ã¯ããã«
ã³ã¬ã¯ã·ã§ã³å šäœïŒBomBimBomãŸãã¯Turboãã¥ãŒã€ã³ã¬ã ã€ã³ãµãŒãããŸãã¯ã³ã³ãã¥ãŒã¿ãŒã²ãŒã ãã£ã©ã¯ã¿ãŒçšã®éè£ ç²ã®ã»ããïŒãåéããããã«100åã®ã¢ã€ãã ã®ãã¡3åã®ã¿ãååŸããããšãæ®ã£ãŠããå Žåãç®ã®çãšå¥è·¡ã®æåŸ ãé ããæ°åŠçåæã®è«çãšçç±ãæŒãåºããŸãã ãããå°ãããã°ãããšã¯æ®ããŸãïŒããšããèãã1ã€ã ããããŸãã å šéšéããŸãïŒã çŸæç¹ã§ã¯ããã®åãã€ãããã³ã¬ã¯ã¿ãŒã®èŠªrelativeãå人ã¯ãããããå°ãããããïŒããšãã1ã€ã®è³ªåã ãã§å°æããŠããŸããã ãæ¯ããã¯å«ããªãã¥ãŒã€ã³ã¬ã ããã£ãšè²·ãå¿ èŠããããŸããããããšãããŒã€ãã¬ã³ããã²ãŒã ããã¢ã«ã®æãçããcheç è ãã§ã¢ã³ã¹ã¿ãŒãåããŸã§ã女ã®åã¯ã©ãã ãäžäººã§åº§ãå¿ èŠããããŸããïŒ
Yandexã䜿çšããŠãããéåžžã®ãæ€çŽ¢ãšã³ãžã³ã®ã¯ãšãªèªäœãäœæããããšã¯é£ããããããNåã®ã©ã€ããŒã®å®å šãªã³ã¬ã¯ã·ã§ã³ãçµã¿ç«ãŠãã«ã¯ãã¥ãŒã€ã³ã¬ã ãã©ãã ãå¿ èŠãããšãã質åã«çããããšã¯éåžžã«å°é£ã§ãã èªåã§åé¡ã解決ããããšãããšãéåžžã人ã ã¯ç«ã¡åŸçããŸã-ã©ã®æ¹æ³ã§ã¢ãããŒããããã¯æ確ã§ã¯ãããŸããã
ãã®èšäºã§ã¯ã次ã®3ã€ã®è³ªåã«å¯ŸåŠããŸããäžèŠãããšããæ確ã§ãªãã¿ã¹ã¯ãžã®ã¢ãããŒãæ¹æ³ã解決æ¹æ³ã ïŒeBayã§2次æ¹çšåŒã®åŒãè³Œå ¥ãããšãããªãã¡ãŒãåãåãã®ã§ã¯ãªãïŒç§åŠçãªè³ªåã«å¯Ÿããç§åŠçãªçããåãåãããã«äœ¿çšããæ€çŽ¢ãšã³ãžã³ã®çš®é¡ã¯äœã§ããïŒ ãããŠãã¡ãããã«ãŒãºãªãŒãã®ã³ã¬ã¯ã·ã§ã³ãçµã¿ç«ãŠãã®ã«ã©ããããã®ãã¥ãŒã€ã³ã¬ã ãå¿ èŠã§ããïŒ
èšäºã®ããã²ãŒã·ã§ã³
èšäºã¯ããªã倧ããããšãå€æããŸããã ãããã£ãŠãäœããã¹ãããã§ããå Žæã§ã¯ãå ±åããŸãã ãã®ãããªç« ã§ã¯ãåé¡ã®è§£æ±ºçã§ã¯ãªããåé¡ã®è§£æ±ºã«äœ¿çšãããæŠå¿µãšååãæ±ããŸãã 詳现ãé¢çœããªã£ãããåŸã§èŠéããå Žæãèªã¿çŽãããšãã§ããŸãã åé¡ã®èšèé£ããããç解ããŠããã°ãããã«çããç¥ããã人ã¯ããã«çµæãèŠãããšãã§ããŸãã ãã ãã Alpha Wolframã®ç« ãåå¥ã«èªãããšããå§ãããŸãã
ãŸãã䟿å®äžãç« ã®å®å šãªãªã¹ãã瀺ããŸãã
- åé¡ã®å£°æ
- ç·ã®åã女ã®åãããŒã«
- åãã€ãããã³ã¬ã¯ã¿ãŒã®æ°åŠçã¢ããªã³ã°
- 奜å¥å¿ã匷ãããŒãã«
- ç§ã¯ã¢ã«ãã¡ãŠã«ãã©ã ã§ã
- æ°åŠæ¢åµ
- 300幎å
- äžè¡
- 2ã€ã®ãšã³ãã£ãã£
- å»åž«ã®å¹³åæ£è äœæž©ãšå¹³å絊äž
- çŽæ¥ç»ããªãå Žåã¯æšªã«è¡ããŸã
- äœããã®ãŠã£ã
- çµæ
- èªçæ¥ãšã«ãã®éè¡
- çµè«
åé¡ã®å£°æ
æ°åŠã®å³å¯ããæãã人ãšãããã«ç²ŸéããŠããªã人ã®äž¡æ¹ã«æ確ã«ããããã«ãã³ã¬ã¯ã·ã§ã³ã®åé¡ã2ã€ã®æ¹æ³ã§å®åŒåããŸãã
- ïŒåäŸã®é ãã銎æã¿ã®ããèšèªãéããŠïŒåãã¥ãŒã€ã³ã¬ã ã«Kåã®ãããèã®1ã€ãçãã確çã§å«ãŸããããã«ããŸãã Nåã®ãã¥ãŒã€ã³ã¬ã ãè³Œå ¥ããå Žåãã©ã€ããŒã®ã³ã¬ã¯ã·ã§ã³å šäœãåéããå¯èœæ§ã¯ã©ã®ãããã§ããïŒKåã®ãŠããŒã¯ãªã©ã€ããŒããããŸãïŒã
- ïŒããç§åŠçãªèšèªã§ïŒ Kåã®åºæ¬çãªçµæã®ã»ãããäžããŠã¿ãŸãããïŒãã¹ãŠã®çµæã¯åæ§ã«å¯èœæ§ããããŸãïŒã Nåã®å®éšåŸãåã€ãã³ããå°ãªããšã1åçºçããå¯èœæ§ã¯ã©ã®ãããã§ããïŒ
å°æ¥çã«åœ¹ç«ã€å€ãã®ãã€ã³ããããã«æ確ã«ããŸãã ãŸããç°¡åã«ããããã«ãã³ã¬ã¯ã·ã§ã³ã®ãã¹ãŠã®èŠçŽ ã«1ããKãŸã§ã®çªå·ãä»ããŸãããããã£ãŠãåçŽã«çªå·ãæ±ããŸãã 第äºã«ãåºæ¬çãªçµæã¯é·ãNã®ã·ãŒã±ã³ã¹ã§ãããKåã®ç°ãªãçªå·ã§æ§æãããŸãã ããšãã°ãK = 3ããã³N = 5ã®å Žåãã·ãŒã±ã³ã¹{3,3,1,2,3}ã{1,2,3,3,3}ã{3,3,1,1,1}ã¯æ¬¡ã®ããããã§ããå¯èœãªçµæãèŠçŽ ã®é åºãéèŠã§ãã ãã®ãããªã·ãŒã±ã³ã¹ã§ãã¹ãŠã®Kçªå·ãå°ãªããšã1åçºçããå Žåãããã¯ãæåãããã·ãŒã±ã³ã¹ãæå³ããçºçããªãå Žåãå°ãªããšã1ã€ã®çªå·ã¯çºçãããã·ãŒã±ã³ã¹ã¯æåããŸããã ããã«ãå¯èœãªã·ãŒã±ã³ã¹ãåæ§ã«èããããŸãã 第äžã«ãé åºãéèŠã§ããã°ãå¯èœãªãã¹ãŠã®Kæ°ã®ã·ãŒã±ã³ã¹ã®æ°ãNèŠçŽ ã®é·ããåžžã«èšç®ã§ããŸãã ãã®éé¡ã¯K ^ Nã§ãã 4çªç®ã«ãNã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çã¯ããæåãããã·ãŒã±ã³ã¹ã®ç·æ°ã«å¯Ÿããæ¯çãã€ãŸãK ^ Nã«çããã ãããã£ãŠã確çãŸãã¯éåžžã«å€ãã®ãæåãããã·ãŒã±ã³ã¹ã®ãããããæ€çŽ¢ã§ããŸã-ãã䟿å©ãªãããäžæ¹ã¯åžžã«ä»æ¹ããååŸã§ããŸãã
ç·ã®åã女ã®åãããŒã«
ã泚æäºé ããšãæ°éãK ^ Nãã«çåãæããªã人ãããã³ãéä¹ããšãnããkãŸã§ã®Cããäœã§ããããèŠããŠãã人ã¯ã ãã®ç« ãé£ã°ã ãŠæ¬¡ãžé²ã ããšãã§ããŸã ã çµã¿åããè«ãå®å šã«å¿ãã人ããŸãã¯ãŸã æ £ããŠããªã人ã®ããã«ãéå®ããäž»ãªãã€ã³ããèæ ®ããŠãã ããã
ã³ã³ããããªã¯ã¹ã®æŽå²ã¯ãå€ä»£ã«æ ¹ãããŠããŸããããã²ãŒããŒã®ãããã§äŸç¶ãšããŠæŽ»çºã«çºå±ããŸããã ã«ã«ãããã¬ãªã¬ãªããã¡ãŒã ãã¹ã«ã«ãããã³ãã®äžçã®ä»ã®å倧ãªé è³èªäœã¯ãç±å¿ãªã²ãŒããŒã§ã¯ãããŸããã§ããïŒäºå®ã§ã¯ãããŸãããïŒãå°ãªããšãã²ãŒããŒã¯ãã²ãŒã ãåå©æŠç¥ãããã³ã¬ã€ãã«å·çãäŸé ŒããŸããã ãã¡ããããµã€ã³ããšã«ãŒãã2å以äžãã¬ã€ããåŸãæŠè»ãéæ³ã䜿ã£ãã®ã£ã³ãã«ã®ãã¡ã³ã¯ããŸãããŸããã§ããã çæ¹ã§ã¯äžè¶³ããããããçæ¹ã§ã¯çããã ããããããºã«ãã®ã£ã³ãã«ã®åæã«ç©æ¥µçã«é©çšããããšã«ãããçµã¿åããè«ã¯æ°åŠã®ã»ãŒãã¹ãŠã®åéã§å®éçãªåé¡ã解決ããã®ã«éåžžã«åœ¹ç«ã€ããšãå€æããŸããã ããã«ãçµã¿åããææ³ã¯ãçµ±èšåŠãããã°ã©ãã³ã°ãéºäŒåŠãèšèªåŠãããã³ä»ã®å€ãã®ç§åŠã§é·ãéæçšã§ããããšã蚌æãããŠããŸãã ãŠã£ãããã£ã¢ã¯æªã§ãïŒããã¯äœåºŠãèŠããŠããŸãïŒããåŒã«é¢ä¿ã®ãªãæŠèŠãèªãããšã¯ç©ççã«å¯èœã§ãããä¿¡é Œããã¹ãã§ã¯ãããŸããã ããã«ãããããããããªãã¯èšäºãã³ã³ããããªã¯ã¹ã®æŽå²ããèªãããšãã§ããŸã
çµã¿åããè«ã«é¢ããããŸããŸãªè³æãæ¢ããŠãããšãã«ããããµã€ã ããŸãã¯ãã®ãµã€ãã®ããã¥ã¡ã³ãã® 1ã€ã«åºäŒããŸããã æžãããŠããèšèªã奜ãã ã£ãã®ã§ãããã§çµã¿åããè«ã«æ £ããããšãã§ããŸãã äžè¬çã«ããã®ãµã€ãã«ã€ããŠã¯èŠããŠããŸãããã1ã€ã®ãããããã§ã¯ãããŸããã è»éã«ã€ããŠã®ã¿ã¹ã¯ããããŸãã ç§ã¯ãããæ¬åœã«å¥œãã§ãé¢çœããã«èŠããã®ã§ãä»ãããèŠãŠãã³ã¬ã¯ã·ã§ã³ã®åé¡ã解決ããæ¹æ³ãèããŸããããããã«ã€ããŠã¯åŸã§è©³ãã説æããŸããã
䟿å©ã«ãªãçµã¿åããè«ã®éèŠãªäºå®ã以äžã«ç€ºããŸãã
1.ïŒåºæ°Kã®çªå·äœç³»ã«ã¯ãåèšNæ¡ã®æ°åãããã€ãããŸããïŒ Kåœã®ä»£è¡šè ãNåžã«é 眮ããæ¹æ³ã¯ããã€ãããŸããïŒ Kåã®ç°ãªãè²ã®ãã§ã«ããã³ãããå ŽåãNåã®æ£æ¹åœ¢ã«è²ãä»ããã«ã¯ããã€ã®æ¹æ³ããããŸããïŒ ç°ãªãè²ã®æ°Kãš1ã€ã®ããŒã«ã ããåããã¯ã¹ã«åãŸãå ŽåãNåã®ããã¯ã¹ãã«ã©ãã«ãªããŒã«ã§æºããæ¹æ³ã¯ããã€ãããŸããïŒ
ããããã¹ãŠã®è³ªåã«å¯Ÿããçãã¯åãã§ã-ãç¹°ãè¿ãã®ããé 眮ãã ããŒã«ã®å Žåãæåã®ããã¯ã¹ã«Kè²ã®ããŒã«ã眮ãããšãã§ããŸãã ã€ãŸãã1ã€ã®ããŒã«ãæåã®ããã¯ã¹ã«å ¥ããããã®Kãªãã·ã§ã³ããããŸãã 2çªç®ã®ããã¯ã¹ã§ã¯ãKåã®æ¹æ³ã§ããŒã«ã貌ãä»ããããšãã§ããŸãã æåãš2çªç®ã®ããã¯ã¹ãããŒã«ã§æºãããªãã·ã§ã³ã¯ããã§ã«K * K = K ^ 2ã§ãã ããã¯ãæåã®ããã¯ã¹ã®å¡ãã€ã¶ããªãã·ã§ã³ããšã«ã2çªç®ã®ããã¯ã¹ãå¡ãã€ã¶ãããã®Kãªãã·ã§ã³ã®ãããããããããã§ãã Nåã®ããã¯ã¹ãããå ŽåãK ^ Nåã®ãªãã·ã§ã³ãããããšãæå³ããŸãã
2.ïŒæ°å€ã®åæ¡ã1åã ãåºçŸããããã«ãåºæ°Nã®æ°å€ã·ã¹ãã ã«ã¯åèšNæ¡ã®æ°å€ãããã€ãããŸããïŒ ããããã®åœã®ä»£è¡šã座ãããã«ãNã®åœã®ä»£è¡šãNåžã«ã©ã®ããã«é 眮ã§ããŸããïŒ ç°ãªãè²ã®ãã§ã«ããã³ãNåãããåãã§ã«ããã³ã䜿çšãããå ŽåïŒãã¡ããåæç»ãªãïŒãNåã®æ£æ¹åœ¢ã«è²ãä»ããæ¹æ³ã¯ããã€ãããŸããïŒ Nåã®ããŒã«ãNåã®ç®±ã«å ¥ããã«ã¯ããã€ã®æ¹æ³ããããŸããïŒ
ããããã¹ãŠã®è³ªåã«å¯Ÿããçãã¯ããé åãã§ãã äžè¬ã«ãããŒã«ãšæ°åã®ããã±ãŒã¹ã¯ãèšèé£ãã«ãããŠãåãã§ãã ããããNåã®ããŒã«ã眮ãããšãã§ããŸãã 2çªç®ã®å Žæã«ã¯æ®ãã®N-1ããŒã«ãããã3çªç®ã®å Žæã«ã¯æåã®2ã€ã®å ŽæN-2ããŒã«ãåããåŸã®æ®ãã®ããããããããŸãã ãããŠæåŸãŸã§ç¶ããŸãã 補åN *ïŒN-1ïŒ*ïŒN-2ïŒ*ïŒN-3ïŒ* ... *ïŒN-ïŒN-2ïŒïŒ*ïŒN-ïŒN-1ïŒïŒãããããšãããããŸãã 1ããNãŸã§ã®ãã¹ãŠã®èªç¶æ°ã®ãã®ç©ã¯ãéä¹ãšåŒã°ããŸãã ãããŠããNïŒããšæå®ãããŠããŸãã ã¯ããæå笊ãããã¯éä¹ãŸãã¯1ããNãŸã§ã®ãã¹ãŠã®èªç¶æ°ã®ç©ã®æå®ã§ããããã¯ã©ãã§ãã©ãã§ãéåžžã«é »ç¹ã«èŠãããŸãã補åãšããŠãããæžãã®ã¯ããªãé·ãæéã§ãããããèšé²ãæå笊ã¢ã€ã³ã³ã«ç°¡ç¥åããŠççž®ããããšã«ããŸããã éä¹ã«ã€ããŠã®å€ããžã§ãŒã¯ããããŸãããããã¯æåž«ãäŒãããããšã§ãã
ãã¿ã³è©Šéšã§ã¯ãè¬åž«ã¯åŠçã«ãã€ã©ãŒã·ãªãŒãºã«åºå±è ãé 眮ããããã«äŸé ŒããŸãã
åŠçïŒ1ã€ã«åå²ããã1ã€ã®ãã©ã¹xïŒå€§å£°ã§å³soleã«çºé³ããŸãïŒ+ 2ã§å²ã£ãx 2ïŒåãã倧声ã§ïŒ+ 3ã§å²ã£ãç«æ¹äœã®x
è¬åž«ïŒããã£ããããã£ããããã ãã§ããªããããªã«å«ãã§ããã®ïŒïŒ
åŠçïŒããã§ãããæå笊ãããã§ã!!!
