
ã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã«ããæçš¿ã Mathematicaã®åã«ã¯æéããããŸãã... ãã®ç¿»èš³ã
翻蚳ã«ååããŠãããKirill Guzenko KirillGuzenkoã«æè¬ããŸãã
æ°é±éåŸ[æçš¿ã¯2013幎6æ6æ¥ã«å·çãããŸããã edã]ã¯25åšå¹ŽãšãªããŸãã1988幎6æ23æ¥ã¯MathematicaããªãªãŒã¹ãããæ¥ã§ãã
æ·±å€ãç§ãã¡ã¯ãŸã ãããããŒãã£ã¹ã¯ãçŒãããããã梱å ããŠããŸããã ãããã6æ23æ¥ã®æ£åã«ãç§ã¯ãµã³ã¿ã¯ã©ã©ã®ã«ã³ãã¡ã¬ã³ã¹ã»ã³ã¿ãŒã«ããŸãããæåã«Mathematicaãå ¬ââéããŸããïŒ

ã¯ããããã¯ãŸãã«ããŒãç»é¢ã§ããããããŠãã¯ãã Mathematica 1.0 㯠MacãããŸããŸãªUnixã¯ãŒã¯ã¹ããŒã·ã§ã³ã§åäœããŸããã ãã®åŸãPCã«ååãªé»åããããŸããã§ããã
å€ãã®äººãMathematicaã®æ©èœã«æéãåããŸããã ãŸãã Steve Jobs ïŒåœæ圌ã¯NeXTã«ããïŒãå«ãã³ã³ãã¥ãŒã¿ãŒæ¥çã®ããŸããŸãªãªãŒããŒããMathematicaã®å±æã«ã€ããŠéåžžã«æ¥œããã¹ããŒãããããŸããã ã ãããŠããã®ã€ãã³ãã®èª°ãã¯å èŠã®æãããããã¹ãŠã®è¬æŒè ã«Mathematicaã«é¢ããæ¬ã«ãµã€ã³ã¢ããããããã«äŸé ŒããŸããã

æåŸã®ååäžçŽä»¥æ¥ã Mathematicaã«ã¯å€ãã®ããšãèµ·ãããŸããã Mathematica 1.0ã§å§ãŸã£ããã®ã¯ãä»æ¥ã®Mathematicaã®åºç¯ãªã·ã¹ãã ã«ãªããŸããã ãããŠã25åšå¹Žãèšå¿µããŠãžã¥ããªãŒã¢ã«ãã ãèŠããšã Mathematicaãç 究ãçºæãæè²ãç§åŠã«è²¢ç®ããããšãå®çŸããããšã«èªããæã£ãŠããŸãã

ããããããããç§ã«ãšã£ãŠæã泚ç®ãã¹ãããšã¯ã Mathematicaãæ§ç¯ããåºæ¬ååãã©ã®ããã«æã®è©Šç·Žã«èããŠããããšããããšã§ãã ãããŠã Mathematica 1.0ã«ãã£ãåºæ¬çãªèãæ¹ãšèšèªèªäœãä»æ¥ã©ã®ããã«ä¿åãããŠãããïŒãããŠãã¯ããã»ãšãã©ã®Mathematica 1.0ã³ãŒãã¯ãŸã æ©èœããæä»ããã®ãŸãŸã§ãïŒã
ããããŸãããã Mathematicaã¯ã©ãããæ¥ãã®ã§ããïŒ åœŒå¥³ã¯ã©ã®ããã«åœŒå¥³ãäœã«ãªã£ãã®ã§ããïŒ ããã¯æ¬åœã«é·ã話ã§ãã ãããŠç§ã®äººçãšå¯æ¥ã«çµ¡ã¿åã£ãŠããŸãã ã ããããç§ãæªæ¥ã«ç®ãåããããšãããšããç§ã¯ãã¹ãŠãéå»ã«ã©ã®ããã«ããããŠã©ã®ããã«å€åããããç解ããããšã«èå³ããããŸãã
ããããã6æ³ã®ãšãã«Mathematicaã®æ¹åã®ã©ãããæããŠããæåã®æŒ ç¶ãšããäžaboutãç§ã«å±ããã®ã§ããããä»ã®2人ã§æ§æãããŠããŸãã ç§ã¯æ°åŠã®èšç®ã奜ãã§ã¯ãªããã決ããŠåŸæã§ããªãã£ãã ãããã10æ³ã®ãšãã«ç©çåŠã«èå³ãæã€ããã«ãªããŸããããããããããããã®ãªããæ°åŠãããããããŠãã ããã
ç§ã12æ³ã®ãšããæåã®é»åèšç®æ©ã䜿çšããå§ããŸããã ãããŠã»ãŒåæã«ãç§ã¯æåã®ã³ã³ãã¥ãŒã¿ãŒã䜿ãå§ããŸããã倧ããªããŒãã«ã®ãµã€ãºã®å·šå€§ãªãã®ã§ããããã18ãããã®8ã€ã®ãããã¹ããŽã©ã«ãããããã»ãšãã©ãçŽãã³ãããŒãã䜿çšããŠã¢ã»ã³ãã©ãŒã§ããã°ã©ã ãããŸããã ç§ã¯ãããäœããã®æ¹æ³ã§ç©ççãªåé¡ã®è§£æ±ºã«é©å¿ãããããšããŸããããçµæã¯ããŸããããŸããã§ããã ãããŠä»ãç§ã¯ãã§ã«16æ³ã§ãç©çåŠã«é¢ããããã€ãã®èšäºãçºè¡šããé«æ ¡ãåæ¥ããè±åœæ¿åºã®ç 究æã§åããŠããŸããã ãå®éã®ãçè«ç©çåŠè ã¯ãå®éã«ã¯ã³ã³ãã¥ãŒã¿ãŒã䜿çšããŸããã§ããã ãããŠç§ã¯äœ¿çšããŸããã HPãã¹ã¯ãããèšç®æ©ïŒãããã¿ãŒä»ãïŒããŸãã¯Fortranäžã®IBMã¡ã€ã³ãã¬ãŒã ã®ããããã
åºæ¬çã«ãç§ã¯ã¡ããã©èšç®ãããŸããã ããããç©çåŠã§ããããã£ãããšã¯ã代æ°ã®æãå€æ§ãªåå²ãšé£åããŠããŸããã 代æ°ã ãã§ã¯ãããŸããã äœãããããã æ°çŸãŸãã¯æ°åã®èŠçŽ ãæã€ãã¡ã€ã³ãã³å³ããã®åŒãæ£ããçããåŸãã«ã¯ããã¹ãŠãæ£ç¢ºã«è¡šãå¿ èŠããããŸãã
ãããŠãç§ã¯ããã§äœãã§ãããã«ã€ããŠèãå§ããŸããã ç§ã¯ãäžçãã£ãšæ¹çšåŒã®ãã€ãã¹ãšèŠå ãã©ã®ããã«è¿œããããããèããŠããŸããã ãããŠãããã§ã³ã³ãã¥ãŒã¿ãŒã®äœ¿çšæ¹æ³ã«ã€ããŠèãå§ããŸããã ãããŠã誰ããåæ§ã®èããæã€ä»ã®äººããããšç§ã«èšã£ãã ç§ãç¥ãããšãã§ãã3ã€ã®ããã°ã©ã ããããçµå±ã®ãšããããããã¯ãã¹ãŠ1962幎ã«èµ·ãã£ãCERNã§ã®1ã€ã®äŒè©±ã®åŸã«å§ãŸããŸããïŒ Reduceã§æžãããReduce ãFortranã§æžãããAshmedaiããã³SCHOONSCHIPã¢ã»ã³ãã©6000 CDCã§èšè¿°ãããŠããŸãïŒã
