1. Googleã«ããã深局åŠç¿ã
è¬åž«ïŒ Vincent VanhouckeãGoogleãªãŒããŒãGoogle Brainãããžã§ã¯ããã¯ãããžãŒãªãŒããŒ
ãã©ãããã©ãŒã ïŒ Udacity
è²»çšïŒç¡æ
èšèªïŒè±èª
æéïŒçŽ3ãæïŒèªåã®ããŒã¹ã§æ©ãããšãã§ããŸãïŒ
æ¥çšïŒç¡æã®é²è¡äžã®ã³ãŒã¹
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ www.udacity.com/course/deep-learning--ud730
ããã°ã©ã
æ©æ¢°åŠç¿ïŒæ©æ¢°åŠç¿ãããžã¹ãã£ãã¯ååž°ã確ççæé©åãããŒã¿ã®èªã¿èŸŒã¿ãšååŠçããã©ã¡ãŒã¿ãŒã®éžæãçžäºæ€èšŒãå質è©äŸ¡ã®åºç€ã
ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ã®çŽ¹ä»ããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¢ãŒããã¯ãã£ããã€ããŒãã©ã¡ãŒã¿ãŒã®éžæãæ£ååã
ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒåäœã®æŠèŠãšåºæ¬åçãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¢ãŒããã¯ãã£ããã©ã¡ãŒã¿ãŒã®æ£ååãšéžæãç»ååŠçãªã©ã®ã¢ããªã±ãŒã·ã§ã³ã
ããã¹ããæäœããããã®ãã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒæ©æ¢°åŠç¿ãã¯ãŒãããã°ãword2vecããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ãLSTMãæ£ååã«ãããã¯ãŒãããã»ãã·ã³ã°ã®åºæ¬çãªã¢ãããŒãã
ã¡ãªãã
- TensorFlowãã£ãŒãã©ãŒãã³ã°ã©ã€ãã©ãªãåºç¯ã«æŽ»çšããGoogleæ¥çã®ãªãŒããŒã«ããã³ãŒã¹-æ¥éã«æé·ããçŸåšå©çšå¯èœãªæé«ã®ããŒã«ã®1ã€ã
- iPythonããŒãããã¯åœ¢åŒ+ã³ãŒã¹ãããžã§ã¯ãã§ã®å€æ°ã®ã€ã³ã¿ã©ã¯ãã£ããªèª¿æ»ãšèå³æ·±ãå®çšçãªã¿ã¹ã¯ïŒé»è©±ã®ã«ã¡ã©ããã®ç»åäžã®æ°åããªã¢ã«ã¿ã€ã ã§èªèããã¢ãã€ã«ã¢ããªã±ãŒã·ã§ã³ã®éçºã
- ã¢ã¯ãã£ããªã³ãŒã¹ãã©ãŒã©ã ãæåž«ãä»ã®åŠçãšèª²é¡ã話ãåãæ©äŒã
- ãã®ããã°ã©ã ã¯éè² è·ã§ã¯ãªãããã¥ãŒã©ã«ãããã¯ãŒã¯ã®äžè¬çè«ãšã深局åŠç¿ã§äœ¿çšãããäž»ãªã¿ã€ãã§ããç³ã¿èŸŒã¿ããã³å埩ã®äž¡æ¹ãã«ããŒããŠããŸãã
çæ
- ã³ãŒã¹ã¯è±èªã§ãã
- ããªãé«åºŠãªè€éæ§ïŒé«åºŠãªäžçŽã³ãŒã¹ã§ãããæ©æ¢°åŠç¿ã®åºæ¬çãªãããã¯ã®äžéšã®ã¿ãã«ããŒããå ¥ééšåãéãããŠããŸããæ°åŠãšPythonã®åºæ¬ã¯å«ãŸããŠããŸããã
- å®éã®ã¿ã¹ã¯ã§ã¯ãç»åèªèãšã¯ãŒãããã»ãã·ã³ã°ã®æšæºçãªæè²ã¿ã¹ã¯ã䜿çšãããŸãããã¿ã¹ã¯ã®ããžãã¹äžã®åé¡ã«å¯Ÿããç 究ãããã¢ãã«ã®å®éã®ã¢ããªã±ãŒã·ã§ã³ã¯ååšãããã³ãŒã¹ã§ã¯èª¬æãããŸããã
- ç¡æçã§ã¯ããã¹ãŠã®å®çšçãªã¿ã¹ã¯ã¯ãã¢ãã«ã®çµæãšå質ææšã«åºã¥ããŠçåŸèªèº«ã«ãã£ãŠãã§ãã¯ãããæåž«ãŸãã¯ä»ã®çåŸããã®ã³ã¡ã³ãã®åä¿¡ã¯æäŸãããŸããã