ãŒãããã®éä¹ã1ã«ãªãããšã«æ³šæããŠãã ããã0ïŒ= 1
3.ïŒ Nåã®Kåã®ããã¯ã¹ã«çªå·ä»ãããŒã«ãå å¡«ããæ¹æ³ã¯ããã€ãããŸããïŒ ïŒç®±ãããããŒã«ãå€ãïŒããªãã¯Nã®æ ç»ã®ãã±ãããšKã®ã¬ãŒã«ãã¬ã³ããæã£ãŠããŸãã åéã«ãã±ãããããã€æž¡ãããšãã§ããŸããïŒ ïŒã¬ãŒã«ãã¬ã³ããããã±ãããå€ãïŒ
ãããã®è³ªåã«å¯Ÿããçãã¯ããç¹°ãè¿ãã®ãªãé 眮ãã§ãã ãã ãããã®æ±ºå®ã¯æåã®æ®µèœã§ã¯ãªãã2çªç®ã®æ®µèœã«äŒŒãŠããŸãã ããããNåã®ããŒã«ã眮ãããšãã§ããŸãã 2çªç®ã®å Žæã«ã¯æ®ãã®N-1ããŒã«ãããã3çªç®ã®å Žæã«ã¯æåã®2ã€ã®å ŽæN-2ããŒã«ãåããåŸã®æ®ãã®ããããããããŸãã ç®±ããªããªããŸã§ç¶ããŸãã ãããã£ãŠã補åã¯N *ïŒN-1ïŒ*ïŒN-2ïŒ*ïŒN-3ïŒ* ... *ïŒN-ïŒK-1ïŒïŒã«ãªããŸãã ã€ãŸããK + 1ããNãŸã§ã®ãã¹ãŠã®èªç¶æ°ã®ç©ã§ãããããããã®ãããªç©ã¯N *ïŒN-1ïŒ*ïŒN-2ïŒ*ïŒN-3ïŒ* ... *ïŒN-ïŒK-1ïŒïŒã®åœ¢åŒã§ãã€ã³ãã§ããŸãã *ïŒNKïŒïŒ /ïŒNKïŒïŒ = NïŒ/ïŒNKïŒïŒ äžè¬çã«ãããã¯ã¯ããã«çãã§ãã
4.ïŒæåŸã®æ®µèœã¯ãé åºãéèŠãªå ŽåãšéèŠã§ãªãå Žåãããçç±ã«ã€ããŠã§ãã ãããŠããnããkãžã®Cããšã¯äœã§ããã
ããªããUAZãæã£ãŠããŠãåéãšé£ãã«è¡ããšããŸãããïŒç·ã ãã女ã¯ããŸããïŒã UAZã¯K人ã«åãããšãã§ããŸãã ãããŠãããªãã®ãã¹ãŠã«ã¯N.ã®å人ãããŸãããªãã®UAZã«åããªã人ã¯èª°ã§ãä»ã®è»ã§è¡ããŸãã åéã«UAZãåããã«ã¯ããã€ã®éžæè¢ããããŸããïŒ çŸåšãªã³ã©ã€ã³ã«ãªã£ãŠãã20人ïŒNïŒã®å人ã®ãã¡ã5人ïŒKïŒã®ããŒã ãéããŠDotAã1æéãã¬ã€ããæ¹æ³ã¯ããã€ãããŸããïŒ ïŒãã¡ããã埮åŠãªãã¥ã¢ã³ã¹ããããŸã-ããªããèæ ®ãããã©ããããããç§ãã¡ã¯ãããæ°ã«ããŸããïŒ
ãã®äŸãšä»¥åã®ãã¹ãŠã®äŸã®éãã¯äœã§ããïŒ ãã®é åºã¯éèŠã§ã¯ãããŸããã UAZã«èª°ããã©ã®ããã«ãã©ãã«åº§ããããŸãã¯ããªããæåã«èª°ã§ããã誰ãããŒã ã®2çªç®ã«é»è©±ãããã¯ãäœã®åœ¹å²ãæãããŸããã äž»ãªãã®ã¯æ§æã§ããã誰ãã©ãã«ããã®ãã¯ãã¯ãéèŠã§ã¯ãããŸããã é åºãéèŠãªå Žåã¯ãåã®ãªãã·ã§ã³ãšãŸã£ããåãã«ãªããŸããã€ãŸããçãã¯NïŒ/ïŒNKïŒïŒã«ãªããŸãã ããããé åºã¯éèŠã§ã¯ãããŸããã ãããŠãäŸ2ïŒéä¹ã®é åºã«ã€ããŠã ããã¯NïŒ/ïŒNKïŒïŒ KïŒã§é€ç®ããå¿ èŠããããŸãã次ã«ãã·ãŒã±ã³ã¹ã®ã¿ãç°ãªããæ§æã¯åäžã§ããã±ãŒã¹ãã1ã€ã®ããªã¢ã³ãã«æãããããå¿ èŠããããŸãã ããšãã°ã3人ãš2ã€ã®å ŽæããããšããŸãã 次ã«ããã¹ãŠã®å¯èœãªãªãã·ã§ã³ã ããšãã°ã3ã¯{1,2}ã{1,3}ã{2,1}ã{2,3}ã{3,1}ã{3,2}ã«ãªããŸãã ããã¯6ã€ã®ãªãã·ã§ã³ã§ãã 3ïŒ/ïŒ3-2ïŒïŒ= 3ïŒ/ 1ïŒ= 3ïŒ= 6ã ããããUAZã䜿çšããäŸã§ã¯ïŒäºéã®ãã®ã¯ãã§ã«UAZã«ãªã£ãŠããŸãïŒãã·ãŒã±ã³ã¹ã¯éèŠã§ã¯ãªãããã{1,2}ã{2,1}ãªã©ã®ãªãã·ã§ã³ã¯åãã§ãã ãŸããæ¬åœã«ãUAZã®PetyaãšVasyaãŸãã¯VasyaãšPetya-éãã¯ãããŸããã äž»ãªããšã¯ãäºäººãããã«ä¹ãããšã§ãã é åºãéèŠã§ã¯ãªã段èœ4ã®çãã¯ãåŒNïŒ/ïŒNKïŒïŒ/ KïŒã§ããããšãããããŸãã ãããŠããã®ãããªå Žåã¯ãé åºãéèŠã§ã¯ãªãããNãšKã®çµã¿åããããšããæ§æã ããéèŠãªãšãã«åŒã³åºãããŸãã ãã®å¥è·¡ã®å ¬åŒã«ã¯å¥ã®ååããããŸã-ãäºé ä¿æ°ãã ããããã»ãšãã©ã®å Žåããnããkãžã®CããšåŒã°ããŸãã ïŒãTse from en po kaãïŒã ããã¯ãããããäžåŽãšäžåŽã®ã€ã³ããã¯ã¹nãškãæã€æåCã§ãããã瀺ãããŸãã äºé ä¿æ°ã¯ãããç¥ãããŠãããã¥ãŒãã³äºé ã«æãçŽæ¥é¢ä¿ããŠããŸãã è€éãªããšã¯äœããããŸãããã©ãã§ã奜ããªå Žæã§èªãããšãã§ããŸãïŒWikipediaã§ã®ã¿äž»èŠãªããšãèªãã§ãã ããïŒã ãã¥ãŒãã³ã®äºé ä¿æ°ãšäºé ä¿æ°ã¯åºæ¬çã«éåžžã«åçŽã§ãããããããéåžžã«å€ãã®ç°ãªãç¶æ³ã§çªç¶é©çšãããããšãå€æãããšããäºå®ã¯ãäžçš®ã®ç¥ç§çãªãããŒãšãããããã¹ãŠæ£åœãªçç±ã«ããçããçã¿åºããŸãã è€éãªããšã¯ãããŸããããèå³æ·±ãããšããããããããŸã
ãã®æ®µéã§ã®çµã¿åããè«ããã®ãã®ç¥èã¯ååã§ãããæ®ãã¯éäžã§èª¬æãããŸãã
åãã€ãããã³ã¬ã¯ã¿ãŒã®æ°åŠçã¢ããªã³ã°
æåã«åé¡ãåæçã«è§£æ±ºããããšããŠãïŒãã¡ãã培åºçãªæ€çŽ¢ã§ã¯ãªããæ°åŒã«ãã£ãŠïŒå¯èœãªãã¹ãŠã®æºè¶³ã§ããã·ãŒã±ã³ã¹ãæ°ããããšããŠãç§ã¯äœãèµ·ãããªãã£ãããšãåçœããŸãã ããæ£ç¢ºã«ã¯ãæšè«ã®éçã¯éåžžã«è«ççã§ããããæçµçã«ç§ã¯å·šå€§ãªåã®åèšãæžãå¿ èŠããããããã¯ã³ã³ãã¯ããªãã®ã«åŽ©å£ããããšã¯ã§ããŸããã§ããã
ç¹å®ã®ããã»ã¹ã®åºæ¬ååã¯ç解ã§ããããåæã«ãã®ããã»ã¹ã説æããåãããããæ¶åå¯èœãªæ³åãåŸãããšãã§ããªãå ŽåïŒäœãã©ã®ããã«èµ·ãã£ãŠããã®ããç解ããŠããããå šäœã®åŒãæžãåºãããšãã§ããªãå ŽåïŒãå察ããè¡ãããšãã§ããŸã-ãã®ããã»ã¹ãã·ãã¥ã¬ãŒãããæ°å€è§£ãååŸããçããåæããŠã¿ãŠãã ããã ããšãã°ãæãåªããåææ¹æ³ã§ããã泚èŠæ¹æ³ãã䜿çšããŸãã ãã®åŸãæ°ããããŒã¿ãã¢ã€ãã¢ãæèã解決çãæããŠãããå¯èœæ§ã¯ååã«ãããŸãã
ããã¯ãåé¡ã®æ¬ã§çããã¹ãã€ãããã®äžã«ãœãªã¥ãŒã·ã§ã³ãåããæ¹æ³ã§ãã åœæã¯ããã䜿çšããŠããŸããããåæã«ãã®ããšãèªããŸããã§ããã ããããç©çåŠã»ãããŒïŒåœŒãè¬åž«ãåããŠããŸããïŒã¯ãããã¯çµ¶å¯Ÿã«æ®éã§ãããããã«ç©çåŠã¯ããçšåºŠããã£ããã£ã³ã°ã®æè¡ãã§ãããšèª¬æããŸããã éåžžã«å€ãã®å Žåãæåã«ããã€ãã®æ°ããçŸè±¡ãçºèŠãããããã説æããããšããŸããã€ãŸããçŸè±¡ã®çè«çãªå®èšŒãå®éšããŒã¿ã«é©åãããããšããŸãã ããããç§ãã¡ã«ã¯å®å šã«æ確ã§ã¯ãããŸããã§ãã-ç§ãã¡ã¯ãåé¡ãæ£çŽã«è§£æ±ºãããå¿ èŠæ§ã«æ £ããŠããŸãã ããã ãã仮説ã®çè«çæ§ç¯ã§ãããããã«ç¶ããŠå®éšçæ€èšŒãè¡ãããŸããããã¯äžã€ã®ããšã§ãããéåé¡ãããäžè¬çã§ãã ãããŠãäžè¬çã«èšãã°ãäžæ¹ãä»æ¹ãªãã§ã¯ååšããŸããã å®è·µããåæããŒã¿ãåãåã£ãŠããªãå Žåã«æ§ç¯ããçè«ã¯äœã§ããïŒ
èŠããŠããã¹ãäž»ãªããš-çãã«çããåœãŠã¯ããããšã¯ãéåžžã®ããšã ãã§ãªããèªç¶ã§è¯ãããšã§ãã ãã®ãããªããŒãã«ã®ããã«ã ã¢ã€ã³ã·ã¥ã¿ã€ã³ã¯å é»å¹æãäºæž¬ããªãã£ãããšåœŒã¯èª¬æããã ããããéãããå éã«é¢é£ããããŸããŸãªå¹æã®åœŒã®äºæž¬ã®ããã«ã圌ã¯ããŒãã«ãåãåããŸããã§ããããã¯ã-ããã¯ãŸãã«ãã®äºæž¬ã§ããã ãŸããç§åŠåéã®è³ã®ãªã¹ããèŠããšãã説æã®ããã«...ããç解ãžã®è²¢ç®ã®ããã«...ããšããæèšãéåžžã«å€ã䜿ãããŠããŸãã
ãããã£ãŠãåŒã®å°åºæ¹æ³ã«é¢ããã¢ã€ãã¢ããªããããã¢ãã«ãäœæããŸãã
Wolfram Mathematicaç°å¢ã§ã·ãã¥ã¬ãŒãããŸãã Mathematicaã¯éåžžã«äœ¿ãããããé«éã§ãçŽ æŽããããçŽèŠ³çãªã€ã³ã¿ãŒãã§ãŒã¹ã§ãïŒãã ããCtrl + Enterãç¥ã£ãŠããå¿ èŠãããããšãé€ããŠ-ããã¯ãçŸåšã®ã³ãŒãã®å®è¡ãéå§ããããã®çµã¿åããã§ããã¡ã€ã³ãšã¡ã€ã³ïŒããããŠæãéèŠãªã®ã¯ã90ïŒ äŸãã+é¢é£ãªã³ã¯ã®æã ãã«ãèªäœã®äžã®æ¬åœã«äŸ¿å©ãªãªã³ã¯ãªã®ã§ãã€ã³ã¿ãŒãããã®ããã«ãµãŒãã£ã³ã«ãã ãã£ãŠããããå§ããããšããããŸãã ããŒã¿ã衚瀺ããã®ã¯éåžžã«ç°¡åã§ç°¡åã§ã-ããããçš®é¡ã®ã°ã©ããããŒãã«ãäœæããããããããããå Žé¢ã§ããã¬ãŒã³ããŒã·ã§ã³ã«ãšã£ãŠã¯éåžžã«è²Žéã§ãã ã€ã³ã¹ããŒã«ããŠè©ŠããŠãã ãã-ã¹ãã£ãã¯ããã°åŸæããããšã¯ãããŸããã
ãšããã§ããã®èšäºã®ãã¹ãŠã®åçã¯Wolfram Mathematicaã§äœæãããŸããã
40åã®ã¢ã€ãã ã®ã³ã¬ã¯ã·ã§ã³ãã·ãã¥ã¬ãŒãããã³ãŒãã次ã«ç€ºããŸãã ã³ãŒãã«ã¯å€ãã®ã³ã¡ã³ãããããŸãã ã¢ã«ãŽãªãºã èªäœã¯ãèªã¿åãäžã«ã§ããéãæ確ã«ãªãããã«èšè¿°ãããŠããŸãããåæã«ãé床ãäœäžããŠããŸãã ç§ã¯10äžåã®å埩ã§10åéåããŸãã
(* *) SeedRandom[1234];(*"". , , . , .*) NPosibleElems=40;(* *) WhatWeHave=Table[0,{i,1,NPosibleElems}];(* . " ". 1, 0. , *) WhatWeWantToHave=Table[1,{i,1,NPosibleElems}];(* . " ". 1, 0. , - , *) TargetArray=BitOr[WhatWeHave,WhatWeWantToHave];(* , , . . , *) NumItearations=100000;(* . - - .*) FinishedSteps=Table[0,{i,1,NumItearations}];(* , . " " .*) ProgressIndicator[Dynamic[indic],{1,NumItearations}](* . , . indic . , . - . , .*) For[j=1,j<=NumItearations,j++, (* .*) indic=j;(* ... , , . , *) FindedElems=WhatWeHave;(*FindedElems - . "" . *) While[ Total[TargetArray-FindedElems]!=0,(* . . , - .*) NewItem=RandomInteger[{1,NPosibleElems}];(* , *) If[FindedElems[[NewItem]]!=1,FindedElems[[NewItem]]=1];(* - *) FinishedSteps[[j]]+=1;(* *) ]; ]; (* ( ). *) {bins,count}=HistogramList[FinishedSteps]; HistoList=Transpose[{binsN[[2;;]],count}]; TickL=20; Show[{Histogram[FinishedSteps],ListPlot[HistoList,PlotStyle->{Darker[Red],PointSize[Large]}]},Ticks->{Table[i,{i,0,Last[bins],TickL}],Automatic}] (* *) ProbList=Transpose[{bins[[2 ;;]],count/NumItearations}]; ListLinePlot[ProbList]