ããã°ã©ã ã¯å°éçã§ãããèè èªèº«ã«å ããŠããããã®ããã°ã©ã ãçå£ã«äœ¿çšãã人ã®æ°ã¯æããã§ã¯ãããŸããã§ããã 圌ãã¯éåžžã«åä»ã§ãããååãšããŠãããªãã¯ãããã«ãã³ãã«ãŒãã®ãããå šäœããäŸçµŠããããã°ããããŠãçµæããŸãã¯ããã«äºæ³ããããããã€ãã®ç¥ç§çãªãšã©ãŒã¡ãã»ãŒãžãåŸãŸããã ããããç§ã¯ç©çåŠã§ééããåé¡ã§ãããã䜿çšãå§ããŸããã
ãããŠã1977幎ã®å€ãç§ã¯ARPANETãçºèŠããŸãããããã¯çŸåšã€ã³ã¿ãŒãããã«æé·ããŠããŸãã ãã®åŸããããã¯ãŒã¯ã«ã¯256åã®ãã¹ããããããŸããã§ããã ãããŠä»ã@ O 236ã¯ããµãã¥ãŒã»ããå·¥ç§å€§åŠã®ãªãŒãã³ã³ã³ãã¥ãŒã¿ãŒã«è¡ããŸããããã®ã³ã³ãã¥ãŒã¿ãŒã¯Macsymaããã°ã©ã ãšé£åããŠããããã®äžã§ä»£æ°èšç®ãã€ã³ã¿ã©ã¯ãã£ãã«è¡ãããšãã§ããŸããã ããã䜿ã£ãŠãã人ãå°ãªãããšã«é©ããŸããã ããããããã¯ç§ãããã«ã»ãšãã©ã®æéãè²»ããããã«ãªã£ãæ¥ããå°ãåã§ããã åºæ¬çã«ãç§ã¯ã¿ã€ãã³ã°ããããšã§ãã·ã³ãæäœããŸãã-äœããããåŸãç§ã¯äœãèµ·ããããèŠãŠãæ»ã£ãŠããŠãããäžåºŠè©ŠããŸãããªã©ããããŠãç§ã¯éåžžãç©åã®ããŸããŸãªä»£æ°åœ¢åŒãå®éšçã«ååŸããããã¯æ£ããåºå¥ãããŸãã
ç§ã®ç©çåŠã®èšäºã«ã¯ãããŸããŸãªã¯ã¬ã€ãžãŒãªæ°åŒãå«ãŸããããã«ãªããŸããã ãããŠããã®ããã«ã³ã³ãã¥ãŒã¿ãŒã䜿çšã§ãããšã¯æããã«ã代æ°ã«ç²Ÿéããããçš®ã®èšç®æ©ã§ããããã«æãããŸããã ç§ã®éå¿ã¯ãMacsymaã«è²»ãããæéãšãšãã«å€§ãããªããŸããã ãã°ããããŠãç§ã¯äžçäžã®èª°ãããããã䜿ãå§ãããšæããŸãã ãããã1979幎ã®ã©ããã§ãç§ã¯ãã®äžéã«éããŸããã
ãããã1979幎11æã«ãªããŸããã ç§ã¯20æ³ã§ãç©çåŠã®å士å·ãååŸããŸããã ç§ã¯CERNã§æ°é±éãéãããç©çåŠã®å°æ¥ãèšç»ããŸããïŒåœæã¯ããã§ããïŒã ãããŠãç§ã¯äœãã«æ°ã¥ããŸããïŒç©çåŠã§çç£çã«ãªãããã«ã¯ãMacsyma以äžã®ãã®ãå¿ èŠã§ãã ãããŠãã°ããããŠãèªåãããããããšãæã«å ¥ããå¯äžã®æ¹æ³ã¯èªåã§ããããšã ãšæ±ºããŸããã
ãããŠãåŸã«SMP ïŒSymbolic Manipulation Programãã·ã³ããªãã¯æäœçšããã°ã©ã ïŒãšããŠç¥ãããããã«ãªã£ããã®ãå®è£ ãå§ããŸããã ç§ã¯åœæã®ããã°ã©ãã³ã°èšèªã«ã€ããŠãæç¶ãåALGOLã®ãããªåéã ãã§ãªããLISPãšAPLã®äž¡æ¹ã«ã€ããŠåºç¯ãªç¥èãæã£ãŠããŸããã ãŸããSMPã®æŠèŠ³ãã¹ã±ãããããšããããã®èšèªã§èŠããã®ãšéåžžã«ãã䌌ããã®ã«ãªããŸããã ããããSMPãã©ãããã¹ãããç解ããã®ã§ãç§ã¯ãã¹ãŠãèªåã§çºæããããšè©Šã¿å§ããŸããã
éåžžã«èå³æ·±ãã¢ã€ãã¢ãããã€ããã£ããšæããŸãã å®éããŸã éåžžã«ç²éãªSMPã®ãããžã§ã¯ãææžããã®ããã€ãã®ã¢ã€ãã¢ã§ã¯ã次ã®Mathematicaã®åæ©ã远跡ãããŸãã

SMPã®ããã¥ã¡ã³ããèŠããšãç¹ã«ç§ãèšèšãå§ããã®ã¯20æ³ã§ãããªãã£ãããšãèãããšãéåžžã«å°è±¡çãªã·ã¹ãã ã§ããããšãããããŸããã ãã¡ãããSMPã®ãã¹ãŠã®ã¢ã€ãã¢ãè¯ããšã¯éããŸããã§ããã ãããŠãé·ãæŽå²ãæã€èšèªèšèšã®åéã®å°é家ãšããŠããã®èšäºã®æåŸã«ããããæ°ã«å ¥ããã®ééãã«èšåãããããããŸããã
åæã®ããŒãžã§ã³ã§ããSMPã¯å€§èŠæš¡ãªã·ã¹ãã ã§ããã ããããäœããã®çç±ã§ããã®äžã«è€éãªãã®ã¯èŠã€ãããŸããã§ããã å ã«é²ã¿ããããå®çŸãããã£ãã ãã§ãã ã§ããéãã®ããšããã¹ãŠãããã£ãã®ã§ãã ãç§ã¯ã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã«ç²ŸéããŠããŸããã å匷ãããã§ããã ãããã圌ã¯åºã«è¡ãããããã圌女ã«é¢é£ãããã¹ãŠã®æ¬ãè²·ã£ã-ãã£ããããã®çŽååã ãããŠåœŒã¯ããããäžã€äžã€èªã¿å§ããŸããã
ãã®åŸãã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã§åããŸããã ãããŠãç§ã¯ã¹ããŒããæäŸããããã«åæ§ã®ã·ã¹ãã ã«åãçµãäžçäžã®äººãæåŸ ããŸããã ã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã«å°ããªã¯ãŒãã³ã°ã°ã«ãŒããéããŸãããããã«ã¯ããã°ããã®éã ãªãã£ãŒããã¡ã€ã³ãã³ãå«ãŸããŠããŸããã ãããŠãç§ã¯ãSMPãããžã§ã¯ããã«åãçµãããã«ãã£ã³ãã¹äžãã人ã ãåéãå§ããŸããã