2.ããã³ã倧åŠã®æ©æ¢°åŠç¿çšãã¥ãŒã©ã«ãããã¯ãŒã¯
è¬åž«ïŒãžã§ããªãŒãã³ãã³ãããã³ã倧åŠææãã€ã®ãªã¹ã®æåãªã³ã³ãã¥ãŒã¿ãŒç§åŠè ã§ãããèªç¥ç¥çµå¿çåŠè ã§ã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®çè«ã«å€å€§ãªè²¢ç®ãããã
ãã©ãããã©ãŒã ïŒ Coursera
è²»çšïŒç¡æ
èšèªïŒè±èª
æéïŒ 4ãæ
æ¥ä»ïŒ 2012幎以éã®äŒæ©åŸã«åé
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ www.coursera.org/learn/neural-networks
ããã°ã©ã
ã¯ããã«ãããŒã»ãããã³ãã¬ãŒãã³ã°ããšã©ãŒããã¯äŒææé ãåèªã®ç¹åŸŽãã¯ãã«ã®ååŸããã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšãããªããžã§ã¯ãèªèãæé©åïŒåŠç¿ããã»ã¹ã®å éããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®äžè¬åèœåã®åäžããã¥ãŒã©ã«ãããã¯ãŒã¯ãããããã£ãŒã«ããããã¯ãŒã¯ããã«ããã³ãã·ã³ã®çµã¿åãããå¶éä»ããã«ããã³ãã·ã³ãDeep Beliefãã¥ãŒã©ã«ãããã¯ãŒã¯ãçæçäºåãã¬ãŒãã³ã°ãåãããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ãéå±€æ§é ã®ã¢ããªã³ã°ããã£ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ°ããã¢ããªã±ãŒã·ã§ã³ äºã
ã¡ãªãã
- ã³ãŒã¹ã®èè ã¯ãåªããç§åŠè ã§ããã人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åéã®å é§è ã®1人ã§ãã
- ãã®ã³ãŒã¹ã§ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ§ç¯ãšæäœã®äžè¬ååãšãé³å£°èªèãšèŠèŠãªããžã§ã¯ããç»åã»ã°ã¡ã³ããŒã·ã§ã³ãèªç¶èšèªãšäººéã®åãã®ã¢ããªã³ã°ãªã©ãžã®å¿çšã«ãããã£ãŒãã©ãŒãã³ã°ã«ããææ°ã®éçºã®äž¡æ¹ãæ±ããŸãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããã§éåžžã«æ·±ãç 究ãããŠãããä»ã®ã³ãŒã¹ã®å€ãã®ãããã¯ã¯èæ ®ãããŠããŸããã
- åã¢ã«ãŽãªãºã ã確èªããåŸãæ©æ¢°åŠç¿ã®åé¡ã解決ããã¢ãŒããã¯ãã£ãæ§ç¯ãããã©ã¡ãŒã¿ãéžæããããã®ã¢ããªã±ãŒã·ã§ã³ã«é¢ããå®çšçãªã¢ããã€ã¹ãæäŸãããŸãã
- å®éšå®€ã®ã¿ã¹ã¯ãšãã¹ããå©çšå¯èœã§ãã
- ãã®ã³ãŒã¹ã«ã¯éåžžã«å€ãã®åŠçããããåããŠã§ã¯ãããŸããã質åãããããã¿ã¹ã¯ã«ã€ããŠè©±ãåã£ããã§ããåºç¯ãªãã©ãŒã©ã ããããŸãã
çæ
- é«åºŠãªè€éæ§ïŒå€ãã®æ°åŠãç¬ç«ããä»äºã®ããã®éåžžã«è€éãªã¿ã¹ã¯ãåºç¯ãªçè«çéšåãè±å¯ãªããã°ã©ã ã
- ã¿ã¹ã¯ã¯Pythonã§ã¯ãªãOctaveã§å®è¡ãããææ°ã®æ·±å±€åŠç¿ã©ã€ãã©ãªã¯äœ¿çšãããŸããã