ãã®çµæããŸãã«ãã®ãããªåçãåŸãããŸãã ããã¯ãã¹ãã°ã©ã ã§ãã ãã®äžã§ãååã«ã¯ã氎平軞äžã®ç¬èªã®åº§æšãç¬èªã®é«ããšå¹ ããããŸãã åã®é«ãã¯ã100,000åã®å埩ã®ãã¡ãã³ã¬ã¯ã·ã§ã³ãnã¹ãããã§å®äºããåæ°ã瀺ããŸãããã®å Žåãnã¯æ°Žå¹³è»žäžã®åº§æšã§ãã ãããŸãã«ã§ãããäžè¬çã«ã¯ããã§ãã ããæ£ç¢ºã«ã¯ãåã®å¹ ã«ã€ããŠèŠããŠããå¿ èŠããããŸãããããã¯ãã®ãããªãã®ã§ã¯ãããŸããã äºå®ã¯ããã¹ãã°ã©ã ãäœæãããšãããé©åãªãåå¹ ã®éžæã¯ã¢ãŒã«ã€ãããã³ã¢ãŒã«ã€ãã®è€éãã®åé¡ã§ãã ãããéžæããŠå®æããçµæã衚瀺ãããšããå®éã«ã¯ãåã®é«ãã¯ãåã®å·Šå¢çãã倧ãããå³å¢çããå°ãã座æšãæã€ã€ãã³ããçºçããåæ°ã瀺ãããšãèŠããŠããå¿ èŠããããŸãã ååãšããŠæŽæ°ã®ã¿ãå¯èœã§ãä»®ã«åã®å¹ ã0.25ã«ãããšããŸãããã ãã®çµæããæ»ãããªãç»åã®ä»£ããã«ãç©Žã®ãããã§ã³ã¹ã®ãããªåã®ãæ«ããåŸãããŸããã€ãŸããåãããããããããã€ãŸããããã§ãã éåžžã«å€§ããªå¹ ããšãå Žåãéåžžã«å¹ ã®åºãåã1ã€ã ãååŸã§ããŸã-ããããã¯æå³ããããŸããã ãã¹ãŠã®æ²ãããšãã¥ã¢ã³ã¹ã¯åçŽã«ãªããªããŸãã
åã®é«ãã¯ããã¹ãŠã®è©Šè¡ã®ãã¡ãã³ã¬ã¯ã·ã§ã³ãç¹å®ã®ã¹ãããæ°ïŒãã¥ãŒã€ã³ã¬ã ãéãïŒã§åéãããåæ°ã瀺ããŸãã ç¹å®ã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãååŸãã確çãèŠã€ããã«ã¯ãåã®é«ãããã¹ãã®ç·æ°ã§å²ãå¿ èŠããããŸãããããã£ãŠãã³ã¬ã¯ã·ã§ã³ã®åé¡ã«å¯Ÿããæ°å€ã¢ãã«åãããçããåŸãããŸãã
æ¢ã«è¿°ã¹ãããã«ã誀ã£ãŠè»éã«é¢ããã¿ã¹ã¯ã«ééããåŸïŒäžèšã®ãªã³ã¯ãåç §ïŒãã¢ã«ãŽãªãºã ãæé©åããã ãã§ãªããæçµçã«åŒãæšæž¬ããã®ã«åœ¹ç«ã€ã¢ã€ãã¢ãçãŸããŸããã
奜å¥å¿ã匷ãããŒãã«
åéããã»ã¹ã®åç¬éã¯ãäžæã®èŠçŽ ã®æ°ãšç¹°ãè¿ãã®æ°ãšãã2ã€ã®æ°åã§è¡šãããšãã§ããŸãã 次åæ°ããèŠçŽ ãåãåã£ããšãã«ã³ã¬ã¯ã·ã§ã³ã®äžæã®èŠçŽ ãååŸãã確ç㯠ïŒãŸã æ¿å ¥ç©ãåãåã£ãŠããªãæ°ãããã¥ãŒã€ã³ã¬ã ã§ïŒ ããã§ã«æã£ãŠããèŠçŽ ã«äŸåããã®ã§ã¯ãªããç¬èªã®èŠçŽ ã®æ°ãšèŠçŽ ã®æ°ã ãã«äŸåããŸãã³ã¬ã¯ã·ã§ã³ã

ããæç¹ã§ãKåã®äžæã®èŠçŽ ããããMåã®ç¹°ãè¿ãããããåèšã§ã³ã¬ã¯ã·ã§ã³ã«Nåã®èŠçŽ ããããšããŸãã ç¹°ãè¿ãã®åæ°ã¯ãçŸåšã®ã»ããå šäœããäžæã®èŠçŽ ã1ã€ã ãåé€ããå Žåã«æ®ããã¹ãŠã®èŠçŽ ãæãããšãæ確ã«ãã䟡å€ããããŸãã ããšãã°ããªã³ãŽã4ã€ã梚ã3ã€ãããåèš2ã€ã®åºæã®èŠçŽ ããªã³ãŽãšæ¢šã§ããã7åã®ç¹°ãè¿ãããªã³ãŽ3ã€ãšæ¢š2ã€ã§ãã æ°ããèŠçŽ ãåä¿¡ãããšãçŸåšã®ç¶æ ïŒKãMïŒããä»ã®2ã€ã®ç¶æ ã®ããããã«ç§»è¡ã§ããŸãã äžæã®èŠçŽ ã®æ°ïŒK + 1ãMïŒãå¢ããããç¹°ãè¿ãã®æ°ïŒKãM + 1ïŒãå¢ãããŸãã ãããã£ãŠãããããã±ãŒã¹ïŒKãMïŒã®å€æããŒãã«ãäœæã§ããŸãã

ãã®ã¢ãããŒãã«åºã¥ããŠãåéããã»ã¹ãã·ãã¥ã¬ãŒãããã¢ã«ãŽãªãºã ãæ§ç¯ã§ããŸãã 次ã«ãåã¹ãããã§ã確çïŒN âKïŒ/ Nã§ã»ã«ã«ç§»åããïŒK + 1ãMïŒãã確çK / Nã§ã»ã«ã«ç§»åããïŒKãM + 1ïŒãå¿ èŠã§ãK < N. KãNãšçãããªããšãã³ã¬ã¯ã·ã§ã³ãã¢ã»ã³ãã«ãããå¿ èŠãªã¹ãããæ°ãèŠã€ããããã«KãšNãè¿œå ããã ãã§æžã¿ãŸãã é·ç§»K / Nããã³ïŒN âKïŒ/ Nã®ç¢ºçã¯ãç¹°ãè¿ããååŸãã確çãã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®ç·æ°ã«å¯Ÿããæ¢åã®äžæã®èŠçŽ ã®æ¯çã«çãããäžæã®èŠçŽ ãååŸãã確çãã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®ç·æ°ã«å¯Ÿããæ¬ æèŠçŽ ã®æ°ã®æ¯çã«çãããšããäºå®ã«ãã£ãŠèª¬æãããŸãã ããã¯ãã»ã«ïŒç¶æ ïŒã«å ¥ã確çã§ã¯ãªããã»ã«éã®é·ç§»ã®ç¢ºçãèšè¿°ããããšã«æ³šæããŠãã ããã
ãã®ã¢ã«ãŽãªãºã ã®å®éã®ã³ãŒãã¯æ¬¡ã®ãšããã§ãã æåã®ãªãã·ã§ã³ãããé«éã«åäœããŸãã
SeedRandom[1234];(*"". , , . , .*) NPosibleElems=40;(* *) NumItearations=100000;(* . - - .*) Results=Table[0,{i,1,NumItearations}];(* , . " " .*) ProgressIndicator[Dynamic[indic],{1,NumItearations}](* . , . indic . , . - . , .*) For[i=1,i<=NumItearations,i++,(* .*) indic=i;(* ... , , *) n=0;(* *) m=0;(* . 2 3 , 2 - {, }. 3 - .*) While[n<NPosibleElems,(* . . , - .*) r=RandomInteger[{1,NPosibleElems}];(* , , .*) If[r> n,n+=1,m+=1];(* n/NPosibleElems , 1-n/NPosibleElems - .*) ]; Results[[i]]=n+m;(* , , - ( ) *) ]; (* .*) {bins,count}=HistogramList[Results]; HistoList=Transpose[{binsN[[2;;]],count}]; TickL=20; Show[{Histogram[Results],ListPlot[HistoList,PlotStyle->{Darker[Red],PointSize[Large]}]},Ticks->{Table[i,{i,0,Last[bins],TickL}],Automatic}] (* *) ProbList=Transpose[{bins[[2 ;;]],count/NumItearations}]; ListLinePlot[ProbList]
次ã«ãã¢ã€ãã¢ãããã«çºå±ãããŸãã åºå®ïŒKãMïŒã§ã»ã«ã«å ¥ãããã«ååšãããªãã·ã§ã³ã®æ°ãèšç®ããŠã¿ãããšãã§ããŸãã ã»ã«ïŒKãM-1ïŒãŸãã¯ã»ã«ïŒK-1ãMïŒããã»ã«ïŒKãMïŒãå ¥åã§ããŸãã äžæã®èŠçŽ ã1ã€ã ãã§ããããç¹°ãè¿ãããªãå Žåãã€ãŸãK = 1ãM = 0ã®å Žåãé€ãã2ã€ã®æ¹æ³ã®ããããã§ã®ã¿ãããã«ã¢ã¯ã»ã¹ã§ããŸãã ã»ã«ã«å ¥ãæ¹æ³ã®æ°ïŒKãMïŒãV [KãM]ãšè¡šèšããŸãã ã»ã«ïŒKãM-1ïŒããã»ã«ïŒKãMïŒãŸã§ãç°ãªããªãã·ã§ã³ã§Kã«å°éã§ããŸããããã¯ãæ¢ã«äžæã®èŠçŽ ãšåãæ°ã®ãªãã·ã§ã³ãç¹°ãè¿ãååŸã§ããããã§ãã å¥ã®é£æ¥ã»ã«ïŒK-1ãMïŒããããªãã·ã§ã³ã®æ°ã ãïŒN-ïŒK-1ïŒïŒãã»ã«ïŒKãMïŒã«ååŸã§ããŸããããã¯ãã»ã«ïŒK-1ãMïŒã«äžæã®èŠçŽ ïŒK-1 ïŒãããã«å¿ããŠïŒN-ïŒK-1ïŒïŒèŠçŽ ãäžè¶³ããŠããŸãã äžè¬ã«ãã»ã«ïŒKãM-1ïŒãä»ããŠã»ã«ïŒKãMïŒã«å ¥ããªãã·ã§ã³ã¯ãV [KãM-1] * Kããªã¢ã³ããã€ãŸãããªãã·ã§ã³ã®æ°ã®ç©ããŸãã«ïŒKãM-1ïŒåã«ãªãïŒKãM-1ïŒããïŒKãMïŒã«ååŸãããªãã·ã§ã³ã®æ°ã åæ§ã«ãã»ã«ïŒK-1ãMïŒããã»ã«ïŒKãMïŒã«å ¥ããªãã·ã§ã³ã䜿çšãããšãV [K-1ãM] *ïŒN-ïŒK-1ïŒïŒãåŸãããŸãã åèšãããšãã»ã«ïŒKãMïŒã«å ¥ãããã«ããªãã·ã§ã³ã®æ°ã§V [KãM-1] * K + V [K-1ãM] *ïŒN-ïŒK-1ïŒïŒãååŸã§ããŸãã ãããã£ãŠãã»ã«ã«å ¥ãæ¹æ³ã®æ°ïŒKãMïŒã«ã€ããŠéåžžã«æçšãªåŒãåŸãããŸãã
V [KãM] = V [KãM-1] * K + V [K-1ãM] *ïŒN-ïŒK-1ïŒïŒ

ãã®ã«ãŒã«ã䜿çšããŠãä»»æã®ã»ã«ïŒKãMïŒã®ãããã¡ãœããã®æ°ãé çªã«èšç®ã§ããŸãã ã€ãŸããç¹å®ã®ïŒKãMïŒã®ãªãã·ã§ã³ã®å€ãããã«äžããåŒã§ã¯ãããŸããããæ°å€ã¢ããªã³ã°ã§ã¯ãªããã·ã³ããªãã¯ãªåçãå«ãããŒãã«ãäœæãããŸãã ãããã¢ã«ãŽãªãºã ãã®ãã®ã§ãã
KKT=10; MMT=10; V=Table[0,{k,1,KKT},{m,1,MMT}]; V[[1,1]]=NN; For[k=2,k<=KKT,k++,V[[k,1]]=FullSimplify[V[[k-1,1]]*(NN-(k-1))]]; For[m=2,m<=MMT,m++,V[[1,m]]=NN]; For[k=2,k<=KKT,k++, For[m=2,m<=MMT,m++, V[[k,m]]=V[[k-1,m]]*(NN-(k-1))+V[[k,m-1]]*k; ]; ]; MatrixForm[V]
ãããŠãçµæã®ããŒãã«ã¯ããã®å·šå€§ãªãµã€ãºã«ããããããã泚ç®ãã¹ãæ©èœãåããŠããŸãã è¡šã®ãã¹ãŠã®åã¯ãæåã®åã«å¯Ÿããããã€ãã®æ°å€ä¿æ°ã«æ¯äŸããŠããŸãã ãããŠããããã®æ°å€ä¿æ°ã¯ãã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®æ°ã«äŸåããŸããã ãã®ããŒãã«ã®ãã¹ãŠã®åãæåã®åã«åå²ãããšããã®çµæãåŸãããŸãã

æ£çŽã«èšã£ãŠãæåã«åãåã£ããšããç§ã¯éåžžã«å°æããŠããŸããã ãšãŠãçŸãããä¿¡ããããªãã»ã©ã«æããã®ã§ãç§ã®é ã«åãŸããŸããã§ããã ãããã®æ°ã¯ãã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®æ°ã«äŸåãããç¹°ãè¿ãã®æ°ãšäžæã®èŠçŽ ãã€ãŸãïŒKãMïŒã«ã®ã¿äŸåããŸãã ãããã®æ°å€ãã©ã®ããã«ååŸãããããç解ããã°ãåé¡ã¯å®å šã«è§£æ±ºãããéåžžã«åçŽãªåŒã«ãªããŸãã ããããã©ã®ãããªæ°åããç§ã«ã¯åãããŸããã§ããã
ç§ã¯ã¢ã«ãã¡ãŠã«ãã©ã ã§ã
ããã€ãã®èšç®äžã«ã5.01326ãªã©ã®ç¹å®ã®ä¿æ°ã«çŽé¢ããããšãæ³åããŠãã ããã 絶察çãªæ£ç¢ºãã§ã¯åŸãããªãã£ãããèããŠã¿ããšãçªç¶ãã®æ°åã¯ãªããšãªããçŸããããã®ã§ãããããç¥ãããæ°åŠå®æ°ã§è¡šçŸãããŠããããäœããã®èªç¶æ°ã察æ°ããµã€ã³ã®æ ¹ã§ãã ãŸãããŸãã¯ããã§ãªãå Žåã¯ãéåžžã«è¿ãã§ãã ããšãã°ãä»ã®èª°ãã®ã³ãŒããåæãããšãã«ãå®æ°ã®ãªã¹ãã¯ãããã³ã¡ã³ããªãã§ãã®ãããªå¿ èŠæ§ã«ééããå¯èœæ§ããããŸãã ãã®å Žåã Wolfram Alphaãç§ãå©ããŠãããŸããã