æåã¯ãSMPã®äœæ察象ã«ã€ããŠéèŠãªæ±ºå®ãäžãããšã§ããã Macsymaã¯LISPã§æžãããŠãããå€ãã®äººãããã ããæžãããšèšã£ãŠããŸããã ããããç©çåŠã®è¥ã倧åŠé¢çã§ããRob Pikeã¯ãCãå°æ¥ã®èšèªã§ããããããæ£ããéžæã§ãããšç¢ºä¿¡ããŸããïŒRobã¯åŸã§Goèšèªã®äœæãå«ãå€ãã®ããšãè¡ããŸããïŒã ãã®ããã1980幎åé ã«ãSMPã®Cã³ãŒãã®æåã®è¡ãäœæãããŸããã
SMPããŒã ã«ã¯éåžžã«èå³æ·±ãã©ã€ã³ãããããããŸããã ã°ã«ãŒãã«æåã«æåŸ ããã¯ãªã¹ã»ã³ãŒã«ã¯ãIBMãšããŠåããAPLã®ç±å¿ãªãã©ãã¯ãŒã«ãªããŸããããã®åŸã圌ã¯Peregrine SystemsãšããããªãæåããäŒç€Ÿãèšç«ããŸããã åŠçã«ã¯ããããç¬èªã®ã¹ãã«ããããææã¯ããã°ã©ãã³ã°ã«éåžžã«ç±å¿ã§ãç©çåŠã«é¢ããããã€ãã®èšäºãå·çããŸããã ãã¡ãããæ©äŒããããŸããã ããã«ãéåžžã«å¹ççãªã³ãŒãã1è¡ã§èšè¿°ãã人ã1人ããŸããã 圌ã¯é¢æ°ã«ã«ã©ãã«ãªååã䜿çšããã®ã§ããããã®çµã¿åããã¯ããçš®ã®åè«ã®ããã«ãªããŸãã ãŸãã¯ããããžã§ã¯ãã«äžçæžåœåãçµãã åªç§ãªåŠå£«èª²çšã®åŠçãããŠãé ãããšã£ãŠãããšããŸãããã 圌ã¯ã³ã³ãã¥ãŒã¿ãŒã«è§ŠããªãããšãçŽæããŸããããå人ã«ã³ãŒããå£è¿°ãããšããã«çºèŠãããŸããã
ç§èªèº«ãSMPçšã®ã³ãŒãã倧éã«äœæããŸããïŒæ¯æ¥çŽ1000è¡ïŒã 圌女ã®ãã¶ã€ã³ãæãã€ããŸããã ãããŠãç§ã¯ã»ãšãã©ã®ããã¥ã¡ã³ããæžããŸããã ç§ã¯ä»¥åã«å€§ããªãããžã§ã¯ããå®è¡ããããšããããŸããã§ããã ããããäœããã®çç±ã§ãããã¯ç§ã«ãšã£ãŠéåžžã«è€éãªãã®ã§ã¯ãããŸããã§ããã ãããŠã1981幎6æã«SMPã®æåã®ããŒãžã§ã³ãç»å Žããããã¯Mathematicaã«éåžžã«äŒŒãŠããŸããã
ãã®éãSMPã¯éåžžã«å€§ããªãœãããŠã§ã¢ã·ã¹ãã ã§ããïŒå®è¡å¯èœãã¡ã€ã«ã®ééã¯ããã1ã¡ã¬ãã€ãã§ãããïŒã
åœåããã®ã·ã¹ãã ã¯æ°åŠçèšç®ãç®çãšããŠããŸããã ããããéäžã§ããã¹ãŠãæ£åžžã«æ©èœããããã«ã¯ãæ¬æ Œçã§ã¯ããã«äžè¬çãªã·ã³ããªãã¯èšèªãäœæããå¿ èŠãããããšã«æ°ä»ããŸããã ç§ã¯ãã®åé¡ãç©çåŠè ãšããŠèŠããšæãããçŽ ç²åãæ¢ã代ããã«ãèšç®ã®çŽ æåãèŠã€ããããšããã ç§èªèº«ã®ããã«ããã®ã¢ãããŒããéçºããŸãããåžžã«ãæå°éã®ããªããã£ãã§ã§ããã ãå€ãã®æ©èœãå®è£ ããããã«ããŠãã ããã æã ãç§ã¯ããºã«ã解ãã§ããã-ãããŸãã¯ãã®æ©èœãå®è£ ããæ¹æ³ã§ãããçµæãšããŠãç§ã¯ãã¶ã€ã³ãå®åŒåããããšãã§ãããããå®çŸããŸããã
ç§ã¯ãã¹ãŠã象城çãªè¡šçŸãæã€ããšãã§ããããšã«æ°ä»ããŸããã SMPã®ã·ã³ããªãã¯ã€ã³ããã¯ã¹ä»ããªã¹ãã§ã¯ããåŒããããŒããå°å ¥ã§ããŸããã§ãããããã¯ã Mathematicaã§éåžžã«æ確ã«å®è£ ãããŠããŸãã ãããŠãã¡ãããã·ã³ããªãã¯åŒã®å éšå®è£ ã«ã¯ããã€ãã®å¥åŠãªç¹ããããŸããããã®1ã€ã¯ãã¹ãŠã®æ°å€ãæµ®åå°æ°ç¹åœ¢åŒã§ä¿åããŠããŸããïŒSCHOONSCHIPã®èè ã§ããTini Veltmanãããã³åŸã«ããŒãã«ç©çåŠè³ãåè³ãã FPU㯠ALUãããç®è¡èšç®ãã¯ããã«é«éã§ãããããæµ®åå°æ°ç¹ã¯åœŒããããŸã§ã«äœã£ãæè¯ã®ãœãªã¥ãŒã·ã§ã³ã®1ã€ã§ããã
SMPã®åã«ãç§ã¯Macsymaã®ãããªã·ã¹ãã çšã«å€ãã®ã³ãŒããæžããŸããããããŠãç§ãããããšããããšã¯ã·ã¹ãã ã«äŒããããšã ãã ãšæ°ã¥ããŸããããç§ã¯ãã®ãããªè¡šçŸãæã£ãŠããŸãããã¡ãã®ãã©ãŒã ã«ã ãããã£ãŠãSMPã®éçºã§ã¯ããã¿ãŒã³ã§è¡šãããæåè¡šçŸãã¡ããªãŒã®ç¿»èš³ã«ãŒã«ã®äœ¿çšãäžå¿çãªã¢ã€ãã¢ã®1ã€ã«ãªããŸããã ãã¡ãããå®è£ ã¯Mathematicaã»ã©ãããã§ã¯ãªããæãæåããã¢ã€ãã¢ããããŸããã§ããã ãããããã§ã«å€ãã®éèŠãªèŠçŽ ããããŸããã
æçµçã«ã1981幎ã®æåã®ããŒãžã§ã³ã®SMPããã¥ã¡ã³ãã¯ããªãè¿ä»£çã§ããã
ã¯ããã¡ã¢ãªç®¡çãšåãããã«ãã°ã©ãã£ãã¯åºåã«å°ããªã»ã¯ã·ã§ã³ãå²ãåœãŠãããŸãã ãŸãããããã°ã©ã ã®ãããããã¯ãïŒã·ã¹ãã ã®ããªãŒãºïŒããçµ±èšè¡šçŸã®äœæãïŒã©ã³ãã è¡šçŸã®äœæïŒãªã©ã®é åçãªã»ã¯ã·ã§ã³ããããŸãã ãã ããæ¢ã«ã䞊ååŠçããšãããã°ã©ã ã®æ§ç¯ãïŒã€ãŸããã³ãŒãçæïŒããããŸãã SMPã¯Cã³ãŒããçæããŠã³ã³ãã€ã«ããæãããããšã«ãå®è¡äžã®SMPå®è¡å¯èœãã¡ã€ã«ã«åçã«ãªã³ã¯ããããšããã§ããŸãã Mathematicaãããã¯ããã«å°ãªããã®ã®ãå€ãã®æ°åŠé¢æ°ãšæ°åŠæŒç®ããããŸããã