- é«ãå ¥å ŽéŸå€ïŒã³ãŒã¹ãåè¬ããã«ã¯æ°åŠã®ç¥èãååã§ããå¿ èŠããããŸããããã®ã³ãŒã¹ã®åã«ãåããã©ãããã©ãŒã ã§Andrew Ngã®æ©æ¢°åŠç¿ã³ãŒã¹ãæåã«åè¬ããããšããå§ãããŸãã
3.ãã€ãªã€ã³ãã©ããã£ã¯ã¹ç 究æã®ããã¥ãŒã©ã«ãããã¯ãŒã¯ã
è¬åž«ïŒãµã³ã¯ãããã«ãã«ã¯å·ç«å€§åŠç·åå¿çåŠç§ã®å€§åŠé¢çã¢ãããªãŒã»ã«ã«ããã¯ããã€ãªã€ã³ãã©ããã£ã¯ã¹ç 究æã®çç©åŠè åãã«ãæ°ççµ±èšåŠãšããŒã¿åæã®ã³ãŒã¹ãRã§æäŸããŠããŸãã Arseny Moskvichevãç 究ãšã³ãžãã¢ããµã³ã¯ãããã«ãã«ã¯å·ç«å€§åŠçç©åŠéšåæ¥ã ã¢ãã¹ã¿ã·ã¢ãã©ãŒãæ°åŠããã³æ©æ¢°åŠéšããµã³ã¯ãããã«ãã«ã¯å·ç«å€§åŠãJetBrainsã
ãã©ãããã©ãŒã ïŒ Stepik
è²»çšïŒç¡æ
èšèªïŒãã·ã¢èª
æéïŒçŽ3ãæïŒèªåã®ããŒã¹ã§æ©ãããšãã§ããŸãïŒ
æ¥ä»ïŒã³ãŒã¹ã¯å®äºããŸããããè³æãžã®ç¡æã¢ã¯ã»ã¹ã¯ä¿æãããŸã
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ stepik.org/course/ Neural-ãããã¯ãŒã¯-401
ããã°ã©ã
ç·åœ¢ä»£æ°ãããŒã»ãããã³ããã³åŸé éäžã®åºç€ããšã©ãŒéäŒæã¢ã«ãŽãªãºã ããããã¯ãŒã¯ã¹ããŒã¿ã¹ã¢ãã¿ãªã³ã°ãçµè«ã
ã¡ãªãã
- ã³ãŒã¹ã¯ãã·ã¢èªã§ãã
- ããã»ã©è€éã§ã¯ãããŸããããæè¡çããã³ç©ççæ°åŠã®å°éåéã®åæ¥çã ãã§ãªããåŠç«¥ã«ãæããã§ãã
- äœãå ¥å ŽéŸå€ïŒPythonãšåŠæ ¡ã®æ°åŠã®ç¥èã®ã¿ãå¿ èŠã§ãã
- è¬çŸ©ã«ã¯å€æ°ã®å®çšçãªã¿ã¹ã¯ãšãã¹ããçµã¿èŸŒãŸããŠããŸããã³ãŒã¹ã«ã¯ãiPython Notebook圢åŒã®æ¬æ Œçãªå®çšçãªã¿ã¹ã¯ãå€æ°å«ãŸããŠããŸãã
çæ
- ææ°ã®ã©ã€ãã©ãªãšãã£ãŒãã©ãŒãã³ã°ãã¬ãŒã ã¯ãŒã¯ã¯äœ¿çšãããŸããã
- å ¥éã³ãŒã¹ïŒãã£ãŒãã©ãŒãã³ã°ã®åºç€ãšãªãé©åãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã«å°å¿µããŸããããã£ãŒãã©ãŒãã³ã°ã§äœ¿çšãããç¹å®ã®ã¿ã€ãã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãªãããã®å¿çšã¯ã³ãŒã¹ããã°ã©ã ã«ã¯ãããŸããã
- ãã®ã³ãŒã¹ã¯ãåŠç«¥ãåŠçãå«ãåŠçã察象ãšããŠãããããžãã¹ãžã®å¿çšã«ã€ããŠã¯è°è«ãããŠããŸããã
4.ã¹ã¿ã³ãã©ãŒãã«ãããèŠèŠèªèã®ããã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã
è¬åž«ïŒã¹ã¿ã³ãã©ãŒã倧åŠFei-Fei Liææããã³åœŒå¥³ã®åŠçJustin Johnsonããã³Andrej KarpathyïŒPhDåŠçïŒã®ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ããã³äººå·¥ç¥èœç 究æã®ææããã³æ ¡é·
ãã©ãããã©ãŒã ïŒã¹ã¿ã³ãã©ãŒã倧åŠ
è²»çšïŒç¡æ
èšèªïŒè±èª
æéïŒçŽ3ãæïŒèªåã®ããŒã¹ã§æ©ãããšãã§ããŸãïŒ
æ¥ä»ïŒç¡æ
