ã¯ãã¹ããç¥ããŸããããã®çµæã¯ã確ãã«ä¿¡é Œã§ããæŠç¥ãæ確ã«æ¡çšããã®ã«ååã§ãã