ããã§ãã SMP 1.0ãç²åŸããŸããã ãããŠããããã©ããããïŒ å€ãã®äººã«ãšã£ãŠãã®ã·ã¹ãã ãæçšã§ããããšã¯æããã§ããã ããã¯ãããªã倧ããªã³ã³ãã¥ãŒã¿ãŒã§å®è¡ãããŸãããVAXã®ãããªãããããããã³ã³ãã¥ãŒã¿ãŒãã§ã¯ãããã€ãã®å€§åå·èµåº«ã®ãµã€ãºã§ãããããæ°åäžãã«ããããŸããã ããããåæ§ã®ãã·ã³ãåããå€ãã®ç 究ããã³èšèšçµç¹ãããããšãç¥ã£ãŠããŸããã
ããããç§ã¯äŒæ¥ãããžãã¹ã«ã€ããŠäœãç¥ããŸããã§ããã ããããç§ã¯SMPã«é¢ãã人ã ã®ä»äºã¯æ¯æãããã¹ãã§ããããéãåŸãããã®éåžžã«æçœãªéžæè¢ã¯SMPã®ã³ããŒã売ãããšã§ãããšç解ããŸããã ç§ã®æåã®èãã¯ãçŸåšã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã®ãæè¡äº€æã»ã³ã¿ãŒããšåŒã°ããçµç¹ã«è¡ãã圌ããç§ãã¡ãå©ããŠããããã©ããã調ã¹ãããšã§ããã åœæããªãã£ã¹ã¯æ¬è³ªçã«äžäººã®æ¥œãã幎é ã®çŽ³å£«ã§æ§æãããŠããŸããã ããããããã€ãã®è©Šã¿ã®åŸã圌ãæ¬åœã«äœããã¹ãããç¥ããªãã£ãããšãæããã«ãªããŸããã ç§ã¯åœŒã«ãããã©ã®ããã«ã§ããã®ãå°ããã ã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã§ã¯ããã®ãããªããšãåžžã«èµ·ããã¯ãã ãšèããŸããã ããŸãããšåœŒã¯èšã£ãããåºæ¬çã«ãæå¡ã®äººãã¡ã¯å»ã£ãŠèªåã®äŒç€ŸãèŠã€ããã®ã§ãç§ãã¡ã¯èªåãã¡ããã®ããã»ã¹ã«é¢äžããŠããªãããšã«æ°ã¥ããŸããã ããããç§ãèšã£ãããç§ããããã§ããŸããïŒã ãããŠã倧åŠã®æ²ç« ãããã£ãŠã圌ã¯èšã£ãïŒããœãããŠã§ã¢ã¯ç¹èš±ãååŸããããšãã§ãã倧åŠã¯èäœæš©ã䞻匵ããªãã®ã§ãã¯ããã§ããŸããã
ãããŠãç§ã¯äŒç€Ÿãèšç«ããããšã«ããŸããã ããããããã¯ããã»ã©åçŽã§ã¯ãããŸããã§ããã ãã°ããããŠã倧åŠã®ç®¡çè ã¯çªç¶ãã¹ãŠãããŸããããªããšå€æããããã§ãã éåžžã«å¥åŠã§äŸ¡å€ã®ãªãç¬éããããŸããïŒãã·ã§ã¢ããŠãã ãããããããéäŒããŸãããªã©ïŒã ãªãã£ãŒãã»ãã¡ã€ã³ãã³ãšãã¬ãŒã»ã²ã«ãã³ãç§ã®ä»£ããã«ä»²è£ããŸããã 倧åŠã®åŠé·ã¯äœããã¹ãããç¥ããªãã£ãããã§ãã ãããŠãã°ããã®éããã¹ãŠãè¡ãè©°ã£ãã ããããæçµçã«ã¯ã倧åŠããœãããŠã§ã¢ã«é¢ããææžã®äžéšãå€æŽããå¿ èŠãããå Žåã§ãã倧åŠã¯æš©å©ã«é¢ä¿ãªãã©ã€ã»ã³ã¹ãä»äžããããšã«åæããŸããã
ãã®çµæã倧åŠã®åœæã®åŠé·ãšãã圢ã§ã²ã£ãããã1ã€ãããŸããã 圌ã¯ããã®ãããªã©ã€ã»ã³ã¹ã¯ãç§ã倧åŠã§åããŠäŒç€Ÿã®äžéšãææããŠããå Žåã倧åŠãšäŒç€Ÿã®éã«å©ççžåãåŒãèµ·ãããšèšããŸããã ããŸãããšç§ã¯èšã£ãããããã¯åé¡ã§ã¯ãããŸãããç§ã¯å€§åŠãèŸããŠããŸããã ããã¯å€§ããªé©ãã®ããã§ããã ããããç§ã¯å€§åŠãå»ããããªã³ã¹ãã³ã®é«çç 究æã«è¡ããŸãããããã§ã¯ãåœæã®ãã£ã¬ã¯ã¿ãŒãè¿°ã¹ãããã«ã ãžã§ã³ã»ãã©ã³ã»ãã€ãã³ã亡ããªã£ããšãã«åœŒããã³ã³ãã¥ãŒã¿ãŒãåŒãæž¡ããŸããã
é·å¹Žã«ããããç§ã¯ã«ã«ããã¯ã§å®éã«äœãèµ·ãã£ãŠããã®ããèããŠããŸããã ãããŠãããŸããŸæ°é±éåã«ç§ã¯åã³ã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã«è¡ãããšã«ããŸããïŒãåªç§ãªåæ¥çãã®è³ãåè³ããããïŒã æè·å¡ã®é£å ã§æŒé£ããšã£ããšããã次ã®ããŒãã«ã«åº§ã£ãŠããã®ã¯ãã»ãŒ95æ³ã ã£ãã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã®å åŠé·ä»¥å€ã«èª°ãããªãã£ãããšãããããŸããããWolfram AffairãïŒåœŒã¯èŠåããŸãããïŒïŒ ã ãã®çµæãç§ãã¡ã®äŒè©±ã¯éåžžã«æ確ã«ãªããŸããã
æ£çŽãªãšããããã¹ãŠãç§ãæ³åãããããããã«å¥åŠã§ããããšãå€æããŸããã ã¢ãŒãã«ãã»ããã¯ãã³ãã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã«ããŠãpHèšãçºæãããã®åŸå€§åŠãå»ããããã¯ãã³ã»ã€ã³ã¹ãã«ã¡ã³ããèšç«ãã1930幎代ã«ãããæå³ã§ç©èªã¯å§ãŸããŸããã 1981幎ãŸã§ã«ãããã¯ãã³ã¯ã«ãªãã©ã«ãã¢å·¥ç§å€§åŠã®ã¡ã€ã³ã¹ãã³ãµãŒã§ãããçäºäŒã®è°é·ãåããŸããã äžæ¹ã圌ã®çç©åŠéšïŒLee HoodïŒã®äŒé·ã¯ãã²ãã ã·ãŒã±ã³ãµãŒãçºæããŸããã 圌ã¯ããã¯ãã³ã»ã€ã³ã¹ãã«ã¡ã³ãã«äœåºŠãèå³ãæãããããšãããã圹ã«ç«ããªãã£ãããã圌èªèº«ã®äŒç€ŸïŒApplied BiosystemsïŒãèšç«ããéåžžã«æåãããšè¿°ã¹ãã ããæç¹ã§ãç§ã«èšãããããã«ãã¢ãŒãã«ãã»ããã¯ãã³ã¯åæºããããã£ã³ãã¹ããã®IPã®åºçºãåæ¢ãããã¹ãã ãšæ¿åºã«èšã£ã[IPïŒç¥ç財ç£ïŒ-çŽã ãšãã]ã ãããŠãããã¯ç§ã®SMPãããžã§ã¯ãã®å€èŠ³ãšäžèŽããããšãèµ·ãããŸããã ãããŠåœæã®åŠé·ã¯ã圌ã¯ãããè¡ã矩åããããšèšã£ãïŒåœŒã¯ååŠè ã§ããããç©çåŠè ãšããŠãã¡ã€ã³ãã³ãšã²ã«ãã³ã¯ãç©çåŠè ã«è¿ãããšåŒãã ïŒã