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ cs231n.stanford.edu
ããã°ã©ã
ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã®çŽ¹ä»ãç»åã®ç·åœ¢åé¡ãæé©åã確ççåŸé éäžããã¥ãŒã©ã«ãããã¯ãŒã¯ã®çŽ¹ä»ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®çŽ¹ä»ããªããžã§ã¯ããããŒã«ã©ã€ãºããç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãšç»åæ§ç¯ã®å¯èŠåããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ããã³ã°ã·ã§ãŒãã¡ã¢ãªãããã¯ãŒã¯ããã£ãŒãã©ãŒãã³ã°ã©ã€ãã©ãªã®æŠèŠããããã¯ãŒã¯ãã¬ãŒãã³ã°ã®å®è·µïŒãã«ãããã»ãã·ã³ã°ãGPU / CPUã®äœ¿çšãå¹æçãªç³ã¿èŸŒã¿ãã³ãŒã¹ãããžã§ã¯ãã
ã¡ãªãã
- 倧åŠã®é«ãåŠè¡çè©å€ã
- ããã°ã©ã ã®å®å šæ§ïŒãã®ããã°ã©ã ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æäœãšãã®ãã¬ãŒãã³ã°ã®äžè¬ååãããã³ã³ã³ãã¥ãŒã¿ãŒããžã§ã³ã ãã§ãªããã£ãŒãã©ãŒãã³ã°å šè¬ã§äœ¿çšãããäž»èŠãªçš®é¡ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äž¡æ¹ã察象ãšããŠããŸãã
- GPU / CPUã§ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããå®éçãªåé¡ãææ°ã®ãã£ãŒãã©ãŒãã³ã°ã©ã€ãã©ãªã«ã€ããŠèª¬æããŸãã
- redditã®å€éšã³ãŒã¹åå è çšã®ã³ãã¥ããã£ãäœæãããŸãããããã§ã¯ã課é¡ã«ã€ããŠè°è«ããã質åãããã§ããŸãã
çæ
- ã³ãŒã¹ã¯è±èªã§ãã
- é«åºŠãªè€éæ§ãã¢ã«ãããã¯ã³ãã¥ããã£ã«çŠç¹ãåœãŠãïŒããã¯ã¹ã¿ã³ãã©ãŒã倧åŠã®åŠçåãã®ãªãªãžãã«ã³ãŒã¹ã§ãã
- çè«ã¯å®è·µãããå€ããçè«éšåãããç¹å®ã®ã©ã€ãã©ãªãšãœãããŠã§ã¢ã®å®è£ ã«è²»ããããæéãçããã³ãŒã¹ã¯ç¹å®ã®ã©ã€ãã©ãªã«é¢é£ä»ããããŠããŸããã
- é«ãå ¥åŠèŠä»¶ïŒæ°åŠãæ©æ¢°åŠç¿ãPythonãããã³ãã®ã©ã€ãã©ãªã«é¢ãã匷åãªç¥èãå¿ èŠã§ãã
- ããã¯å€§èŠæš¡ãªãªã³ã©ã€ã³ã³ãŒã¹ã§ã¯ãªããå ¬éãããŠãã倧åŠã®ã³ãŒã¹è³æã§ãã
5.ã¹ã¿ã³ãã©ãŒãã«ãããèªç¶èšèªåŠçã®ããã®æ·±å±€åŠç¿ã
è¬åž«ïŒãªãã£ãŒãã»ãœããã£ãŒãã¹ã¿ã³ãã©ãŒã倧åŠã®ææãSalesforceã®äž»èŠãªç 究è ã
ãã©ãããã©ãŒã ïŒã¹ã¿ã³ãã©ãŒã倧åŠ
è²»çšïŒç¡æ
èšèªïŒè±èª
æéïŒçŽ3ãæïŒèªåã®ããŒã¹ã§æ©ãããšãã§ããŸãïŒ
æ¥ä»ïŒç¡æã§ããããã¹ãŠã®è¬çŸ©ã
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ cs224d.stanford.edu
ããã°ã©ã