以äžã¯ãçªå·5.01326ã«å¯ŸããèŠæ±ãžã®å¿çã®äŸã§ã ã ïŒ8 * Piã®ã«ãŒããäœæããŸããïŒ
Wolfram Alphaãæ€çŽ¢ãšã³ãžã³ãšåŒã¶ã®ã¯é£ãããšæããŸãããããã¯ãã以äžã§ãã 圌ã¯ããªããæ¢ããŠãããã®ã«äœããã®åœ¢ã§é¢é£ããããŒãžãã€ã³ã¿ãŒãããäžã§æ¢ããŠããã ãã§ã¯ãããŸããã 圌ã¯ãã°ãã°ããªãèªèº«ã®è³ªåã«å¯Ÿããçããèšç®ããŸãã ããã«ãéåžžã®æ€çŽ¢ãšã³ãžã³ãè¡ãããã«ãåºåã®ãããŒãã¹ãã®ä»£ããã«ããã®åé¡ã«é¢é£ããéåžžã«èå³æ·±ãäºå®ãæäŸããŸãã ãªã³ã¯ã§ã¯ãªããããŒãžäžã®äºå®ã®ã¿ã ãã ãããªã³ã¯ããã¡ããããŒãžã®æåŸã«é ãããŸãããéåžžã圌ãèªåã§é ããã¹ãŠã®ãã®ã§ååã§ãã
ãŸããå¿ èŠã«å¿ããŠã倩æ°ãäžéšã®è²¡åããŒã¿ãå°çãçç©åŠãååŠãªã©ã®ããŒã¿ããŒã¹ã«ã¢ã¯ã»ã¹ã§ããŸãã äŸãã°ããã«ã æ¢è£œã®ãªã¯ãšã¹ããšã®ãªã³ã¯
97幎ãã99幎ãŸã§ã®ã«ããŒã«ã®æ°æž©ãæ°å§ããã®ä»ã®ã°ã©ãã
éå»16幎éã®Appleæ ªåŒæ å ±
ãœé£ã®é åã«é¢ããå°å³ãšæ å ±
äžé žåçªçŽ ã®äž»ãªç¹æ§
ã...ãšã¯ïŒããªã©ã®è³ªåãžã®åçã«å ããŠã圌ã¯å ¥åã©ã€ã³ã«å ¥åããã埮åæ¹çšåŒã®è§£ãäžããããšãã§ããŸãã ãŸãã¯ãå°ããã°ã©ããæç»ããŸãã ã€ãŸãããµãŒãããŒãã£ã®ããã°ã©ã ããã©ã°ã€ã³ãªã©ã¯å¿ èŠãããŸãã-埮åæ¹çšåŒã解ããŠã°ã©ããWolfram Alphaã®å ¥åè¡ã«å ¥åããã ãã§æç»ã§ããŸãã ãããããã§ããç§ã¯ãã¹ãŠãåççã§ããããšã«æ³šæããŸã-äœãé¢åãªããšãããå Žåã圌ã¯ããããç¡æããšèŠãªãããšãæåŠããè€éãªã¿ã¹ã¯ãšé床ã«ã¯ãŸã Wolfram Mathematicaãå¿ èŠã§ãã
ç¹ã«ãæ°å€ã®ã·ãŒã±ã³ã¹ã®åœ¢åŒã§èŠæ±ãè¡ãããšãå¯èœã§ããããã®é åã®äž»ãªç¹æ§ã«å ããŠãã·ãŒã±ã³ã¹ãç¶è¡ããããã®ä»®æ³ãªãã·ã§ã³ãæäŸããããšãã§ããŸãïŒåžžã«çãšã¯éããŸããïŒã äžèšã®è¡šã®ã»ã«ã§ã©ã®ãããªæ°åãåŸãããããç¥ãããã«äœ¿çšãããã®ã¯ã圌ã®ãã®æ©äŒã§ããã
æ°åŠæ¢åµ
æ¢åµå°èª¬ãå«ããªäººã¯ã ãã®ç« ãé£ã°ã ãŠæ¬¡ã® ç« ã«é²ã ããšãã§ããŸãã
ãŸããçµæã®Wé åã®è¡ãååŸãã Wolfram Alphaã«æåã§å ¥åããŸãã ããããã³ããŒïŒããŒã¹ãããããšã¯ã§ããŸãããã Wolfram MathematicaããçŽæ¥ãã©ãŠã¶ãªãã§Wolfram Alphaã«çŽæ¥ã¢ã¯ã»ã¹ã§ããŸãã ãããŠãèå³ã®ããæ å ±ã®ãã®éšåãããã«èŠæ±ããŸãã ã«ãŒãã§å ¥åãããã·ãŒã±ã³ã¹ã®æšæž¬åŒãèŠæ±ããã³ãŒãã¯æ¬¡ã®ãšããã§ãã
For[i=1,i<=Length[W],i++, Print[i," ",W[[i]]]; Print[WolframAlpha[ToString[W[[i]]],{{"PossibleSequenceIdentification",1},{"Output"}}]]; Print[""]; ];
æ®å¿µãªããããã¹ãŠã®ãªã¯ãšã¹ããæ£åžžã«åŠçãããããã§ã¯ãªããçç±ã¯ç°ãªããŸããå ¥åã·ãŒã±ã³ã¹ã®ãµã€ãºãå°ããããã倧ãããããããã®ã«åœ¹ç«ã¡ãŸãã ããããåãåã£ãåçãããããèŠããšãå°å ¥ããã·ãŒã±ã³ã¹ãa0 * 0 ^ n + a1 * 1 ^ n + a2 * 2 ^ n + a3 * 3 ^ n + ...ãšãã圢åŒã§ããããšãããããŸãã çšèªã®æ°ã¯ãå ¥åãããã·ãŒã±ã³ã¹ã®åºæ°ã«çãããªããŸãã ããããä¿æ°ã¯åŒã«ç·åœ¢ã«å ¥åãããŸããã€ãŸããç·åœ¢æ¹çšåŒç³»ããç°¡åã«èŠã€ããããšãã§ããŸãã ããã«ãããèŠããšããã¹ãŠã®é ã«ã¯ãã·ãŒã±ã³ã¹çªå·ã®éä¹ã«åæ¯äŸããå ±éã®å åããããé ã¯äº€äºã«ãªã£ãŠããŸãã ãããã£ãŠããããã®äºå®ã念é ã«çœ®ããŠçšèªãæ€çŽ¢ããŸãã ãã¡ãããæåã§ã¯ãªããWolfram Mathematicaã§ã·ã¹ãã ã解決ããŸãã 解決ããã³ãŒãã¯æ¬¡ã®ãšããã§ãã
TempAr = W; CoefRes = Table[{}, {i, 1, Length[TempAr]}]; For[k = 1, k <= Length[TempAr], k++, An = Table[a[i], {i, 2, k}]; (*Conds=Table[An[[i]]>0,{i,1,Length[An]}]*) F[z_] := (Total[ Table[(((-1)^(k + 1))*(-1)^(i + 1))*i^z*An[[i - 1]], {i, 2, k}]] + (-1)^(k + 1))/((k - 1)!); Eqs = Table[F[i] == TempAr[[k]][[i]], {i, 1, Length[An]}]; Res = Solve[Eqs, An]; CoefRes[[k]] = Prepend[(An /. Res)[[1]], 1]; ue = Table[(-1)^k*(-1)^i, {i, 1, Length[CoefRes[[k]]]}]; CoefRes[[k]] = CoefRes[[k]]*ue; ]; CoefRes // Column
ãªããºã¯å€æããŠããŸãããããããããã»ã©åçŽã§ã¯ãããŸããã ãããã®åŒãèŠã€ããããã®åãæé ãç¹°ãè¿ããŸãã ãããŠãããã§å€±æãåŸ ã£ãŠããŸã-æ¯åã¢ãŒãã®Wolfram Alphaã¯ãããã®ã·ãŒã±ã³ã¹ãèªèã§ããŸããã ããŠ-èªåã§è©ŠããŠã¿ãŠãã ããã
ããããã¹ãŠã®æ°ãçŽ å æ°ã«å解ããå°ãçæ³ããŠãçµæãèããŠã¿ãŸãããã ãã®ã¢ãããŒãã¯ãã·ãŒã±ã³ã¹åŒãèªèããããã«ãã°ãã°åœ¹ç«ã¡ãŸãã
For[i=1,i<=Length[W],i++, Print[FactorInteger[Abs[CoefRes[[i]]]]//Column]; ]
åŸãããå±éã詳ããèŠããšãã·ãŒã±ã³ã¹å ã®åçªå·ãããèªèº«ã®ã·ãŒã±ã³ã¹çªå·ã§ããçšåºŠåå²ãããŠããããã®çšåºŠã¯ã·ãŒã±ã³ã¹çªå·ã®å¢å ãšãšãã«å€§ãããªãããšãæããã§ãã ããèŠããšããã®æ¬¡æ°ã¯ã·ãŒã±ã³ã¹çªå·ãã2ãåŒãããã®ã«çãããªããŸããããã§ã¯ãã·ãŒã±ã³ã¹å ã®ãã¹ãŠã®çªå·ããã·ãŒã±ã³ã¹çªå·ãã2ãåŒããæ°ã®ã·ãªã¢ã«çªå·ã«åå²ããŸãã
CoefRes2=CoefRes; For[i=1,i<=Length[CoefRes],i++, For[j=1,j<=Length[CoefRes[[i]]],j++, CoefRes2[[i]][[j]]=Abs[CoefRes[[i]][[j]]]/j^(i-2); ]; ] CoefRes2
以åã¯ã¢ã«ãŽãªãºã ã®èšç®çµæã瀺ããŸããã§ãããæ°å€ã®é åããããæ¿å ¥ããããŒãã«ãå€ãããŸãã ãããŠãç§ãèšã£ãããã«ãæ°åã¯ããã»ã©æ確ã§ã¯ãããŸããã 誰ããããããèŠããå Žåã¯ããã®ã³ãŒããæçš¿ããŠãã ããã äžåºŠãããè¿œãæã£ãŠããã¹ãŠãèŠãŠãã ããã ããã«åäœããŸãã ä»åã¯ã¢ã«ãŽãªãºã ã®çµæã瀺ããŸããããã¯ãæ°åãéåžžã«æåã ããã§ãã
{{1}ã{1,1}ã{1,2,1}ã{1,3,3,1}ã{1,4,6,4,1}ã{1,5,10,10ã 5.1}ã{1,6,15,20,15,6,1}ã{1,7,21,35,35,21,7,1}ã{1,8,28,56,70ã 56,28,8,1}}ã{1,9,36,84,126,126,84,36,9,1}}
ãã¥ãŒãã³ã®ç®±ãšãã¹ã«ã«ã®äžè§åœ¢ãèŠããŠããã°ãåå²åŸã«äœãèµ·ãã£ãã®ãã¯ãWolfram Alphaã«ã¯åæ ãããŸããã ãTse from en po kaããšå€æããŸããã
ä»ã§ã¯ãå解ããããã©ãŒãã¥ã©ãããã¹ãŠã®ã¹ãã¢ããŒããéããŠ1ã€ã®å šäœã«æ»ãããšãæ®ã£ãŠããŸãã
FV[KK_,LL_,NN_]:=Sum[((-1)^(n+KK) n^(KK+LL))/(n! (KK-n)!),{n,1,KK}]*NN!/(NN-KK)!/(NN^(KK+LL));

çµæã¯åæ圢åŒã§åŸãããååãšããŠãå¿ èŠãªãã®ã¯ãã¹ãŠåŒãåºãããšãã§ããŸãã ãã ããåŒã¯ããé¢åã§ããããã£ãšã³ã³ãã¯ãã«ããããšæããŸãã ãããŠãã³ã¬ã¯ã·ã§ã³ã®åé¡ãpre延ããŠããããã確å®ã«ç¥ãã¹ãã§ãã
ããªãé·ãéãç§ã¯ãããåçŽåããããæç®ã§èŠã€ããããšããŸããã ãã®çµæããœãŒã¹ããŒãã«ã®è¡ã®ä»£ããã«ã Wolfram Alphaã®èªèã®ããã«åãéä¿¡ãããšãã«ãäž¡æ¹ãå®è¡ããããšãå€æããŸããã
300幎å
çµæã®é åWã®åãWolfram Alphaã«å ¥åãããšãã·ãŒã±ã³ã¹ã¯ç¬¬2çš®ã®ã¹ã¿ãŒãªã³ã°æ°ãšããŠèªèãããŸãã ããã¯ããªãããç¥ãããŠããŸãïŒçµå±ãèŠããŠããŸããã§ããããç¥ããŸããã§ããïŒæ°ã®é åã¯ãçµã¿åããè«ãšç¢ºçè«ã«é¢ããããŸããŸãªæç§æžã§è©³ãã説æãããŠããŸãã ã¹ã¿ãŒãªã³ã°ã®æ°åã«è©³ãã人ã¯ãã®ç« ãé£ã°ã 次ã®è©±ã«é²ãã§ãã ãã ã
ããšãã°ã ããã§ã¹ã¿ãŒãªã³ã°æ°ã«ã€ããŠèªãããšãã§ããŸã ã
ãããŠã ããã§ã¯ã¯ããã«è©³çŽ°ã§ãããããããè±èªã§ã ããã¯äžè¬ã«ãæ°åŠã®äœãã«é¢ããå®å šãªåç §æ å ±ãå¿ èŠãªå Žåãããããæé«ã®ãµã€ãã®1ã€ã§ãã
第2çš®ã®ã¹ã¿ãŒãªã³ã°æ°ã¯ãNåã®èŠçŽ ã®ã»ãããKåã®éšåã«åå²ããæ¹æ³ã®æ°ãæå³ããŸãã ããšãã°ã4ã€ã®èŠçŽ ã®ã»ãã{1,2,3,4}ã¯æ¬¡ã®ããã«åå²ã§ããŸãã
ãããã{{{a}ã{b}ã{c}ã{d}}ã®1ã€ã®èŠçŽ ã®4ã»ããã«ïŒ1ã€ã®æ¹æ³ãããããŸããïŒ
3ã»ããã« ã1ã€ã«ã¯æ®ãã®1ã€ã«{{aãb}ã{c}ãd}}ã{{aãc}ã{b}ã{d}}ã{{aãd }ã{b}ã{c}}ã{{bãc}ã{a}ã{d}}ã{{bãd}ã{a}ã{c}}ã{{cãd}ã {a}ã{b}}ïŒ6ã€ã®æ¹æ³ããããŸãïŒ
1ãš3ã®èŠçŽ ã®2ã»ããã«{{a}ã{bãcãd}}ã{{b}ã{aãcãd}}ã{{c}ã{aãbãd}}ã {{d}ã{aãbãc}}ããŸãã¯å2ã€ã®èŠçŽ {{aãb}ã{cãd}}ã{{aãc}ã{bãd}}ã{{a ãd}ã{bãc}}ïŒ7ã€ã®æ¹æ³ãããããŸããïŒ
4ã€ã®èŠçŽ ã®1ã€ã®ã»ããã«ãã€ãŸããäœãå£ãããšãªãã ïŒçéïŒ
å®éã«ã¯ãã»ãããç¹å®ã®æ°ã®ããŒãã«åå²ããããã€ãã®æ¹æ³ïŒåæã«ãããã®ããŒãã®ä»»æã®æ§æïŒã¯ãã¹ã¿ãŒãªã³ã°æ°ãæå³ããŸãã