ããããããããæ··ä¹±ã«ãããããããComputer Mathematics CorporationãšåŒã°ããäŒç€ŸãçŸããŸããã åœæãç§ã¯ãŸã èªåãè¥ãç§åŠè ã§ãããšæ³åããŠããŸããããäŒç€Ÿãçµå¶ãããšã¯èããŠããŸããã§ããã ã ããç§ã¯ç§ã®å¹Žéœ¢ã®çŽ2åã®CEOãé£ããŠããŸããã ãããŠããã£ã¬ã¯ã¿ãŒãšäžéšã®ãã³ãã£ãŒãã£ãã¿ãªã¹ãã®èŠè«ã§ã圌ãã¯äŒç€Ÿãæ°èäŒæ¥ãšå䜵ããããšã決ããŸããã圌ãã¯ã圌ããæã£ãããã«ã人工ç¥èœã®åéã§ã®ç 究éçºã«æåããããšã§ããã
ãã®éãSMPã¯ãã³ã³ãã¥ãŒã¿ãŒæ°åŠããšããã¹ããŒã¬ã³ã®äžã§åé²ããŠããŸããã
ã²ã©ãééãããããŸããã CEOïŒãSMPãèµ·åããã¯ãŒã¯ã¹ããŒã·ã§ã³ãæ§ç¯ããŸããããã IïŒãããããç§ãã¡ã¯ãœãããŠã§ã¢äŒç€Ÿã§ããã¹ã¿ã³ãã©ãŒã倧åŠãããã¯ãŒã¯ïŒSUNïŒã·ã¹ãã ãèŠãŸãããããã¯æããã«ç§ãã¡ãã§ããããšãããåªããŠããŸããã ãããŠãåºåäž»ããåæ§ã®æ ¹æ ã®ãªã声æããããŸããïŒ
ãããŠããã«ãããããã¹ãŠãééã£ãŠããããšã«æ°ä»ããŸããã SMPã¯ããçš®ã®ãã£ãã·ã¥ã«ãŠã§ããããšãå€æããCEOã¯ç¹ã«ãéã皌ãã®ãåŸæã§ã¯ãããŸããã§ãããããããåŒãä»ããããšã¯éåžžã«åŸæã§ãã-äœå¹ŽãåŸã«å¹³å¡ãªIPOã«ãã£ãŠããŸããã
ããããå人çã«ã¯é©ãã¹ãæããããŸãã-ç§ã¯ç§åŠã«çŽæ¥é¢ããããã®åŸæ°ããçš®é¡ã®ç§åŠïŒA New Kind of ScienceïŒã®åºç€ãç¯ãããã®ãçºèŠããŸããã ãããŠå®éãSMPã¯æçµçã«ç§ããã£ãããšã®åºç€ã§ããããšãå€æããŸããã SMPã®èšç®ããªããã£ããæ€çŽ¢ããç§ã®åçã¯ãèªç¶ã®äžã§èšç®ããªããã£ããèŠã€ãããããã®ããªããã£ãã®çµæãç 究ããããšããæ°ããç§åŠãäœæãããšããèãã«ç§ãå°ããããã§ãã
SMPã«äœãèµ·ãã£ãã®ãå°ããããšãã§ããŸãã Mathematicaãç»å ŽãããŸã§ã¯ãŸã 販売ãããŠããŸããã 圌女ã®ã³ãŒãã®1è¡ãMathematicaã«äœ¿çšãããŠããŸããã ãããæã ãç§ã¯åœŒå¥³ã圌女ã®é£ã«ã©ã®ããã«èŠããããèŠãããã«åœŒå¥³ãèµ°ãããŸããã æéãçµã€ã«ã€ããŠãSMPãå®è¡ããŠãããã·ã³ãèŠã€ããããšããŸããŸãå°é£ã«ãªããŸããã ãããŠçŽ15幎åããããå®è¡ã§ããæåŸã®ã³ã³ãã¥ãŒã¿ãŒã¯å»æ¢ãããŸããã
ãŸããç§ã¯ãã€ããèªåã®SMPãœãŒã¹ã®ã³ããŒãæã£ãŠãããšæã£ãŠããŸããã ã§ã¯ããªãããããææ°ã®ã·ã¹ãã ã«åã³ã³ãã€ã«ããªãã®ã§ããããïŒ ãããããã®åŸãæå·åããã圢åŒã§ãœãŒã¹ã³ãŒããä¿åãããšããããã°ããããã¢ã€ãã¢ãæãåºããŸããã ããããã©ã®ããŒã䜿çšããŸãããïŒ ç§ã¯åœŒãç¥ãããšãã§ãããã¹ãŠã®äººã«å°ããŸããã ãããã誰ã圌ãèŠããŠããŸããã§ããã
äœå¹Žãçµã¡ãŸããããSMPãåã³åäœããã®ãæ¬åœã«èŠããã£ãã®ã§ãã ãããã¿ã¹ã¯ã§ãã Cããã°ã©ã ã®ãœãŒã¹ã³ãŒãã¯ãSMPãœãŒã¹ãšåãæ¹æ³ã§æå·åãããŠããŸãã å®éãããã¯æå·åãçæããããã°ã©ã ã®ãœãŒã¹ã³ãŒãã§ã-ããã1981幎ããŒãžã§ã³ã®Unix cryptãŠãŒãã£ãªãã£ã¯ãå€ãã®ãã©ã¡ãŒã¿ãŒãªã©ãå€æŽããããšã§å·§åŠã«å€æŽãããŸããã 誰ããæå·ã解èªããŠãæçµçã«SMPããã®ãããªé·ãæçãã解æŸã§ããŸããïŒ ãããWolframã®èšãããšã§ã| Alpha Pro ããã®ãã¡ã€ã«ããã®ãŸãŸããŠã³ããŒãããå ŽåïŒ
ããããã¡ã€ã³ã¹ããŒãªãŒã«æ»ããŸãã 1983幎ã«SMPã®ä»äºããããåºç€ç§åŠããœãããŠã§ã¢ãããžã§ã¯ããããã³æè¡éçºãšæŠç¥ã³ã³ãµã«ãã£ã³ã°ã«ãããïŒéåžžã«æçãªïŒã趣å³ãã®äžŠè¡ç 究ãè¡ããŸããã å°ããã€SMPã䜿çšããŸããããæçµçã«ã¯ãååãšããŠãã¢ã«ãŽãªãºã ãã°ã©ããããã³ã€ã³ã¿ãŒãã§ã€ã¹ããŸãšããŠCã§èšè¿°ãå§ããŸããã