èªç¶èšèªåŠçãšãã£ãŒãã©ãŒãã³ã°ã®æŠèŠãåèªã®åçŽãªãã¯ãã«è¡šçŸïŒword2vecãGloVeãåèªã®é«åºŠãªãã¯ãã«è¡šçŸãååä»ããšã³ãã£ãã£ãèªèãããã¥ãŒã©ã«ãããã¯ãŒã¯ããããã¯ãŒã¯èšèšã®å®çšçãªåé¡ããã¬ãŒãã³ã°ãšãã©ã¡ãŒã¿ãŒéžæãTensorFlowã®çŽ¹ä»ããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ãGRUãããã¯ãŒã¯ããã³LSTMãšãæ©æ¢°ç¿»èš³ã§ã®äœ¿çšãååž°çãã¥ãŒã©ã«ãããã¯ãŒã¯ã解æããã³ããŒã³åæã§ã®å¿çšãããã¹ãåé¡ã§ã®ç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ãé³å£°èªèãæ©æ¢°ç¿»èš³ Euodiaãseq2seqã¢ãã«ãèªç¶èšèªåŠçã®ããã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®æªæ¥ïŒåçã¡ã¢ãªãããã¯ãŒã¯ã³ãŒã¹ã®ãããžã§ã¯ãã
ã¡ãªãã
- 倧åŠã®é«ãåŠè¡çè©å€ã
- ããã°ã©ã ã®å®å šæ§ïŒææãªããã¹ããéçºäžã®ããã¹ããªã©ãããã¹ãã®åæã®ããã«æ·±å±€åŠç¿ã§äœ¿çšããããã¹ãŠã®åºæ¬ã¢ãã«ãšãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ã¿ã€ããç¶²çŸ ãããŠããŸãã
- ææ°ã®TensorFlow深局åŠç¿ã©ã€ãã©ãªã䜿çšããããããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ãã¢ãŒããã¯ãã£ã®æ§ç¯ãããã³ãã©ã¡ãŒã¿ãŒã®éžæã®å®éçãªåé¡ãã«ããŒãããŠããŸãã
- ãã®ã³ãŒã¹ã«ã¯ãPiazzaãã©ãããã©ãŒã äžã«åå¥ã®ãã©ãŒã©ã ããããããã§ã¿ã¹ã¯ãè°è«ããã質åãããã§ããŸãã
çæ
- ã³ãŒã¹ã¯è±èªã§ãã
- é«åºŠãªè€éæ§ãã¢ã«ãããã¯ã³ãã¥ããã£ã«çŠç¹ãåœãŠãïŒããã¯ã¹ã¿ã³ãã©ãŒã倧åŠã®åŠçåãã®ãªãªãžãã«ã³ãŒã¹ã§ãã
- å®è·µãããçè«ã®æ¹ããçè«éšåãããç¹å®ã®ã©ã€ãã©ãªãšãœãããŠã§ã¢ã®å®è£ ã«è²»ããããæéãçããªããŸãã
- é«ãå ¥åŠèŠä»¶ïŒæ°åŠãæ©æ¢°åŠç¿ãPythonãããã³ãã®ã©ã€ãã©ãªã«é¢ãã匷åãªç¥èãå¿ èŠã§ãã
- ããã¯å€§èŠæš¡ãªãªã³ã©ã€ã³ã³ãŒã¹ã§ã¯ãªããå ¬éãããŠãã倧åŠã®ã³ãŒã¹è³æã§ãã
6.ã¬ã€ãžãŒããã°ã©ããŒã«ãããããŒã¿ãµã€ãšã³ã¹ïŒPythonã§ã®ãã£ãŒãã©ãŒãã³ã°ã
ã³ãŒã¹äœæè ïŒå¹ åºãåŠè¡çµéšïŒã³ãã³ãã¢å€§åŠãNYUããã³ããŒã«ã¬ããžããã¥ãŒã¹ã¯ãŒã«ã§æ°åŠè§£æãçµ±èšãæ©æ¢°åŠç¿ãã¢ã«ãŽãªãºã ãã³ã³ãã¥ãŒã¿ãŒã°ã©ãã£ãã¯ã¹ãç©çåŠãæããïŒãšãªã³ã©ã€ã³ã§ã®äœæ¥çµéšãæã€ããŒã¿ã¢ããªã¹ããéçºè ãããã°ããŒã¿ãšã³ãžãã¢Lazy Programmerãšããååã§é ããŠããåºåãšããžã¿ã«ã¡ãã£ã¢ã ãã®ã³ãŒã¹ã«å ããŠã圌ã¯å€ãã®æ·±å±€æè²ã³ãŒã¹ãå®æœããŠããŸãã
ãã©ãããã©ãŒã ïŒ Udemy
ã³ã¹ãïŒ 120 $
èšèªïŒè±èª
æéïŒæå®ãªããã³ãŒã¹ã«ã¯37ã®è¬çŸ©ãå«ãŸãã7ã€ã®ã»ã¯ã·ã§ã³ã«åãããŠããŸã
æ¥çšïŒç¡æã®éåžžã³ãŒã¹
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ www.udemy.com/data-science-deep-learning-in-python