ã¹ã³ããã©ã³ãã®æ°åŠè ã§ãããžã§ãŒã ã¹ã»ã¹ã¿ãŒãªã³ã°ã¯ãçŽ300幎åã«ã¢ã€ã¶ãã¯ã»ãã¥ãŒãã³ã®åæ代人ã§ãããå®éã«å®æçã«é£çµ¡ãåããã³ãã¥ãã±ãŒã·ã§ã³ãå³ããåããŠããŸããã 圌ã«æ¬æãè¡šããŠãã»ãããnåã®éšåã«åå²ããæ¹æ³ã®æ°ã瀺ãæ°åã«ååãä»ããããŠããŸãã
第2çš®ã®ã¹ã¿ãŒãªã³ã°æ°ãååŸããåŒã¯æ¬¡ã®ãšããã§ãã

ããããWolfram Mathematicaã§ã¯ãStirlingS2é¢æ°[SSãNN]ãä»ããŠå©çšã§ããŸãã
äžè¡
Nåã®èŠçŽ ã®ã³ã¬ã¯ã·ã§ã³ã®åé¡ã¯ã3è¡ã§è§£æ±ºã§ããŸãã 確ãã«ããããç解ããã«ã¯ãããªãæéãããããŸããã
- é 次åéããã³ã¬ã¯ã·ã§ã³ã®ãã¹ãŠã®èŠçŽ ã«ã¯ãåä¿¡ããé åºã«åŸã£ãŠçªå·ãä»ããããšãã§ããŸãããããã®æ°å€ã¯ãèŠçŽ èªäœã®åçŸæ§ã«åŸã£ãŠã°ã«ãŒãã«ãŸãšããããšãã§ããŸãããã®ãããªã°ã«ãŒãã®æ°ã¯ã第2çš®ã®ã¹ã¿ãŒãªã³ã°æ°ã§ãã
- ãããã®ã°ã«ãŒãã¯ãçŸæç¹ã§ã³ã¬ã¯ã·ã§ã³ã®äžæã®èŠçŽ ãé 眮ããå ŽæãšããŠè¡šãããšãã§ããŸãããã®ãããªé 眮ã®ãªãã·ã§ã³ã®æ°ã¯ãKç®æã®ãç¹°ãè¿ãã®ãªãé 眮ãNèŠçŽ ã®æ°ã«çãããªããŸãããããã£ãŠãKåã®äžæã®èŠçŽ ãååŸããããã®ãªãã·ã§ã³ã®ç·æ°ã¯ã察å¿ããã¹ã¿ãŒãªã³ã°æ°ãšé 眮æ°ã®ç©ã«çãããªããŸãã
- Sçªç®ã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çã¯ãKåã®äžæã®èŠçŽ ãååŸããå¯èœæ§ã®æ°ãšãã¹ãŠã®å¯èœãªçµã¿åããã®æ°ã®æ¯ã§ããN ^ Sã§ãã
éšåçã«åéãããã³ã¬ã¯ã·ã§ã³ã§ã¯ãªããåéãããã³ã¬ã¯ã·ã§ã³ã«é¢å¿ãããå ŽåïŒæ¢ã«äžèšã§äžããããåŒïŒ ãçŸæç¹ã§ã®äžæã®èŠçŽ ã®æ°ã¯ãã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®ç·æ°ã«çããããšãå¿ èŠã§ãã
ãããã£ãŠãNåã®ã¹ãããã§Kåã®èŠçŽ ã®ã³ã¬ã¯ã·ã§ã³ãåéãã確çã¯ãStirlingS2 [NãK] * KïŒ/ N ^ Kã§ãã
2ã€ã®ãšã³ãã£ãã£
ãïŒãé¢æ£ç¢ºçå€æ°ã®ååžãããã³ãããã³ãé¢æ£ç¢ºçå€æ°ã®ååžé¢æ°ãã®æŠå¿µã«ç²ŸéããŠãã人ã¯ããã®ç« ãé£ã°ããŠæ¬¡ãžé²ãããšãã§ããŸãã
ãµã€ã³ããæ¯ã£ãŠã¿ãŸããããç¹å®ã®æ°ãããšãã°3ãŸãã¯5ãæãã確çã¯1/6ã§ãããããã®ã€ãã³ãã®ç¢ºçã®ã°ã©ãã¯ãåçŽã«æ°Žå¹³ç·ã§ãããããæ£ããšåŒã³ãŸãããïŒçµå±ã䌌ãŠããŸãïŒãããããå¥ã®è³ªåã¯éåžžã«äžè¬çã§ããç¹å®ã®æ°ä»¥äžã®æ°ãããšãã°2以äžã®æ°ãè±èœãã確çã¯ã©ã®ãããã§ããïŒãã®åŸãå¯èœæ§ã®ããæ°ããšã«ç¢ºçã°ã©ããäœæããããšãã§ããŸãããããã¯ãã§ã«ãã©ããŒãã®åœ¢ã§ãããååã®ããã«æ°Žå¹³ç·ã§ã¯ãããŸããã
ããã«ããã·ã§ã«ãããã£ãŒãã§ã¯ããã€ã³ã3.5ãŸãã¯2.8ã®å€ã¯ãããŸãããåã«ãã¥ãŒãã§ããŒã«ã¢ãŠãããªãããã§ãããã®å ŽåãéæŽæ°ã®æ°ããŸãã¯1æªæºãŸãã¯6ãè¶ ããæ°ã«ã€ããŠã¯ã確çããŒããšèŠãªãããäžç¢ºå®ãšèŠãªããã¯ããªãè€éãªåé¡ã§ãããããã§ã¯åçŽã«ããããã€ãã¹ããŸãã ãã¯ãããã«é¢ããŠã¯ãç解ããã®ãé£ãããªãéèŠãªãã€ã³ãããããŸããããããèŠéããŠééããç¯ãã®ã¯éåžžã«ç°¡åã§ããåã¹ãããã®æ°Žå¹³éšåã«ã¯ãå·Šã®å¢çã«ç¹ããããŸãããããå³ã«ã¯ãããŸããããããæå³ã§ã¯ãã¹ãããã®åžè§ã«ã§ããã ãè¿ã¥ããããšãã§ããŸãããã°ã©ãã®ç Žæãçºçããå Žæã®ã©ããŒã®é¢æ°ã®å€ã¯ãäžïŒæ¬¡ïŒã®ã¹ãããã®å€ã«çãããªããŸããäŸãã°ãã¥ãŒãã§2以äžã®æ°ãååŸãã確çã¯1 / 3ã2.5以äžã®æ°ãååŸãã確çã1 / 3ã2.999999999以äžã®æ°ãååŸãã確çã1/3ã§ããã3以äžãååŸãã確çã¯æ¢ã«1 / 2ã


ãã¥ãŒãã¯åãã§ãããã¡ããã¡ãã§ç¢ºçã°ã©ããäœæããŠããããã§ãããããããããã¯ç°ãªããŸããéåžžã«å€ãã®å Žåãã¿ãŒããŒãå匷ãããšãããããã®2ã€ã®ãšã³ãã£ãã£ã®æ··ä¹±ã®ããã«åé¡ãæ£ç¢ºã«çºçããŸããããã¯ãéšåçã«ã¯ååãéåžžã«äŒŒãŠããããã§ãããããŠããªã圌ãã2人ã§å°å ¥ãããã®ããå®å šã«ã¯æããã§ã¯ãªããšããäºå®ã«ããã1人ã§ããŸãããããšãã§ããŸãããç¹ã«ããã¯ãããã¯åœåãæ å ±éãå°ãªãç¡æå³ã§ãããšèªèãããŠããŸãã
ãããã®2ã€ã®ãšã³ãã£ãã£ã¯ã次ã®ããã«åŒã³åºãããŸãã
- ç§ãã¡ããSHAFTããšåŒãã ãã®ïŒãé¢æ£ç¢ºçå€æ°ã®ååžåãããããã¯åã«ïŒæ³åãšããèšèãªãã§ïŒãé¢æ£ç¢ºçå€æ°ã®ååžãããŸãã¯ã確çååžããŸãã¯ãååžè¡šããããçãã
- ãLESENKAããšåŒã°ãããã®ïŒãé¢æ£ç¢ºçå€æ°ã®ååžé¢æ°ãã
ããŠã誰ãããæ©èœããšãæ³åŸãã®é¡èãªéããã¯ã£ãããšæ確ã«ç解ããããã¯ãããŒãé£ã¹ãŠãã ãããäŒè©±äžã«ããé åžæ©èœããåã«ãé åžãã«åçŽåãããããã ãã§éãããŸã£ãããªãå Žåã¯ãç¹ã«æªãããšã§ããéèŠãªããšã誀解ããŠããã®ã¯æ®å¿µã§ããçµå±ã®ãšãããèšèªçãªåŠšå®³ã®ããã§ãããããªããæå³ãç解ã§ããªãããã§ã¯ãããŸãããããã§æããTerverã¯ãŸã£ããåé¡ãèªèããŠããããåŠçã¯èŠããã§ããŸãã
ãæ£ããšãã¯ããããåžžã«ãã®ããã«åŸãããããã§ã¯ãªãããšã¯æããã§ããããšãã°ããã¥ââãŒãã®å€ã«ã€ããŠã¯ã°ã©ããæç»ããã人ã ã®æé·ã«ã€ããŠã¯ãã°ã©ãã¯ãã¯ãæ£ã§ã¯ãªãïŒäººã ã¯ãã¹ãŠåãé«ãã§ã¯ãããŸããïŒããããäœããã®ãããŒã ãã«ãªããŸãããã®æ倧å€ã¯ãããã160cmã§ãããããã200cmãš140cmã®æé·ã®ç¢ºçã¯ãã£ãšäœããªããŸããããããã¯ããã¯ãåå¥ã®å Žåã§ã¯ãã»ãšãã©ã®å Žåãã¯ãããã§ãïŒéå®çšçã§ãããããçŸåšã¯æ±ãã«ãããŸããªå Žåãèæ ®ããŠããŸããïŒããããã§ããããã¯éåžžããªãçãã¯ããã§ãã
ãããã®ãšã³ãã£ãã£ã¯ãååãä»ããã«æœè±¡çã«é ã§èªèããã®ãæåã§ããããããäŒè©±ã§ã¯ãæœè±¡çãªãã®ã§ã¯ãªãå ·äœçââãªãã®ãé©çšããå¿ èŠããããŸãããã®ãããç§ã¯éåžžïŒãã¡ãããTerverã®äººã ã¯ç§ãçãåãã«ããŸããïŒæ¬¡ã®æŠå¿µã䜿çšããŸãã ãã¯ãããã®æ¬è³ªã瀺ããç©åããããã³ãæ£ãã®æ¬è³ªã瀺ããå¯åºŠãããã®ãããªå®çŸ©ã®æå³ã¯ããªãåªããŠããŸãã 3以äžã®æ°ããã¥ãŒãã«è¡šç€ºããã確çã¯ã1ãæããããŸãã¯2ãæããããŸãã¯3ã®ç¢ºçã®åèšãæå³ããŸããã€ãŸãã3æªæºã®ãã¹ãŠã®å¯èœãªãªãã·ã§ã³ã®ç¢ºçã®åèšã¯ããç©åã-ãã©ããŒãã°ã©ãã®å€ãæäŸããŸããã€ã³ã3ã§ãç©åã¯å®éã«ã¯åèšã§ããããããã£ãŠç§ã䜿çšããè¡šèšæ³ã§ããå¯åºŠãšã¯ãåçŽã«å€§ãŸãã«èšããšãããªã¥ãŒã å šäœã®1ã€ã®å°ããªéšåã®è³ªéã§ããå Žåã«å³å¯ã«åºå®ããã1ã€ã®å€ãæãã確çã«ã€ããŠè©±ããšãã¯ãå¯èœæ§ã®ããå€ã®ã»ããå šäœããåé¢ãã圌ã ãã話ããããã«ã€ããŠè©±ããŸãããããã£ãŠã2çªç®ã®è¡šèšã䜿çšãããŸãã
ããã§çåãæ®ããŸãããªããç©åã確çã®ã°ã©ããšããŠãã®ãããªãšã³ãã£ãã£ãåå¥ã«å°å ¥ããå¿ èŠãããã®ã§ããããã¥ãŒãã®å Žåãããã¯å®éã«ã¯ããŸãæ確ã§ã¯ãããŸãããå¥ã®äŸãè©ŠããŠã¿ãŸãããã 100人ã®äººãããŠãããããã絊æãåãåã£ãŠãããšããŸãã絊æã¯å€ç¶å¹Žæ°ãä»äºã®ããŸããŸãªã¡ãªãããè³æ Œãªã©ã«äŸåããŸãããã®ç¶æ³ã§ã¯ããã¹ãŠã®çµŠæã¯å°ãªããšããããã«ç°ãªããŸãã 1ã€ã¯30ãã³ã§ããå¥ã®32人ã5人ããããã35人ã36人ããããŠæ£ç¢ºã«34人ã¯èª°ãç²åŸã§ããŸãããããã§ããå¯åºŠã確çã°ã©ããããããšãæ³åããŠãã ãããã€ãŸããæ£ç¢ºã«32t.rã«ãªã確çã¯1/100ã§ããã34tã«ãªã確çã°ã©ãã§ãããšèšããŸããããããŸã£ããç解ããŠããŸããïŒ100人ã®åŸæ¥å¡ãããŠã32t.rãç²åŸããã®ã¯1人ã ãã§ã34ãç²åŸãã人ã¯ããŸããïŒãããŠã32t.rã®1/100ã®ç¢ºçã®ç¥èããããŸãã¯34t.rã®ããŒã¿ããŸã£ãããªããšããäºå®ãããã©ã®ãããªæçšãªçµè«ãåŒãåºãããšãã§ããŸããïŒåºæ¬çã«ãªããããã§ããç©åã確çã®ã°ã©ãããããšæ³åããŠãã ãããããã«ãããšãããªãã¯30ã«ãŒãã«æªæºã«ãªã確çã¯äœã§ããããèšãããšãã§ããŸãããããŠãããã¯ããããå ·äœçãªããŒã»ã³ããŒãžã«ãªããŸãããããŠãäŸãã°10t.ræªæºã®ç¢ºçããŒãã§ããããšãå€æããå Žåãããã¯èª°ã10t.ræªæºã«ãªããªãããšãæå³ããããã¯çµŠäžã34,234rã§ãããšããäºå®ãããã¯ããã«æçã§ãã 20,000誰ããããã¯ã誰ã10 trãäžåããªãããšãæå³ããŸããããã¯ã絊äžã34,234 pã§ãããšããäºå®ãããã¯ããã«æçã§ãã 20,000誰ããããã¯ã誰ã10 trãäžåããªãããšãæå³ããŸããããã¯ã絊äžã34,234 pã§ãããšããäºå®ãããã¯ããã«æçã§ãã 20,000誰ãã
ãã¡ããããäœããã倧ãããäœãããå°ãã確çããªã©ã®ã°ã©ããäœæããããšãã§ããŸãããã®å Žåãåèšã¯æå®ãããå€ãããå°ããå€ã§ã¯ãªããããå€ããå¥ã®å€ã«ãªããŸãããããããããã¯ãã§ã«å ·äœçãªäŸã§ãããç¹å®ã®ã±ãŒã¹ããšã«ç°ãªããŸããããããã確çç©åããšã確çå¯åºŠãã®ã°ã©ãã¯èª°ããåºã䜿çšããŠããããã2ã€ã®å¥åã®éèŠãªãšã³ãã£ãã£ã«åºå¥ãããŸãã
ããã2ã€ã®ãšã³ãã£ãã£ã®æå³ãç解ãããããã®äœ¿çšã®é©åæ§ãç解ããããšã¯ãåãåã£ãåéåé¡ã®å ¬åŒãšãæ°å€ã¢ããªã³ã°ã§åŸãããŒã¿ãç解ããããã«å¿ èŠã§ããããã¯ãã¹ãããæ°ã«å¿ããŠãç¹å®ã®ã¹ãããæ°ã®ã³ã¬ã¯ã·ã§ã³ãåéãã確çã®ã°ã©ãã§ãããŸããã¢ããªã³ã°ã«ãã£ãŠåŸãããããŒã¿ãã©ã®ããã«èŠãããã«ã€ããŠãæãåºããŸãããã£ãŒãã¯å€§ããç°ãªããŸãã