ç§åŠã®åéã§ã¯ãç©äºã¯ç§ãšããŸããã£ãŠããŸããããããã¹ãããšããŸã ãããããããŸããã ããããèªåã®åªåã ãã§ãã¹ãŠãããã®ã§ã¯ãªããä»ã®äººãåŒãä»ããããšã«ããŸããã ãããŠãã¹ãããã®1ã€ãšããŠãç 究æãèšç«ããããšã決å®ããããŸããŸãªå€§åŠãæäŸããæºåãã§ããŠãããã®ãåæããŸããã ãã®çµæãã€ãªãã€å€§åŠãéžã°ãã1986幎8æã«ç§ã¯ããã«è¡ããè€éãªã·ã¹ãã ã®ç 究ã®ããã®ã»ã³ã¿ãŒãèŠã€ããŸããã
ãããããã®æç¹ãŸã§ã«ãç§ã¯ãã§ã«ä»ã®äººãå·»ã蟌ãããã®ç§ã®èšç»ãããŸãè¯ããªãããšãå¿é ãå§ããŠããŸããã ãããŠã€ãªãã€ã§ã®æåã®æ°é±éã§ããã©ã³Bã¯é ã®äžã§çããŸãããã§ããéãæé«ã®ããŒã«ãäœæããèªåã®ã§ããä»äºã«æé©ãªç°å¢ãäœããèªåã§ç§åŠã®æ倧ã®å¹æãéæããŸãã ãããŠãç§ã¯ã³ã³ãã¥ãŒã¿ãŒæ¥çãšå¯æ¥ã«é¢ä¿ããŠãããããããŸããŸãªåŒ·åãªãœãããŠã§ã¢ã·ã¹ãã ãèšå€§ãªæ°ã®ããŒãœãã«ã³ã³ãã¥ãŒã¿ãŒã§åäœããããšãç¥ã£ãŠããŸããã ãããŠãäœãè¯ãããšã«æåããã°ãèå³æ·±ãäŒæ¥ãšã€ã³ãã©ã¹ãã©ã¯ãã£ããµããŒãããæ°èåžå Žã«ããŸãå®è£ ã§ããããšãç解ããŸããã
ããã§ã1986幎8ææ«ã«ãç§ãå®è£ ãããèšç®ãå®è¡ã§ããé ã«æµ®ãã¶ãããããªãç¬èªã®ã³ã³ãã¥ãŒãã£ã³ã°ã·ã¹ãã ã®éçºãè©Šã¿ãããšã«ããŸããã
ãããŠãã¡ãããçµæã¯Mathematicaã§ããã
SMPãšä»ã®ãœãããŠã§ã¢ã®çµéšãããããããã®ããããšãšäŸ¡å€ã®ãªãããšã®å€ããåŠã³ãŸããã ãã¹ãŠããŒãããå§ããŠãå¶éãªãã«ãããªããæãããã«ãã¹ãŠãããããšããããšãã§ãããšããããšã«æ°ä»ããŠããããã£ãã§ãã SMPã§ã¯ãäžå¿ã¯ä»£æ°ã§ããã ãããã Mathematicaã®å©ããåããŠãæ°å€èšç®ãã°ã©ãã£ãã¯ã¹ãããã°ã©ãã³ã°ãã€ã³ã¿ãŒãã§ãŒã¹ã®äœæãªã©ãä»ã®å€ãã®åéãã«ããŒããããšèããŸããã äŸãã°ãç§ãç 究ããŠããã»ã«ãªãŒãããã³ã®ãããªãã®ããããšäœãé¢ä¿ãããã®ãââã©ãããèããŠãã·ã¹ãã ã®åºç€ã«ã€ããŠããããèããŸããã ããããç§ã¯ãŸã SMPã®ããã«éçºãããåºæ¬ååã«å°ãããŠããŸããã ã·ã³ããªãã¯åŒãšãããã®å€æã¯ãèšç®ã®äž»èŠãªè¡šçŸãšèŠãªãããŸãã
ãããSMPã«å®è£ ãããŠããªããã°ãå€ãã®ééããç¯ããŠããã§ãããã ããããSMPã¯ç§ã«å€ããæããäœãéèŠã§äœãéèŠã§ã¯ãªããã瀺ããŸããã ä»ãç§ã®ã¢ãŒã«ã€ããèŠããšãSMPãéçºãããšãã«ééããåé¡ããããºã«ã解ããšãã骚ã®æããããã»ã¹ãèŠããŸãã ãããŠã段éçã«æ±ºå®ãäžãããŸããã
äžæ¹ãSMPã®å Žåã®ããã«ãããŒã ãç·šæããŠMathematicaã®çŽæ¥å®è£ ãéå§ããŸããã ç§ã¯åã³äŒç€Ÿãèšç«ããä»åã¯ãŒãã©ã«ãã£ã¬ã¯ã¿ãŒãåããŸããã æ¯æ¥ç§ã¯ããããã®ã³ãŒããæžããŸããïŒãããŠå°ã åæºããŸãããçŸåšãã®ã³ãŒãã®ããäžéšã ããMathematica㧠ãç¹ã«ãã¿ãŒã³ãããã³ã°ãšèšç®æ©ã·ã¹ãã ã§åäœããŸãïŒã ãã ããäž»ãªçŠç¹ã¯èšèšã«ãããŸããã ãããŠãSMPãšåæ§ã«ãããã¥ã¡ã³ããäœæããèšèšãéçºããŸããã ããã¥ã¡ã³ãã§äœããååã«èª¬æã§ããªããšã誰ããããç解ã§ããããããããã®äœããééã£ãŠäœæããããšæããŸããã ãããŠãããã¥ã¡ã³ãã«äœããç»å Žãããšããã«ãäœãå®è£ ããå¿ èŠãããã®ãââããªããããè¡ã£ãŠããã®ããããããŸããã
Mathematicaã³ãŒãã®æåã®éšåã¯1986幎10æã«æžãããŸããã ãããŠ1987幎åã°ãŸã§ã«ã Mathematicaã®å®è£ ãéå§ãããŸããã ç§ã¯ããã¥ã¡ã³ããæ¬ãšããŠåºçãã¹ãã§ãããæ°çŸããŒãžããã§ã«æžãããŠãããšæ±ºããŸããã ãããŠãç§ã¯Mathematica 1.0ã1988幎4æãŸã§ã«æºåã§ããããšãç解ããŸããã
ç§ãã¡ã®äŒç€Ÿã®æåã®èšç»ã¯ç 究ãšéçºã«éäžããããšã§ããã Mathematicaã¯äž»ã«ã³ã³ãã¥ãŒã¿ãŒã®è£œé æ¥è ãéããŠé åžãããããšã«ãªã£ãŠããã ã¹ãã£ãŒãã»ãžã§ããºã¯ã Mathematicaã ããªã³ããŒãã ã«ããæåã®äººç©ã§ããããŸã ãªãªãŒã¹ãããŠããªããã¹ãŠã®NeXTã³ã³ãã¥ãŒã¿ãŒã«æèŒãããã¯ãã§ããã ããã«ç¶ããŠãSunãSilicon GraphicsãIBMãããã³ä»ã®ããã€ãã®äŒæ¥ãšã®ååŒãè¡ãããŸããã Mathematicaã®ããŒã¿çã®éä¿¡ãéå§ããŸããã ã ãããŠãã¯ãŒã«ãã¯ã€ããŠã§ããç»å Žãããã£ãšåãããã·ã¹ãã ã®ååšã«é¢ããç¥èãåºãŸãå§ããŸããã äžéšã®ã¡ãã£ã¢ã¢ãŠãã¬ãããæ¥ç¶ãããŠããŸãïŒãã®ã¢ã€ã¹ã¯ãªãŒã ã¯ä»ã§ã倧奜ãã§ãïŒã
- 1988 23 Mathematica ( Wolfram|Alpha , , ). . . , The Mathematica Book . , , , . , , 23 :
, 23 , , Mathematica .