ããã°ã©ã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®çŽ¹ä»ããã«ãã¯ã©ã¹åé¡ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ãã¬ãŒãã³ã°ããã€ããŒãã©ã¡ãŒã¿ãŒã®èšå®ãçžäºæ€èšŒãæ£ååãTensorFlowã®æäœããããžã§ã¯ãïŒè¡šæ èªèããã³ãµã€ããŠãŒã¶ãŒã®è¡åã®äºæž¬ã
ã¡ãªãã
- 2ã€ã®ã³ãŒã¹ãããžã§ã¯ããå«ããå€æ°ã®ãã¹ããšå®éã®ã¿ã¹ã¯ã
- äœãšã³ããªãŒãããå€ïŒé«åºŠãªæ°åŠãšPythonã®åºç€ããã®ç¥èã®ã¿ãå¿ èŠã§ãã
- æ°åŠãšè€éãªçè«ã«ããµããŠããã®ã§ã¯ãªããå¿ èŠãªãã¹ãŠã®çè«çæ å ±ãå«ãå®è·µæåã®ã³ãŒã¹ã
- ãã®ã³ãŒã¹ã§ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®çè«ã®åºç€ãšããã£ãŒãã©ãŒãã³ã°ã§äœ¿çšãããç¹å®ã®çš®é¡ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äž¡æ¹ãæ±ããŸãã
- ãã®ã³ãŒã¹ã¯ãããžãã¹ã§ã®å®çšçãªã¢ããªã±ãŒã·ã§ã³ã«çŠç¹ãåœãŠãŠãããåŠçããªã³ã©ã€ã³ã¹ãã¢ã®ãŠã§ããµã€ãã§ã®ãŠãŒã¶ãŒã®è¡åãäºæž¬ããåéã®ã³ãŒã¹ãããžã§ã¯ããå«ãã§ããŸãã
- TensorFlowãå«ããææ°ã®ããŒã¿åæãšãã£ãŒãã©ãŒãã³ã°ã®ã©ã€ãã©ãªã䜿çšãããŸãã
çæ
- ã³ãŒã¹ã¯è±èªã§ãã
- ç¡æã§ã¯ãªãããªã³ã©ã€ã³ã³ãŒã¹ã®äŸ¡æ Œã¯ããªãé«ããªã£ãŠããŸãã
- éå®ããã°ã©ã ïŒã³ãŒã¹ã¯ãã£ãŒãã©ãŒãã³ã°ã®äž»èŠãããã¯ã®äžéšã®ã¿ã察象ãšããŠããŸããããšãã°ãã¯ãŒãããã»ãã·ã³ã°ãšãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãã®ã³ãŒã¹ã®ç¯å²å€ã§ãããèè ã®ä»ã®ã³ãŒã¹ã§èŠã€ããããšãã§ããŸãã
7.ãžã§ãŒãžã¢å·¥ç§å€§åŠã«ããã匷ååŠç¿ã
è¬åž«ïŒãã£ãŒã«ãºL.ã€ã¹ãã«ããžã§ãŒãžã¢å·¥ç§å€§åŠãææã人工ç¥èœã®å°é家ã ãã€ã±ã«L.ãªãããã³ããã©ãŠã³å€§åŠãææã匷ååŠç¿ã®å°é家ã
ãã©ãããã©ãŒã ïŒ Udacity
è²»çšïŒç¡æ
èšèªïŒè±èª
æéïŒçŽ4ãæïŒèªåã®ããŒã¹ã§æ©ãããšãã§ããŸãïŒ
æ¥çšïŒç¡æã®é²è¡äžã®ã³ãŒã¹
ã³ãŒã¹ãžã®ãªã³ã¯ïŒ www.udacity.com/course/reinforcement-learning--ud600
ããã°ã©ã ïŒäžå®å šïŒ
匷ååŠç¿å ¥éããã«ã³ãææ決å®ããã»ã¹ãå«ãã äžè¬åãããéšåçã«èŠ³å¯å¯èœãªãå ±é ¬ãšãã®ã·ãŒã±ã³ã¹ãããªã·ãŒãšãã®æ€çŽ¢ãè¡åæ§é ãããªã·ãŒãšãšãŒãžã§ã³ãã®è©äŸ¡ãTDãã¬ãŒãã³ã°ïŒæéå·®ïŒãQãã¬ãŒãã³ã°ãåæãé«åºŠãªã¢ã«ãŽãªãºã åæãç 究ïŒã€ã³ããªãžã§ã³ã¹ïŒæŠç¥ãã²ãŒã çè«æ©æ¢°åŠç¿ãšã®æ¥ç¶ã
ã¡ãªãã
- ãã®ã³ãŒã¹ã¯ã匷åãã¬ãŒãã³ã°ã®åéã®äž»èŠãªç 究è ã«ãã£ãŠæºåãããŸããã