éãã¯ãã¢ããªã³ã°ã«ãã£ãŠåŸãããã°ã©ããã確çå¯åºŠãã§ãããåŒã«åŸã£ãŠãç©å確çãã§ãããšããäºå®ã«ãã£ãŠèª¬æãããŸãããã®åŒã¯ãNåã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãçµã¿ç«ãŠã確çå€ãæäŸããŸããæ£ç¢ºã«ã¯Nã§ã¯ãããŸããïŒããããåçŽã«-Nã®å Žåã§ããã€ãŸããã³ã¬ã¯ã·ã§ã³ãã»ãŒå³åº§ã«åéã§ããNã¹ããããå®è¡ãããŸã§èŠçŽ ã®ç¹°ãè¿ãã®ã¿ãååŸãããã®ãããªå¥åŠãªã±ãŒã¹ãèæ ®ã«å ¥ããŸãããæ··ä¹±ã誀解ãé¿ããããã«ããNå以äžã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çããŸãã¯ã... Nå以äžã®ã¹ãããã§åéããããšããåŒã«ã€ããŠèšãæ¹ãæ£ããã§ãããŸããã¢ããªã³ã°ã«ãã£ãŠåŸãããã°ã©ãã«ã€ããŠããã³ã¬ã¯ã·ã§ã³ãååŸãã確çã¯Nçªç®ã®ã¹ãããã«ããããã€ãŸããã³ã¬ã¯ã·ã§ã³ãïŒN-1ïŒçªç®ã«ãŸã ã¢ã»ã³ãã«ãããŠããªãããNçªç®ã®ã¹ãããã«ã¢ã»ã³ãã«ãããŠããå Žåãèšãå¿ èŠããããŸãã
ã確çç©åãã®åŒããã確çå¯åºŠãã®åŒãååŸããã«ã¯ã確çããN以äžã®ã¹ãããããã³ã¬ã¯ã·ã§ã³ãåéããïŒN-1ïŒä»¥äžã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çãæžç®ããå¿ èŠããããŸããåŸãããå·®ã¯ãNçªç®ã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çã§ããããã以åã§ã¯ãããŸããããããã£ãŠãNçªç®ã®ã¹ãããã§Kåã®èŠçŽ ã®ã³ã¬ã¯ã·ã§ã³ãåéãã確çã¯ãStirlingS2 [NãK] * KïŒ/ K ^ N- StirlingS2 [N-1ãK] * KïŒ/ K ^ïŒN-1ïŒ
ãã®åŒã¯åæžã§ããããšã«æ³šæããŠãã ãããå®éã«ã¯ã1ã€ã®èŠçŽ ã®ã¿ãåéããããšãæ®ã£ãŠããå Žåãããã¯1ã€ã®ç¬èªã®æ¹æ³ã§ã®ã¿å®è¡ã§ããŸããããã¯ãNçªç®ã®ã¹ãããã§ã³ã¬ã¯ã·ã§ã³ãåéãã確çã¯ãNçªç®ã®ã¹ãããã§å¯èœãªãã¹ãŠã®èŠçŽ ã»ããã®ç·æ°ã«å¯ŸããïŒN -1ïŒã¹ãããã§åéããå¯èœæ§ã®æ°ã®æ¯çã«çããããšãæå³ããŸãããã®çµæãåŒã¯StirlingS2 [N-1ãK-1] * KïŒ/ K ^ N ã®åœ¢åŒã«çž®å°ãããŸãã
次ã®ã°ã©ãã§ã¯ãã³ã¬ã¯ã·ã§ã³ãåéããããã®åŒãNçªç®ã®ã¹ãããã§å®ç·ã§ç€ºãããèµ€ãç¹ãã·ãã¥ã¬ãŒã·ã§ã³çµæã瀺ããŸããããªããèŠãããšãã§ããããã«ã圌ãã¯ããªãè¯ããããã§ãã

å»åž«ã®å¹³åæ£è äœæž©ãšå¹³å絊äž
ãããã説æããããšã¯ãæ¥åžžç掻ã§ç¥ãã®ã«éåžžã«éèŠã§æçšã§ããå¹³åãæåŸ å€ãããã³äžå€®å€ã®æŠå¿µã«ç²ŸéããŠãã人ã¯ããã®ç« ãé£ã°ããŠæ¬¡ãžé²ãããšãã§ããŸãã
ã³ã¬ã¯ã·ã§ã³ãçµã¿ç«ãŠãã®ã«ããã€ã®ãå¹³åçãªãã¹ããããå¿ èŠãªã®ã§ããããïŒåçŽã§èªç¶ãªããããã質åã®ããã§ããã1ã€ã®åé¡ããããŸãã ãå¹³åãã«ã€ããŠè©±ããšããç§ãã¡ãæ£ç¢ºã«ç¥ãããããšãæ確ã«ããå¿ èŠããããŸãã
ãã®ç¶æ³ãæ³åããŠãã ããã売ãæã¯ãæ¯æ¥1ã2ã3ãªã©ãæ倧6åã«ãŒãã«ã®å©çãäžããŠããŸãããŸãã§åœŒã®æ¥ã ã®å©çã¯ããµã€ã³ãã«èœã¡ãæ°åã«äŸåããŠããããã«ããããŠããã®ã¢ãŒãã§ã®1ãæã®äœæ¥ã®åŸã圌ã¯å¹³åãèšç®ããããšã«ããŸããã圌ã¯30æ¥éãã¹ãŠã®å©çé¡ãèšç®ããæ¥æ°ã§å²ã£ããçµæã®æ°å€ã¯ã30æ¥éãã¹ãŠã®å©çã®ç®è¡å¹³åã§ããæ°å€ã¯éåžžã«æçã§ããã1ã€ã®é倧ãªæ¬ ç¹ãæ¬ ç¹ããããŸããå®éã«ã¯ãçºçããã€ãã³ãã®äžéšã«é¢ããããŒã¿ãæ¢ã«ããå Žåã«ã®ã¿èšç®ã§ããŸããç¿æã®å©çã®å¹³åå€ãç¥ãããå ŽåãçŸæç¹ã§ã¯ç®è¡å¹³åãèšç®ããæ¹æ³ã䜿çšããŠèŠã€ããããšã¯ã§ããŸãã-ç¿æã®ããŒã¿ããªããããæããããã§åå²ããããšãã§ããŸããããããæ¥æã®åœŒã®ä»äºã¯åãããã§ãããçœå®³ã¯äºæ³ããããååã®äŸçµŠã®äžæãéèŠã®äœäžãäºæ³ãããŠããŸããã売ãæã¯ãã©ã³ãã å€æ°ã®ããããã£ãæ¥æå€æŽãããªãããšãæåŸ ããŠããŸããããã ãšããã°ã1ãæã«èšç®ã§ããå¹³åå€ãå æã«ååŸããå¹³åå€ãšããŸãå€ãããªããšæ³å®ã§ããŸãã ã匷ããªãããäœãæå³ããã®ããšãã質åã¯ãä»ã¯ã¹ãããããŸããããã¯ããªãè€éã§ãä»ã¯ç·æ¥ã§ã¯ãããŸãããæ¥æã®ããããã®å¹³åå©çãäºæž¬ããæ¹æ³ãèŠã€ããŠã¿ãŸããããååã®äŸçµŠã®äžæãšéèŠã®æžå°ã圌ã¯ãŸãæåŸ ããŠããŸããã売ãæã¯ãã©ã³ãã å€æ°ã®ããããã£ãæ¥æå€æŽãããªãããšãæåŸ ããŠããŸããããã ãšããã°ã1ãæã«èšç®ã§ããå¹³åå€ãå æã«ååŸããå¹³åå€ãšããŸãå€ãããªããšæ³å®ã§ããŸãã ã匷ããªãããäœãæå³ããã®ããšãã質åã¯ãä»ã¯ã¹ãããããŸããããã¯ããªãè€éã§ãä»ã¯ç·æ¥ã§ã¯ãããŸãããæ¥æã®ããããã®å¹³åå©çãäºæž¬ããæ¹æ³ãèŠã€ããŠã¿ãŸããããååã®äŸçµŠã®äžæãšéèŠã®æžå°ã圌ã¯ãŸãæåŸ ããŠããŸããã売ãæã¯ãã©ã³ãã å€æ°ã®ããããã£ãæ¥æå€æŽãããªãããšãæåŸ ããŠããŸããããã ãšããã°ã1ãæã«èšç®ã§ããå¹³åå€ãå æã«ååŸããå¹³åå€ãšããŸãå€ãããªããšæ³å®ã§ããŸãã ã匷ããªãããäœãæå³ããã®ããšãã質åã¯ãä»ã¯ã¹ãããããŸããããã¯ããªãè€éã§ãä»ã¯ç·æ¥ã§ã¯ãããŸãããæ¥æã®ããããã®å¹³åå©çãäºæž¬ããæ¹æ³ãèŠã€ããŠã¿ãŸããããããã¯ã匷ããªããããšãæå³ããŸããããã§ã¯ã¹ãããããŸããããªãè€éã§é¢é£æ§ãããŸããããŸãããæ¥æã®ããããã®å¹³åå©çãäºæž¬ããæ¹æ³ãèŠã€ããŠã¿ãŸããããããã¯ã匷ããªããããšãæå³ããŸããããã§ã¯ã¹ãããããŸããããªãè€éã§é¢é£æ§ãããŸããããŸãããæ¥æã®ããããã®å¹³åå©çãäºæž¬ããæ¹æ³ãèŠã€ããŠã¿ãŸãããã
ç®è¡å¹³åãèæ ®ãããšã芳枬äžã«ã©ã³ãã ãªå€ïŒçµŠäžïŒã§åŸããããã¹ãŠã®å€ãåèšããç·æ°ã§é€ç®ããŸããããã®ããã»ã¹å šäœã詳ããèŠãŠã¿ãŸããããåä¿¡ãããã¹ãŠã®ããŒã¿ãããŒãã«ã«æžããŸãããã

ãŠãããã¯k1åããã¥ãŒã¹ã¯k2åããããããŸããã ïŒæ°ååäœã§ã«ãŠã³ãããŸããããç°¡æœã«ããããã«ãŒããæžããŸããïŒããã®åŸããã¥ãŒãã«èœã¡ããã¹ãŠã®ãã®ã®åèšãèŠã€ããŸããïŒãŸãããŸãã¯ãããäœã§ãã-ç§ãã¡ã¯æ¯æ¥ç²åŸããŸããïŒããã®åèšã®è¢«å æ°ã¯1 2 3 4 5 6ã®æ°åã§ããããããããããããk1 k2 k3 k4 k5 k6åã§ãããããã¯ããã®åèšãS = k1 * 1 + k2 * 3 + k3 * 3 + k4 * 4 + k5 * 5 + k6 * 6ããã®åèšã®é ã®ç·æ°ã¯ãN = k1 + k2 + k3 + k4 + k5 + k6ã§ãããå®éãk [x]ã¯ããããã®å€ãäœåäœäžãããã瀺ããåèšã§6åãããŸãããã®åŸãSãNã§é€ç®ããŸããããã¯S / N = 1 *ïŒk1 / NïŒ+ 2 *ïŒk2 / NïŒ+ 3 *ïŒk3 / NïŒ+ 4 *ïŒk4 / NïŒ+ 5 *ïŒk5 / NïŒ+ 6 *ïŒk6 / NïŒããããã詳ããèŠããšãk1 / Nã¯ãããããŠããããè±èœãã確çã«éåžžã«ãã䌌ãŠããŸããk2/ Nã¯2ãè±èœãã確çãªã©ã§ããã€ãã³ãã®çºçæ°ãã€ãã³ãã®ç·æ°ã«åå²ããŸããããããä¹±æ°ãæããããã»ã¹ãä¹±æ°ã®ååžã®æ³åã¯å æå€æŽãããã次ã®å¹Žã«å€æŽãããäºå®ããªãã£ãããã§ããããã¯ãã¿ã€ãïŒk1 / NïŒã®é¢ä¿ã¯æéã«äŸåãããã©ã³ãã å€æ°ã®ããããã£ã«ã®ã¿äŸåããããšãæå³ããŸãããããŠããã€ã®æ¥ãå®éšçã«åŸããã芳枬ããããããååŸã§ããã°ïŒãã¡ãããèšç®ãããŠåå²ãããŸãïŒãå°æ¥çã«ãããã䜿çšããããšãã§ããŸããããã«ãS / Nã¯ã©ã³ãã å€æ°ã®ããããã£ã®ã¿ã«äŸåããæéã«äŸåããªãããã«ãªããŸããããçŸåšã§ã¯WHAT_ DROPPED * PROBABILITY_DECLINED_TOGO_WHERE_DEPENDEDãšãã圢åŒã®çšèªã®ã¿ãæ®ã£ãŠããããšãããããŸãããé 絊æ³èªäœã¯å æã©ã³ãã ã«å€æŽãããŠãããã次ã®æã«å€æŽãããäºå®ããªãã£ãããã§ããããã¯ãã¿ã€ãïŒk1 / NïŒã®é¢ä¿ã¯æéã«äŸåãããã©ã³ãã å€æ°ã®ããããã£ã«ã®ã¿äŸåããããšãæå³ããŸãããããŠããã€ã®æ¥ãå®éšçã«åŸããã芳枬ããããããååŸã§ããã°ïŒãã¡ãããèšç®ãããŠåå²ãããŸãïŒãå°æ¥çã«ãããã䜿çšããããšãã§ããŸããããã«ãS / Nã¯ã©ã³ãã å€æ°ã®ããããã£ã®ã¿ã«äŸåããæéã«äŸåããªãããã«ãªããŸããããçŸåšã§ã¯WHAT_ DROPPED * PROBABILITY_DECLINED_TOGO_WHERE_DEPENDEDãšãã圢åŒã®çšèªã®ã¿ãæ®ã£ãŠããããšãããããŸãããé 絊æ³èªäœã¯å æã©ã³ãã ã«å€æŽãããŠãããã次ã®æã«å€æŽãããäºå®ããªãã£ãããã§ããããã¯ãã¿ã€ãïŒk1 / NïŒã®é¢ä¿ã¯æéã«äŸåãããã©ã³ãã å€æ°ã®ããããã£ã«ã®ã¿äŸåããããšãæå³ããŸãããããŠããã€ã®æ¥ãå®éšçã«åŸããã芳枬ããããããååŸã§ããã°ïŒãã¡ãããèšç®ãããŠåå²ãããŸãïŒãå°æ¥çã«ãããã䜿çšããããšãã§ããŸããããã«ãS / Nã¯ã©ã³ãã å€æ°ã®ããããã£ã®ã¿ã«äŸåããæéã«äŸåããªãããã«ãªããŸããããçŸåšã§ã¯WHAT_ DROPPED * PROBABILITY_DECLINED_TOGO_WHERE_DEPENDEDãšãã圢åŒã®çšèªã®ã¿ãæ®ã£ãŠããããšãããããŸãããïŒãããŠããã¡ãããã«ãŠã³ããšåå²ïŒãå°æ¥çã«äœ¿çšã§ããŸããããã«ãS / Nã¯ã©ã³ãã å€æ°ã®ããããã£ã®ã¿ã«äŸåããæéã«äŸåããªãããã«ãªããŸããããçŸåšã§ã¯WHAT_ DROPPED * PROBABILITY_DECLINED_TOGO_WHERE_DEPENDEDãšãã圢åŒã®çšèªã®ã¿ãæ®ã£ãŠããããšãããããŸãããïŒãããŠããã¡ãããã«ãŠã³ããšåå²ïŒãå°æ¥çã«äœ¿çšã§ããŸããããã«ãS / Nã¯ã©ã³ãã å€æ°ã®ããããã£ã®ã¿ã«äŸåããæéã«äŸåããªãããã«ãªããŸããããçŸåšã§ã¯WHAT_ DROPPED * PROBABILITY_DECLINED_TOGO_WHERE_DEPENDEDãšãã圢åŒã®çšèªã®ã¿ãæ®ã£ãŠããããšãããããŸããã
ããããã®èšèãæžããªãããã«ãå¯èœãªãã¹ãŠã®ãªãã·ã§ã³TOGETHER_THINGS_DROPEDãXïŒiïŒã§ç€ºããŸãã ïŒãXx-5çªç®ã6çªç®ãentoãkatoãitoã®æå³ïŒãåèšã§XïŒiïŒ6åããããŸããããã¯ãã©ã³ãã å€æ°ã6ã€ã®å€ã®ãã¡ã®1ã€ããåãåããªãããã§ããããã«ãXïŒ1ïŒ= 1ãXïŒ2ïŒ= 2ãªã©ã§ãããããŠãWHAT_ã®LOSS_SIDE_ã®ç¢ºçã¯ãPïŒiïŒããæãèœã¡ãŸããããããŠãã©ã³ãã å€æ°XïŒiïŒã®åå€ã¯ãPïŒiïŒã®çºç確çã«å¯Ÿå¿ããŠããŸãããã®ãããªæå®ã§ã¯ãS / Nå€ãããç°¡åã«æžãããšãã§ããŸãS / N = SumAll [PïŒiïŒ* XïŒiïŒ]ïŒãã¹ãŠã®iïŒãçšèªã¯6ã€ãããããŸãããããããããããããã«èšè¿°ããŸãã