25 . , Mathematica 1.0, , , . « » Mathematica , . Mathematica , , Wolfram|Alpha . 25 Mathematica .
: SMP
SMPãšã¯äœã§ããïŒSMPããã¥ã¡ã³ãçšã«äœæããSMPã®ãµã³ãã«ããã°ã©ã ã次ã«ç€ºããŸãã








ããã€ãã®ç¹ã§ã¯ãé¢æ°ã®è¡šèš
[...]
ããªã¹ãã®è¡šèš
{...}
ãããã³çœ®æèŠåã®è¡šèš
->
ãšãšãã«ã Mathematicaã®ããã°ã©ã ãšéåžžã«ãã䌌ãŠããŸã ã ãããã圌ãã«ã¯Mathematicaã®ãããªèªã¿ãããã¯ãªããSMPããã°ã©ã ã¯ç解ãã«ããããã«èŠããŸãã
æãæãããªåé¡ã®1ã€ã¯ãSMPã®ã³ãŒãããããããã¿ãŒã³ãšå€æ°ã®ãã¬ãã£ãã¯ã¹ã§ãã
$
ãš
%
ã§è©°ãŸã£ãŠããããšã§ãã SMPã§ã¯ããã¿ãŒã³ïŒäŸïŒ
_
ïŒãååïŒäŸïŒ
x
ïŒããåé¢ããããšã«é¢ããŠMathematicaã«ç»å Žããã¢ã€ãã¢ããŸã å®è£ ããŠããŸããã ãããŠãã©ã®å€æ°ãããŒã«ã«ã§ãããã匷調ããããšã¯éèŠã ãšæããŸããããããããè²ã§åŒ·èª¿ãããšããèãã¯ç§ã«ã¯æãã€ããŸããã§ããã
SMPã§ã¯ãçŽæ¥ïŒ = ïŒãšé å»¶ïŒ ïŒ= ïŒã®å²ãåœãŠãåºå¥ããïŒéåžžã«æçšãªïŒã¢ã€ãã¢ãæ¢ã«å®è£ ããŠããŸãã ããããã¢ã«ãŽã«ã®ãããªèšèªã«ãªããšãããããããŸãæ確ã«ç解ã§ããŸããã§ãã-
:
ããã³
::
ã ïŒçœ®æèŠåã®å Žåã圢åŒ
->
ã¯Mathematicaã§å®è£ ããã圢åŒã§ããã圢åŒ
-->
ã¯çŸä»£ã®ãã®ã«äŒŒãŠããŸãã
:>
ãæ§é
S[...]
ã¯çŸä»£
/.
ã«äŒŒãŠããŸãã
/.
ïŒ
Mathematicaãšåæ§ã«ãSMPã§ãçµã¿èŸŒã¿é¢æ°ã倧æåã«ãªããŸããïŒåœæã¯æ°ãããã®ã§ãã-ã³ã³ãã¥ãŒã¿äžã§å€§æåãšå°æåãåºå¥ããŠããŸããïŒã ãããã Mathematicaã¯éåžžãäžè¬çãªè±èªã®åèªã䜿çšããŠé¢æ°ã瀺ããŸãããSMPã¯çãããã°ãã°äžæçãªç¥èªã䜿çšããŸãã SMPã«åãçµãã§ãããšããUnixã®èšèšã«åœ±é¿ããããã®çãååã䜿çšããŸããã ãŸããSMPã«å°æ°ã®æ©èœãããªãå Žåã¯ããã¹ãŠåé¡ãããŸããã ããããååã
Ps
ã
Mei
Uspb
ãããªãã®ã§ããäœçŸãã®é¢æ°ã§ã¯ãã³ãŒãã®å¯èªæ§ã倧ãã劚ããããŸãã ãã¡ãããå€ãã®ãŠãŒã¶ãŒããã°ããå ¥åããæ¹æ³ãç¥ããªããšããäºå®ãããã§ã®åœ¹å²ãæãããŠãããããããã¯çãé¢æ°åãæ¯æããå¥ã®æ祚ã§ããã

æè¿SMPã®ããã¥ã¡ã³ããèªãã®ã¯éåžžã«èå³æ·±ãã§ããSMPã«ã¯ãåŸã§Mathematicaã«ç§»æ€ãããå€ãã®è¯ãã¢ã€ãã¢ããããŸããã ããããæªãã¢ã€ãã¢ãããã幞ããªããšã«ãæŽå²ã«æ®ã£ãŠããŸãã æ¬è³ªãšåãæªåãæã€ãããã®ã¢ã€ãã¢ã®1ã€ã¯ã䜿çšæã«ååãå€ãããã«ã¡ã¬ãªã³ãã£ã©ã¯ã¿ãŒãã§ãïŒããã¯ããããŒå€æ°ã Mathematicaã®
Module
ããèªååãããããŒãžã§ã³ã®ãããªãã®ã転éããè©Šã¿ã§ããïŒ ïŒ
ããã«åŸ®åŠãªãšã©ãŒããããŸããã ããšãã°ãã·ã¹ãã ã®äžè¬åã«ãããé床ã®ç±æã®ããã«ã Mathematicaãšåæ§ã«ãSMPã§ã¯ããªã¹ãã¯
{a,b,c}
ããã«ç€ºãããŸãã é¢æ°ã«ã¯æ¬¡ã®æå®ããããŸãïŒ
f[x]
ã ãããŠãå¯èœãªéãæ倧ã®çµ±äžãéæããããã«ããªã¹ããšé¢æ°ã®æŠå¿µãçµã¿åãããããšããããšã«ããŸããã
ãªã¹ã
v={a,b,c}
ïŒSMPã§ã¯ãå²ãåœãŠã¯
:
ãšããŠç€ºãããããã
v:{a,b,c}
ã¯ãã®ããã«èšè¿°ãããŸãïŒã 次ã«ãããšãã°ãSMPã®
v[2]
ã¯2çªç®ã®ãªã¹ãã¢ã€ãã ãååŸããŸãã ãããããã®è¡šèšæ³ã¯ãåŒæ°2ã§é¢æ°
v
å€ãèŠæ±ããå Žåãšåãããã«èŠããŸãããããŠããªã¹ããæŽæ°åããŠãæŽæ°åã®èŠçŽ ã ãã§ãªããã·ã³ããªãã¯åœ¢åŒã§è¡šçŸããŸãã
SMPã§ã¯ã ãã³ãã¬ãŒãåŒ ïŒ Mathematicaã§ã¯