- ã²ãŒã çè«ãªã©ã®é¢é£åéãå«ããããã¯ã®éåžžã«åºãç¯å²ã
- å€æ°ã®èå³æ·±ãå®çšçãªã¿ã¹ã¯ã
- 匷åã䌎ããã£ãŒãã©ãŒãã³ã°ã®åéã§ã¯ãåªããçµæãåŸããããšããäºå®ã«ããããããïŒããšãã°ãGoogle DeepMindã®AlphaGoïŒããã®æ¹åæ§ã¯éåžžã«ææã§ããããã®ã¬ãã¥ãŒã§çŽ¹ä»ããä»ã®ã³ãŒã¹ã§ã¯ã匷åã䌎ãåŠç¿ã®ãããã¯ã¯é瀺ãããŠããŸããã
çæ
- ã³ãŒã¹ã¯è±èªã§ãã
- é«ãå ¥åŠåºæºïŒæ©æ¢°åŠç¿ãšæ°åŠã®ç¥èã¯ã西éšå€§åŠã®åæ¥çã®ã¬ãã«ã§å¿ èŠã§ãã ãŸããJavaèšèªãç¥ã£ãŠããå¿ èŠããããŸã;ã³ãŒã¹ã«ã¯Javaã®çŽ¹ä»ã¯ãããŸããã
- é«åºŠãªè€éæ§ïŒå€ãã®æ°åŠãåºç¯ãªçè«çéšåã
- 人工ç¥èœã®åéã§äœ¿çšãããæ©æ¢°åŠç¿ã®ããªãå ·äœçãªæ¹åãã«ããŒããæ¹åã¯1ã€ã ãã§ãã
- ã³ãŒã¹ã®ãã¹ãŠã®ã»ã¯ã·ã§ã³ããã£ãŒãã©ãŒãã³ã°å°çšã§ã¯ãããŸããã 深局匷åãã¬ãŒãã³ã°ã§ã¯ãããŒã¯ãªãŒã³ãŒã¹ã®æ·±å±€åŒ·ååŠç¿ã®ææãããã«äœ¿çšã§ããŸãã
- ã³ãŒã¹ã¯åŠè¡ã³ãã¥ããã£ã«çŠç¹ãåœãŠãŠãããããžãã¹ã¢ããªã±ãŒã·ã§ã³ã¯èæ ®ãããŠããŸããã
ä»ã®ãªã³ã©ã€ã³ãã£ãŒãã©ãŒãã³ã°ã³ãŒã¹ã®ãªã¹ãã¯ã Eclass.cc ã³ã³ãã¬ãŒã·ã§ã³ã«ãã ãŸãã
TLïŒDRäžçªäžã®è¡ã¯ãã»ãšãã©ã®ãªã³ã©ã€ã³ã³ãŒã¹ã®å©ç¹ã¯ãã³ã¹ããå©äŸ¿æ§ïŒãã€ã§ãã©ãããã§ãå匷ã§ããïŒãçè«çãªãããã¯ã®è¯ãã«ãã¬ããžã§ãããšããããšã§ãã äž»ãªæ¬ ç¹ïŒåŠçãžã®ãªãªãšã³ããŒã·ã§ã³ãšå®çšçãªåé¡ãžã®ååãªæ³šæãã»ãšãã©ã®è±èªããã°ã©ã ã
æè¿ãããŒã¿ãµã€ãšã³ã¹ãŠã£ãŒã¯ã§ããã«ã¿ã€ã ã®æ·±å±€åŠç¿ããã°ã©ã ãçºè¡šããŸããã
New Professions Labã®ããã£ãŒãã©ãŒãã³ã°ã
è¬åž«ïŒ Grigory SapunovãCTOã§ãããYandex.NewsãµãŒãã¹éçºã®å ãããã§ããIntentoã®å ±åèšç«è ã 圌ã¯20幎以äžããã°ã©ãã³ã°ãè¡ã£ãŠããããã®ãã¡çŽ15幎ã¯ããŒã¿åæã人工ç¥èœãæ©æ¢°åŠç¿ã«åŸäºããŠããã2011幎ãããã£ãŒãã©ãŒãã³ã°ã«åŸäºããRoadARãããžã§ã¯ãïŒéè·¯äžã®ãªããžã§ã¯ãã®ãã¥ãŒã©ã«ãããã¯ãŒã¯èªèïŒãIcon8ïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ãã£ã«ã¿ãŒïŒãªã©ã®ãããžã§ã¯ãã«åå ããŠããŸãã
ãµã€ãïŒã¢ã¹ã¯ã¯ãã¡ããã¯ã©ã¹ããã¬ã¹ãã³ã¹ã«ã€
è²»çšïŒ 6äžã«ãŒãã«ã
èšèªïŒãã·ã¢èª
æéïŒãã«ã¿ã€ã +å®éšå®€äœæ¥+ãã«ã¿ã€ã
æ¥ä»ïŒ 11æ26æ¥ãã12æ3æ¥ãŸã§
ã³ãŒã¹ãªã³ã¯
ããã°ã©ã
1æ¥ç®
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ææ°æ©èœã®æŠèŠ
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®åºæ¬
ç»ååé¡ã®ååã ç³ã¿èŸŒã¿ãããã¯ãŒã¯ïŒCNNïŒ
ã±ãŒã¹ã¹ã¿ãã£ã æåãªã¢ãã«ã®åæïŒLeNetãAlexNetã...