S / N = PïŒ1ïŒ* XïŒ1ïŒ+ PïŒ2ïŒ* XïŒ2ïŒ+ PïŒ3ïŒ* XïŒ3ïŒ+ PïŒ4ïŒ* XïŒ4ïŒ+ PïŒ5ïŒ* X ïŒ5ïŒ+ PïŒ6ïŒ* XïŒ6ïŒ
ã ãããããå€SumAll [PïŒiïŒ* XïŒiïŒ]ïŒãã¹ãŠã®iïŒã¯æ°åŠçãªæåŸ å€ãšåŒã°ããŸããããã¯ãŸã åä¿¡ãããŠããªããšããæå³ã§ãæ°åŠçåæã®åŸã«äºæ³ããããã©ã³ãã å€æ°ã®å¹³åå€ããã¥ãŒãã®å ŽåãæåŸ å€ã¯1 *ïŒ1/6ïŒ+ 2 *ïŒ1/6ïŒ+ 3 *ïŒ1/6ïŒ+ 4 *ïŒ1/6ïŒ+ 5 *ïŒ1/6ïŒ+ 6 *ïŒ1 /6)=21/6=3.5ãæŽæ°é¢ã®ã¿ãæã€ãã¥ãŒãã®å Žåããã®äºå®ã«æåã«ééãããšã3.5ãäœã§ããããç解ããã®ã¯éåžžç°¡åã§ã¯ãããŸãã-3.5é¢ã¯ãããŸããïŒãããã®æåŸ å€ã¯ãã©ã³ãã å€æ°ã®å€ã®1ã€ãšåãã§ããå¿ èŠã¯ãããŸããã 1æ¥ãããå¹³å3500ã«ãŒãã«ã®å©çãåŸãŠãã売ãæã«ãšã£ãŠã¯ããã¹ãŠãæ確ã§ãã
ä»åºŠã¯ããã¥ãŒãã10å転ãããæ°åã®6ã10åãã¹ãŠè»¢ãããšæ³åããŠãã ãããç®è¡å¹³åå€ãèšç®ãããšã6ã«ãªããŸãïŒæããã«ïŒããããŠãç§ãã¡ã¯ãã®ããããèšããŸããæåŸ å€3.5ãããã³æ£ç¢ºã«ã¯3.5ã§ããå¿ èŠããããŸãã6ã§ã¯ãããŸãããããã§ã芳枬ããŒã¿ããåŸãããç®è¡å¹³åå€ãæåŸ å€ãšç°ãªãå ŽåããããŸããå®éãæåŸ ã¯æåŸ ãããå¹³åã§ãããå®éã«ã¯æã èµ·ããããšã¯ãããŸãããçŸå®ã«è¿ãããå®éã®å€ã«çãããªãäºæ³ããããã®ã¯ãçŽæ¥ç¢ºå®ã§ããããããå®çïŒãå€æ°ã®æ³åãïŒããããŸããããã¯ããµã€ã³ããæ¯ãåæ°ãå¢ããã»ã©ãç®è¡å¹³åãèšç®ããåæ°ãå¢ããã»ã©ãæåŸ å€ãšå¹³åå€ã®å·®ãå°ãããªãããšãæå³ããŸãããããŠäžããããã»ãšãã©ã®å Žåãé·æéã®å®éšãè¡ãæ©äŒã¯ãªããäžè¬ã«ãå®éšãªãã§å¹³åçã«äœãèµ·ããããäºæž¬ãããã®ã§ãäœããã®è©äŸ¡ãšããŠãæ°åŠçäºæž¬ã䜿çšããããšã§æºè¶³ããããšãã§ããŸãããšã©ãŒã
äžæ¹ã§ãããã€ãã®ã©ã³ãã ãªããã»ã¹ã説æããå Žåãå¹³åå€ã¯éåžžã«æçã§ãããæã ãå¹³åå€ã¯åã«ç¡æå³ã§éè«ççã§ããããã®äœ¿çšã¯åžžèãšçŸå®ã«åããŠããŸãããããŠãããã§ã®ãã€ã³ãã¯ãæãå¹³åçãªå€ã§ã¯ãªãããããæ€èšãã人ã ã®å¥å šæ§ã§ãã
ããç é¢ã®äž»ä»»å»åž«ã¯ãã¬ããŒãã«æ¬¡ã®æèšãæžãã®ã倧奜ãã§ããããæ£è ã®å¹³åäœæž©ã¯36.6床ã§ãããã¯æšæºãšå®å šã«äžèŽããŠããŸããã圌ã¯åãã€ããŸããã§ããããæ£çŽã«ãã¹ãŠã®æ£è ã®äœæž©ã40床ã®çºç±ããã人ãæ»äº¡ããŠå®€æž©ãŸã§å·ããã人ã®æ°ãæ°ããŸãããå¹³åããŠã36.6ãåŸãããŸãããæ£è ã®äœæž©ååžã®ã°ã©ããæãããšã§ãããå€ãã®æ å ±ãåŸãããã§ãããããããèŠãŠãäœäººã®äººããŸã çããŠãããäœäººã®äººãéåžžãããäœæž©ãé«ãããæšå®ããããšãã§ããŸãããã¡ãããäŸã¯éžè©±ã§ãããé©ãã¹ãããšã§ãããå¹³åå€ãèæ ®ããã®ã¯ç¡æå³ãªå ŽåããããŸãã
å¹³åå€ã䜿çšãããã1ã€ã®äŸã¯ãæ害ã§èª€è§£ãæãã»ã©ã«ã¯æå³ããããŸãããå€ãã®å Žåãã¡ãã£ã¢ã§ã¯ããã®ãããªæ¥çã®å¹³å絊äžã«é¢ããèšåãèãããšãã§ããŸããéåžžã絊äžã®ååžå³ã衚瀺ããããšã¯ãããŸãããå°å·ããã®ãé¢åãªäººãããšãã¹ãã©ãäŸé Œããã®ãé¢åãªäººãããŸãããããŠãããªãã«èŠããŸãïŒãã¡ããçºæãããŸããããçŸå®ã«éåžžã«è¿ãã§ãïŒã

ååžã¯æ¬¡ã®ãšããã§ãã50人ã®åŽåè ãçŽ20t.rãåãåããŸããããŒã200ãããã³150t.rã®åœŒã®4ã€ã®ä»£çãã¡ãã£ã¢ã¯ããã®äŒæ¥ã®å¹³å絊äžã¯32,236ã«ãŒãã«ã40ã³ããã¯ã§ãããšæ£çŽã«æžããŠããŸãããã¡ãããåŽåè ã¯ãå¹³åããŠãã®ãããªçµŠæãåãåã£ãŠãããšèããŠéåžžã«é©ããŠããŸããå¹³åå€ã¯ããã ãã§ããããã ãããã»ãšãã©ã®åŸæ¥å¡ã®çµŠäžã®1.5åã§ãããããŠä»ã誰ã誰ãã ãŸããŠããªããäžæ¹ãã¹ã±ãžã¥ãŒã«ã衚瀺ããæ¹ãæ£ç¢ºã§ãããã¯ããã«é·ããªããŸãããŸããã°ã©ãã¯éåžžã«è€éã§ããããã誰ããã°ã©ãã«æãããŠãããã®ãããã«ç解ã§ããããã§ã¯ãããŸãããã¯ããã³ã¬ã¯ã·ã§ã³ã®åé¡ã§ããããã¹ãŠã®äººãã°ã©ããäœæãããããŸãã¯ãã以äžã«ã°ã©ããäœæããããšã¯æããªãã§ãããããããã圌ãã¯ã³ã¬ã¯ã·ã§ã³ãåéããããã«éåžžã«ãå¹³åçãªãæ°ã®ã¢ã€ãã ãèããããšæãã§ãããã1ã€ã®çªå·ã¯ãé åžãããç°¡åã«å®çŸã§ããŸãã
ãã1ã€ã®ãæ°ãããããŸãããããã¯ç°¡æœã§ãããæã«ã¯äºæ³ãããåé ã®æ³åãããæ å ±çã«èª¬æãããã®ã§ããããã¯äžå€®å€ãšåŒã°ããŸãïŒããããããã¯äžè§åœ¢ãšåãäžå€®å€ã§ã¯ãªããååã䌌ãŠããã ãã§ãïŒã
絊äžã«é¢ããåè¿°ã®äŸã§ã¯ããã®ãããªè³ªåãããããšãã§ããŸã-äŒæ¥åŸæ¥å¡ã®50ïŒ ãåãåãéé¡ä»¥äžã§ãããã®è³ªåã«å¯ŸããçããšãªããŸãã«ãã®éãäžå€®å€ãšåŒã°ããŸãããã ããäžå€®å€ã¯åžžã«ååšãããšã¯éããŸããããããã«æãè¿ãæå³ããããŸãããã®ãã¥ã¢ã³ã¹ã¯ç¹å¥ãªåœ¹å²ãæãããŠããŸããã50ïŒ ã®å€ãå³å¯ã«ååŸããããšã¯ã§ããŸããããæãè¿ããã®ã¯åžžã«å¯èœã§ãããã®äŸã§ã¯ãåŸæ¥å¡ã®61.8ïŒ ã21ãã³ä»¥äžã®çµŠäžãåãåã£ãŠãããšèšããŸããããã«ãåŸæ¥å¡ã®89ïŒ ã25t.r以äžã®çµŠäžãåãåã£ãŠãããšèšããŸãããã®æ°å€ã¯äžå€®å€ã§ã¯ãªããåäœæ°ïŒ89ïŒ ïŒãšåŒã°ããŸããå®éã«ã¯ãäžå€®å€ãåäœæ°ã§ãããé »ç¹ã«äœ¿çšãããæ£ç¢ºã«50ïŒ ã§ãããããç¬èªã®ååãä»ããŸãããåæããŸãããåŸæ¥å¡ã®89ïŒ ã¯25 tr以äžã®çµŠäžããåãåããŸããããå¹³å絊äž32 trããããã¯ããã«æçãªé³ãçæ³çã«ã¯ããã¡ããããããèšã£ãæ¹ãããã§ãããé·ããããèšã£ããããããšã¯é£ãããããŸããã確ãã«ãèãæã¯ã圌ããèšãããããšãç解ããªãããšã«æ £ããŠããªããããããŸããã
ç¹ã«ææ ®æ·±ã人ã ã¯ãããããã©ã®ãããª50ïŒ ãæ¡çšããããå°ããŸããäžåžãšä»£çãåã50ïŒ ãå ¥åãããšãåã³ãã³ã»ã³ã¹ã«ãªããŸããã¯ããåäœããŸãã®ã§ããŸããã¹ãŠãæé ã§ãœãŒãããæå°ããæ倧ãŸã§ããŒã»ã³ããŒãžãã«ãŠã³ãããå¿ èŠããããŸããæ³åŸãšååžé¢æ°ã®èª¬æã§ãã®ç¹ãèŠéããŸãããããããã¯åžžã«æé ã§æ£ç¢ºã«æ§ç¯ãããŸãã
å®éã«ã¯ãå€äœå€ããŸãã¯äžå€®å€ã§ãããèšç®ããã®ã¯éåžžã«å°é£ã§ããäžå€®å€ã«ã€ããŠã¯ãFïŒxïŒ= 0.5ã®åœ¢åŒã®æ¹çšåŒã解ãå¿ èŠããããéé¢æ°ã¯åååžããèšç®ã容æã§ãããåžžã«ååšãããšã¯éããªããããæãè¿ããã®ãæ¢ãå¿ èŠããããŸãããã®çµæãæ¹çšåŒã§ã¯ãªãäžå¹³çãåŸããããã®åŸç°ãªãã±ãŒã¹ïŒç°ãªãäŒæ¥ãŸãã¯æïŒã«ã€ããŠå®éåããå ŽåãæžãçããŠæ¯èŒããå¿ èŠããããç°ãªãããŒã»ã³ããŒãžããããããååŸããå¿ èŠããããããã¯äžäŸ¿ã§ãã
ãšããã§ãåéã®åé¡ã«ã€ããŠã¯ãåäœæ°ãåæçã«èšç®ããæ¹æ³ã¯ããããŸããããæ°å€è§£ã§ååŸããŸãã
çŽæ¥ç»ããªãå Žåã¯æšªã«è¡ããŸã
ã³ã¬ã¯ã·ã§ã³ã®åé¡ã§ã¯ãã³ã¬ã¯ã·ã§ã³ãåéããåã«ãå¹³åçãªã³ã¬ã¯ã¿ãŒãã¹ãããïŒãã¥ãŒã€ã³ã¬ã ãéãïŒãè¡ãæ°ãç¥ããããšæããŸããæ°åŒã䜿çšããŠæ°åŒã䜿çšãã以åã«ååŸãã確çååžã®æ³åïŒãå¯åºŠãïŒã䜿çšã§ããŸããããããç§ã¯ãã®ãããªéãèšç®ã§ããªãã£ããšèšããªããã°ãªããŸãã-åŒã¯ãŸã éåžžã«è€éã§ããããããæå°åããæ¹æ³ã¯æ確ã§ã¯ãããŸããã
ãé¡ãã解決ããããšã¯äžå¯èœã§ãããããå°ãªããšããªããšãããŠã¿ãŸããæåŸ ã®ããããã£ã®1ã€ã¯ãããã«åœ¹ç«ã¡ãŸããç§ã¯ããã蚌æããã«æäŸããŸããããã¯çããŠè€éã§ã¯ãªããTerverã®æç§æžã§èŠã€ããããšãã§ããŸãã
2ã€ã®ç¬ç«ããã©ã³ãã å€æ°ã®åèšããã®ãããæåŸ å€ã¯ããããã®åå€æ°ããã®æåŸ ãããã®åèšã«çãããªããŸãã
ããšãã°ããã¥ââãŒãã«ã¯ãããããããŸããããããšã¯äœã§ããïŒåæã«æãããã2ã€ã®ãµã€ã³ãã®æ°åã®åèšã«å¯ŸããæåŸ ãäžèšã®ã«ãŒã«ã«åŸã£ãŠãçã7ãåŸãããŸãã
ããæç¹ã§ãKåã®äžæã®èŠçŽ ããããã³ã¬ã¯ã·ã§ã³ã«åèšNåã®èŠçŽ ããããšããŸããå¥ã®äžæã®èŠçŽ ãååŸãã確çã¯ïŒNKïŒ/ Nã§ãããå¥ã®ç¹°ãè¿ããååŸãã確çã¯çãããªããŸãã K / Nãã®ãããªç¶æ³ã§ã¯ãæ£ç¢ºã«Mã¹ãããã§äžæã®èŠçŽ ãååŸãã確çã¯ïŒNKïŒ/ N *ïŒK / NïŒ^ïŒM-1ïŒã§ããã€ãŸããããã¯ç¹°ãè¿ããåä¿¡ããåã§ããã°ãäžæã®èŠçŽ ãååŸãã確çã§ããæ°ããäžæã®èŠçŽ ãååŸããããã«å¿ èŠãªã¹ãããã®å¹³åå€ãèšç®ããã«ã¯ãäºæž¬åŒã䜿çšããŸããã¡ãªã¿ã«ãæåã§èšç®ããããšã¯é£ãããããŸããããããã«æ°åŠã§èšç®ããããã®ã³ãŒãããããŸãã
Sum[i*(nk)/n*(k/n)^(i-1),{i,1,Infinity},Assumptions->{k/n<1}]
ãã®çµæããã§ã«Kåã®äžæã®èŠçŽ ããã£ãå Žåãå¹³åããŠN /ïŒNKïŒã¹ãããïŒãã¥ãŒã€ã³ã¬ã ãéãïŒã§æ°ããèŠçŽ ãååŸããå¿ èŠããããŸãã
ã³ã¬ã¯ã·ã§ã³å šäœãåéããããã«åä¿¡ããèŠçŽ ïŒãã¹ãŠãªãŒãã³ãã¥ãŒã€ã³ã¬ã ïŒã®å¹³åå€ã¯ãN /ïŒNKïŒã«çããäžæã®èŠçŽ ãååŸããéã«è¡ãããã¹ãããæ°ã®å¹³åå€ã®åèšã«çãããªããŸããããšãã°ãæåã®äžæã®èŠçŽ ãååŸããã«ã¯N /ïŒN-0ïŒ= 1ã¹ãããïŒãã¥ãŒã€ã³ã¬ã ãéãïŒãæåŸã®äžæã®èŠçŽ ãååŸããã«ã¯N /ïŒN-ïŒN-1ïŒïŒ= Nã¹ããããå¿ èŠã§ããæåŸãã2çªç®ã®N /ïŒN-ïŒN-2ïŒïŒ= N / 2ã¹ããããæåŸãã2çªç®ã®N /ïŒN-ïŒN-3ïŒïŒ= N / 3ã¹ããããªã©ãçµæãšããŠãããã§åèšãåŸãããŸãããã®çš®ã®N + N / 2 + N / 3 + N / 4 + ... + N /ïŒN-2ïŒ+ N /ïŒN-1ïŒ+ N / Nããç°¡åãªåœ¢åŒã§èšè¿°ã§ããŸãïŒN *ïŒ1 + 1/2 + 1/3 + 1/4 + ... + 1 / NïŒã