ç·Žç¿ïŒCaffeã©ã€ãã©ãªã ç¬èªã®ãã¥ãŒã©ã«ãããã¯ãŒã¯åé¡åããŒãããäœæãã
ä»ã®ã¿ã¹ã¯ïŒã¹ã¿ã€ã«è»¢éãæ€åº/ã»ã°ã¡ã³ããŒã·ã§ã³ãããã¹ãåé¡ãªã©ïŒã«ç³ã¿èŸŒã¿ãããã¯ãŒã¯ã䜿çšãã
ã±ãŒã¹ã¹ã¿ãã£ïŒã€ã¡ãŒãžã¹ã¿ã€ã«ã®è»¢éã Prismaãªã©ã®ãµãŒãã¹ã®èåŸã«ããã¢ã«ãŽãªãºã ã®ä»çµã¿
ç»åã®åé¡ã«é¢ããæ¯é±ã®å®éšå®€äœæ¥ã
2æ¥ç®
å®éšå®€äœæ¥ã®åæãšåè³è ã®å ±é ¬
ãªã«ã¬ã³ããããã¯ãŒã¯ã®åºç€ïŒRNNïŒ
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããããã¹ãã®åé¡ã Word2vecãdoc2vecã å®å šã«æ¥ç¶ããããããã¯ãŒã¯ãç³ã¿èŸŒã¿ãããã¯ãŒã¯ãåé¡çšã®åçºãããã¯ãŒã¯
ç·Žç¿ïŒKeras / Theano Libraryã RNNã䜿çšããããã¹ãã®ææ åæã«é¢ããäœæ¥
ã·ãŒã±ã³ã¹åŠç¿ãšseq2seqãã©ãã€ã ã seq2seqã§è§£æ±ºãããã¿ã¹ã¯ã®äŸïŒç¿»èš³ãããã¹ãçæãé³å£°èªèã...
ã±ãŒã¹ã¹ã¿ãã£ïŒããã£ãããããã®äœæãã ãã€ã¢ãã°ã§ã®ããã¹ãçæ
ãã«ãã¢ãŒãã«åŠç¿ã éä¿¡ç³ã¿èŸŒã¿ããã³ãªã«ã¬ã³ããããã¯ãŒã¯ã ã±ãŒã¹ã¹ã¿ãã£ïŒç»åã®èª¬æã®çæ
ããžãã¹ã«ããããã£ãŒãã©ãŒãã³ã°ã®ãã¹ã¿ãŒã¯ã©ã¹
ããã°ã©ã ã®ç¹åŸŽïŒ
- å®çšçãªåé¡ã®è§£æ±ºã«çŠç¹ãåœãŠã
- ããžãã¹ã±ãŒã¹ã¹ã¿ãã£
- çè«ã¯æ·±å±€åŠç¿ã®å°é家ã«ãªãå§ããã®ã«ååã§ã
- ã¯ã©ãŠãã§çºè¡ãããGPUãã·ã³ã®ã©ãäœæ¥
- å çã«è³ªåããå¯èœæ§
- ãªã¢ãŒãåå ãªãïŒçŸåšïŒ
- çè«çãªåé¡ã¯ããªã³ã©ã€ã³ã³ãŒã¹ãšåã泚æãæã£ãŠããŸããã
ããã°ã©ã ã®è©³çŽ°ã«ã€ããŠã¯ãã¡ããã芧ãã ãã ãHABR-DLã³ãŒãã«ããïŒãããŒãžã£ãŒã«äŒããå¿ èŠããããŸãïŒã10ïŒ ã®å²åŒãé©çšãããŸãã
ã³ã¡ã³ãã質åãæè¿ããŸãã