ããã¯ãã³ã¬ã¯ã·ã§ã³ãçµã¿ç«ãŠãããã«ã¢ã€ãã ãååŸããã®ã«å¹³åããŠã©ããããå¿ èŠããšãã質åã«å¯Ÿããçãã§ãã
äœããã®ãŠã£ã
ãã·ã¢ã®ãŠã£ãããã£ã¢ã«å ¥ãããšããããªãã§ãã ãããå ¬åŒãå®çãããã³ãã·ã¢ã®ãŠã£ãããã£ã¢ã§å°ãç§åŠçãªãã®ã«é¢ãããã¹ãŠã¯ãèŠãã®ã«æ害ã§ãïŒèšäºã¯å°ãªããèšäºããäœããåŠã¶ã®ã¯çŸå®çã§ã¯ãªããããªèšèªã§æžãããŠããŸããéåžžã«æ·±å»ãªæ¬ã®äžããæãèªæã§ãªãæåã䜿çšããŠæžãããå®çŸ©ã®ç Žçãæã£ãŠããããããŠã£ãããã£ã¢ã®èšäºã®èè ã¯ãåé¡ã®æ¬è³ªãŸãã¯å°ãªããšã䜿çšãããŠããè¡šèšã®æå³ã説æããããšããã«åã«ã³ããŒããŠããããã§ããé倧ãªã»ãã³ãã£ãã¯ãšã©ãŒãçºçããããšã¯ãŸãã§ãã
ã»ãšãã©ã®ãŠãŒã¶ãŒã¯ãã§ã«ãã¹ãŠããŠã£ãããã£ã¢ã§éåžžã«åçŽã«æžãããŠãããšããæèŠãæã£ãŠããŸãããããããªãããŠã£ãããã£ã¢ã§æ確ã§ãªãå Žåã質åã¯éåžžã«è€éã§ããããããå¿ããæ¹ãè¯ãã§ããããçš®ã®åæç§æžã¯ç°¡åã§ã-èå³ãšåçºã®ä»£ããã«ãããã¯å®å šã«åŠç¿ããé ããããã誀解ãæããŸãã
ãšããã§ããã®èšäºã®ãããã¯ã«é¢é£ãã質åãæ€çŽ¢ããéçšã§ãJames Stirlingå°çšã®ãŠã£ãããã£ã¢ããŒãžã«å ¥ããŸããã
圌ã¯300幎åã«äœãã§ããã®ã§ãããŒãžã«æ·»ä»ãããç»åã¯ãç»åã®è³ªãšæãããç·æ§ã®å€èŠ³ã®ããã«ç§ãçãããŸãããä»ã®èšèªã®ãžã§ãŒã ãºã»ã¹ã¿ãŒãªã³ã°ã®ããŒãžã§ã¯ããã®ç»åã¯ã©ãã«ããããŸããã§ãããã»ãšãã©ã®å Žåãããã«ã¯ãããŸããã§ããããã¹ãããã¢èªãã¢ã«ã¡ãã¢èªããã³ã¬ãªãŒèªãããã©ã€èªããã·ã¢èªã®ããŒãžã«ãããŸãããç»åãžã®ãªã³ã¯ã¯éåžžã«ãããããçµæãäžããŸããã
ããã¯ã20äžçŽã®å²åŠè ã°ã¹ã¿ãããŒã°ãã³ã®åçã§ããå°ãªããšãã¢ã€ãªã¯å€§åŠã®å ¬åŒãŠã§ããµã€ãã§ãããè¿°ã¹ãããŠããŸãã
ãŠã£ãããã£ã¢ã«ã¯æ¬åœã«åªããä¿¡é Œã§ããèšäºãå«ãŸããŠããŸãããããã¹ãŠãå€ãããŸãããããŠããã·ã¢ã®ãŠã£ãããã£ã¢ã¯ããã«æªåãç¶ããŠããŸãã
ããããå ¬å¹³ã«èšããšãè±èªçãŠã£ãããã£ã¢ã®ããŒãžã¯ããæžãããŠããããšãå€ãããšã«æ³šæããŠãã ããã
çµæ
第2çš®ã®ã¹ã¿ãŒãªã³ã°æ°ã䜿çšããŠèšè¿°ã§ããæ°åŒã¯ã2ã€ã®ããŒãžã§ã³ã§èšè¿°ãããŸãã
Wolfram Mathematicaã§ã¯æåNãšKãäºçŽãããŠãããããNNãšãã圢åŒã®è¡šèšã䜿çšãããŸããããã¯ã2æåã®ç©ã§ã¯ãªãã1æåãæå³ããŸãã
ãã¹ãŠã®åŒã§ãNNã¯ã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®æ°ãKK-äžæã®èŠçŽ ã®æ°ãLL-ç¹°ãè¿ãã瀺ããŸãã MMãçºçããããšããããŸã-ããã¯ãçŸæç¹ã§å©çšå¯èœãªãã¹ãŠã®èŠçŽ ïŒã³ã¬ã¯ã¿ãŒãçŸåšæã£ãŠãããã®ïŒãæå³ããŸããã¯ããMM = KK + LLããã®è¡šèšæ³ã®å°å ¥ã¯åé·ã«æããŸãããåŒã®èª¬æã§ã¯äŸ¿å©ã§ãã
ããã€ãã®åŒã¯ãStirlingS2ã䜿çšããäžè¬çãª2ã€ã®ããŒãžã§ã³ã§æäŸãããŸãããã ããããã2ã€ã®ãªãã·ã§ã³ã¯å®å šã«åäžã§ãã
- , .
, MM KK LL . ( = KK+LL)
Wolfram Mathematica
FV[KK_,LL_,NN_]:=Sum[((-1)^(n+KK) n^(KK+LL))/(n! (KK-n)!),{n,1,KK}]*NN!/(NN-KK)!/(NN^(KK+LL)); FVs2[KK_,LL_,NN_]:=StirlingS2[KK+LL,KK]*NN!/(NN-KK)!/(NN^(KK+LL));
- , MM- «» KK LL . ( = KK+LL)
Wolfram Mathematica
TV[KK_,LL_,NN_]:=Sum[((-1)^(n+KK-1) n^(KK-1+LL))/(n! (KK-1-n)!),{n,1,KK-1}]*NN!/(NN-KK+1)!/(NN^(KK+LL)); TVs2[KK_,LL_,NN_]:=StirlingS2[KK+LL-1,KK-1]*NN!/(NN-KK+1)!/(NN^(KK+LL));
- . , , SS . ( , .)
Wolfram Mathematica
FCompleteNN[SS_,NN_]:=If[SS<NN,0,Sum[((-1)^(n+NN) n^SS)/(n! (NN-n)!),{n,1,NN}]*NN!/(NN^SS)]; FCompleteNNs2[SS_,NN_]:=If[SS<NN,0,StirlingS2[SS,NN]*NN!/(NN^SS)];
éèŠïŒ , Wolfram Mathematia , Wolfram Alpha . , N .
- , , SS . ( , SS- ).
Wolfram Mathematica
TCompleteNN[SS_,NN_]:=If[SS<NN,0,Sum[((-1)^(n+NN-1) n^(SS-1))/(n! (NN-1-n)!),{n,1,NN-1}]*NN!/(NN^SS)]; TCompleteNNs2[SS_,NN_]:=If[SS<NN,0,StirlingS2[SS-1,NN-1]*NN!/(NN^SS)];
- :
, , .
Wolfram Mathematica
MeanFCompleteNN[NN_]:=Sum[NN*(1/k),{k,1,NN}]; MaxTCompleteNN[NN_]:= Module[{SSm=IntegerPart[MeanFCompleteNN[NN]-(3+0.5777490650280465*NN)] ,NNm=NN,TVOld=0,TVNew=0}, If[SSm<NNm,SSm=NNm]; TVOld=TV[NNm,SSm-NNm,NNm]; TVNew=TV[NNm,SSm-NNm+1,NNm]; While[(TVNew-TVOld)>0, SSm=SSm+1; TVOld=TVNew; TVNew=TV[NNm,SSm-NNm+1,NNm]; ]; SSm ]; MedianaFCompleteNN[NN_]:= Module[{SSm=IntegerPart[MeanFCompleteNN[NN]-(3+0.2116249898999874*NN)],NNm=NN}, If[SSm<NNm,SSm=NNm]; While[FV[NNm,SSm+1-NNm,NNm]<0.5, SSm=SSm+1; ]; SSm ];
- ( ±2 1000)
,
- , , 50%.
西éšã®æ¬åã®æã®å±ããªãå Žæã«ããã²ãŒã ArcheAgeã§ã¯ããTraveller's BagããèŠã€ããããšãã§ããŸããããã«ã¯ããšãããEricã®æ¥èšã®ããŒãžãå«ãŸããŸãã80åã®ãŠããŒã¯ãªããŒãžããã¹ãŠåéãããšããããããå®å šãªæ¥èšã埩å ããã¿ã€ãã«ãšããŠå ±é ¬ãåŸãããšãã§ããŸããããã«ãããææè ã¯ãããããããšãã«åãããã¡ãŒãžãå°ãªããªããŸããåŸãããåŒã䜿çšãããšããã¬ã€ã€ãŒã¯æ¥èšå šäœãç¬ç«ããŠåéããããã«ãå¹³åã§397åã®ããã°ãèŠã€ããå¿ èŠããããšèšããŸãããŸãã400åã®ããã°ãåãäžããããããã¹ãŠã®ããŒãžãåéãã確çã¯58.7ïŒ ã§ãããšèšããŸãã
èªçæ¥ãšã«ãã®éè¡
æã«ã¯ããããã¯å Žåã«ãã£ãŠã¯é »ç¹ã«ã人ã ã¯è³ªåã®æ°åŠçåæã«æéããããã®ã§ã¯ãªããçŽæã«ããªãç¡è¬ã«äŸåããŸãã 2ã€ã®è³ªåã«çããããšããå§ãããŸããããªãã®çŽèŠ³ã«å¯Ÿããããªãã®ãå ãªãææ ãã«ã®ã¿é Œã£ãŠã圌ãã«çããŠã¿ãŠãã ããã
æåã®è³ªåã¯ããã§ããã¯ã©ã¹ã«ã¯23人ã®çåŸãããŸããå°ãªããšã1人ãåãèªçæ¥ã«ãªãå¯èœæ§ã¯ã©ã®ãããã§ããïŒ
2çªç®ã®è³ªåã¯ã«ãã§ãã 1ã€ã®ã«ã现èãæ é€æº¶æ¶²ãšãšãã«ç¶ã«é£ã³èŸŒã¿ãæétã2ã§é€ç®ãããŸããããã®åŸãããã2ã€ã®ã»ã«ã¯ãããããæétåŸã«åã³å ±æãããŸãã 1æéåŸã猶ã¯æ£ç¢ºã«ååã®ã«ã现èã§æºããããŸãããéè¡ã¯äœæã«æºæ¯ã«ãªããŸããïŒ
åŸ ã£ãŠãèªãã§ããªãã§ãå°ãªããšãããã€ãã®çããåºãããšããŠãã ãããæ£ããçããã°ã1000ã«ãŒãã«ãåãåããæ£ãããªããã°100ã«ãŒãã«ãåãåããŸãã1å以å ã«çããªããã°ãäœãåŸãããŸãããããã¯åãªãã€ã³ã»ã³ãã£ãã®ããã§ãããã¿ã¹ã¯ã¯ãèããå¿ èŠãããããšããããªãã¯ã ãšæããŸãããããŠã人ã ã¯éåžžãããªãã¯ãçããšãã ãæ éã«åæãå§ããŸãããã¡ãããããã¯è¯ãããšã§ããããããä»ã®å Žåã§ãçŽæã«é Œããªãæ¹ãããã§ããããããããä»ã§ã¯ããªãã®çŽæã®ãã¹ãããŸãã«ããã§ããçããŸãããïŒ
1è¡ã®èªçæ¥ã«é¢ãã質åã«å¯Ÿããåçã¯ãã³ã¬ã¯ã·ã§ã³ã«ã€ããŠä»¥åã«å°åºãããåŒããååŸãããŸãã 1幎ã®ãã¹ãŠã®æ¥ã¯ã³ã¬ã¯ã·ã§ã³å ã®èŠçŽ ã®æ°ã23人ã¯çŸåšã®èŠçŽ ã®æ°ãç¹°ãè¿ãã¯0ã§ããå°ãªããšã2人ãåãèªçæ¥ãæã£ãŠãã確çã¯ã1ããèªçæ¥ãäžèŽããªã確çãåŒãããã®ã«çãããªããŸãã誰ããã©ã€ããŒãšãã¥ãŒã€ã³ã¬ã ã«é¢ããŠã¯ã23åã®ãŠããŒã¯ãªèŠçŽ ã0åã®ç¹°ãè¿ãã365åã®èŠçŽ ãã³ã¬ã¯ã·ã§ã³å šäœãå«ãããšãæå³ããŸãã 23人äžå°ãªããšã2人ã®èªçæ¥ãäžèŽãã確çã¯
1-FV [23,0,365] = 0.507297 = çŽ 50ïŒ ã§ã
ã€ãŸããã¯ã©ã¹ã§ã¯ã誰ãã®èªçæ¥ãããªãé«ã確çã§äžèŽããŸãããã¡ãªã¿ã«ãã¯ã©ã¹ã§ã¯ãã¯ã©ã¹ã¡ãŒãã®äžäººãšäžèŽããã®ã¯ç§ã®èªçæ¥ã§ãããå®è·µã瀺ãããã«ãã»ãšãã©ã®äººã«ãšã£ãŠã掻åã®çš®é¡ã«é¢ä¿ãªãããã®ãããªé«ã確çã¯ãŸã£ããäºæ³å€ã§ããããšãã°ãçããèŠã€ããŠãšãŠãé©ããŸããããããçå®ã¯ãã³ã¬ã¯ã·ã§ã³ã«é¢ããå ¬åŒãããã§éåžžã«ããŸãæ©èœããããšãå¬ããæããŸããã
ã«ãã«ã€ããŠã®è³ªåãžã®çãã¯ãããªãèªèº«ããããèŠã€ããããšããå§ãããŸãã
çµè«
çŽæãè奮ãææ ãããããã¹ãŠãçããããšããªããã°éå±ã§ããããããããã«ããããããããããã¯äººéã®æã匱ãå Žæã§ãããããŠãè©æ¬ºåž«ãåºåäž»ãPRãããŒãžã£ãŒãããŒã±ãã£ã³ã°æ åœè ããã®ä»å€ãã®äººã ãç©æ¥µçã«beæããŠããã®ã¯ããŸãã«ãããã®åŒ±ç¹ã§ããåãåã£ãæ å ±ãšèªåã®èšç»ã®æ°åŠçåæã¯ãåªããé²åŸ¡ãŸãã¯åŒ·åãªæŠåšã®ããããã§ãããããã©ã®ããã«é©çšãããã¯ããªããšããªãã®è¯å¿æ¬¡ç¬¬ã§ããäž»ãªããšã¯ãåºèã«è¡ã£ããããã¥ãŒã¹ãèªãã ããã³ã³ãã¥ãŒã¿ãŒã²ãŒã äžã«æŠè¡ãæŠç¥ãèšç»ããããšãã£ããããããç¶æ³ã§åä¿¡ããæ å ±ã®æ°åŠçåæã®ç¿æ £ã身ã«ä»ããããšã§ããç¹ã«ã²ãŒã äžã