x_
ïŒã¯æ¬¡ã®ããã«èšè¿°ãããŸããïŒ
$x
ã€ãŸããé¢æ°
f[$x]:$x^2
å®çŸ©ãããšãã
f
ãã·ã³ããªãã¯ã€ã³ããã¯ã¹ä»ããªã¹ããšããŠåçŽã«å®çŸ©ããŠãããšæ³åã§ããŸãïŒ
{[$x]: $x^2}
ã é¢æ°ãã©ã®ããã«å®çŸ©ãããŠãããã調ã¹ãå¿ èŠãããå Žåã¯ãããšãã°ãã®åå
f
å ¥åããŸãã ãããŠãçµæã®å€ã¯ãã·ã³ããªãã¯ã«ã€ã³ããã¯ã¹ä»ãããããªã¹ãã«ãªãããããå®çŸ©ã«ãªããŸãã
ãã¯ãã«åã®éåžžã®ãªã¹ãã¯ã
{[1]:a, [2]:b, [3]:c}
ãããªãã®ãšèããããšãã§ããŸãã ãŸããæåã€ã³ããã¯ã¹ãæ··åšãããããšãã§ããŸããïŒ
{[1]: 1, [$x]:$xf[$x-1]}
ã ãŸããäžè¬åãããã·ã³ããªãã¯åŒã®çªå·ä»ãã«é¢ããŠãäžå®ã®çµ±äžããããŸããã ãããŠããã¹ãŠãè¯ãããã§ããã é¢æ°ãšãªã¹ãã®çµ±äžãããæŠå¿µã説æããããã«ã
f[x]
å°åœ±ã
x
ããã£ã«ã¿ãŒãšåŒã³ãŸããã
ããããåŸã ã«ãã®æŠå¿µã¯ç¶ãç®ã§çºæ£ãå§ããŸããã
v[2]:b, v[3]:c
ãããªå®çŸ©ãå°å ¥ãããšãããããçš®é¡ã®å¥åŠãªããšãå€æããŸããã 次ã«ã
v
ãSMPã®ååã«åŸã£ãŠãå€
{[3]:c, [2]:b}
ãŸãã ãããã
v[1]:a
å®çŸ©ãäœæ
v[1]:a
ã©ããªããŸãã
v[1]:a
ïŒ ãã®å Žåã
v
ã¯ãã®é åºãçªç¶
{a, b, c}
ãŸãã
ãããŠãããã€ãã®åŒæ°ã®é¢æ°ã䜿çšãããšããã¹ãŠãããã«å¥åŠã«ãªããŸããã
m:{{a,b},{c,d}}
ã§è¡åãå®çŸ©ã§ããã°ã
m[1]
ã¯
{a,b}
ã§ããã
m[1,1]
ãŸãã¯
m[1][1]
ã¯ã«ãªããŸãã ããããè€æ°ã®åŒæ°ãæã€é¢æ°ãå¿ èŠãªå Žåã¯ã©ãã§ããããïŒ
f[x, y]
ã¯
f[x][y]
ãšåãã§ããïŒ ãŸããæã«ã¯ãã®ãããªäœããå¿ èŠã§ãããæã«ã¯å¿ èŠã§ã¯ãããŸããã ãã®ããã
Tier
ãšåŒã°ããããããã£ïŒ Mathematicaã® ãå±æ§ãïŒãèãåºããªããã°ãªããŸããã§ãããããã¯ãåæ©èœã«å¯ŸããŠã©ã®ããã«æ©èœãããã瀺ããŠããŸãïŒä»æ¥ãå€ãã®äººãã«ãªãŒåã«ã€ããŠèããããšããããŸããããã®ãããªéãã¯ãŸã£ããæçœã§ã¯ãªãããã§ãïŒ
SMPã®æåããšã®ã€ã³ããã¯ã¹ä»ããªã¹ãã«ã¯ãæ°ã®å©ãã匷åãªæ©èœãããã€ããããŸããã ããããçµæãšããŠãã·ã¹ãã å šäœãæ§ç¯ããããšããå€ãã®å¥åŠãªããšãçºèŠãããŸããã ãããã£ãŠã MathematicaãéçºããŠãããšãã«ããããã䜿çšããªãããšã«ããŸããã äœå¹Žãã®éãç§ã¯ãããã«ã€ããŠèãç¶ããŸããã ãããŠãSMPãã30幎以äžãã£ãä»ãç§ã¯Mathematicaã®éåžžã«èå³æ·±ãæ°æ©èœã«åãçµãã§ããŸããããã¯ãã·ã³ããªãã¯ã€ã³ããã¯ã¹ãªã¹ããšå¯æ¥ã«é¢é£ããŠããŸã[é¢é£ã¯ã·ã¹ãã ã®ç¬¬10ããŒãžã§ã³ã«ç»å ŽããŸããã Edã]ã
SMPã§ã®äœæ¥ã¯éåžžã«è²ŽéãªçµéšããããããŸãããå®éã«æ©èœãããã®ãšããã§ãªããã®ãèŠãŸããã ãããŠãç§ã«ãšã£ãŠæãèšæ¶ã«æ®ãç¬éã®1ã€ã¯ããã§ããã Mathematicaãšåæ§ã«ãSMPã«ã¯çŽç²ãªæ©èœããããŸãã ã ãã ãã Mathematicaãšã¯ç°ãªãã
&
æåã§ç€ºãããŠããŸããã ãããŠããã¯ãçŽç²ãªé¢æ°ãã·ã³ããªãã¯ãªå®æ°å€ãçæããå¿ èŠãããããšã瀺ãããã«ããããŒã¯ããšåŒã°ããç¹å¥ãªãªããžã§ã¯ãïŒããããã¿ã€ãã¢ãã¹ãããã£ãïŒãå¿ èŠã§ããããšãæå³ããŸãã ããŠãSMPã®ãªãªãŒã¹ããçŽ5幎åŸãç§ã¯ãã¥ãŒããªã¢ã«ã®1ã€ãæ€èšããŠããŸããã ãéã¢ãã¹ãããã£ã¯SMPã®ãªããªãããšãããã¬ãŒãºãç®ã«çãŸããŸããã ãããŠãç§ã¯æ°ã¥ããïŒããã¯èšèªèšèšã®ééããã©ã®ããã«èŠãããã§ãã
SMPã¯ãå€ãã®ç¹ã§æ¥é²çãªã·ã¹ãã ã§ããããã°ã©ãã³ã°èšèªã®éçºã«ããã極床ã®å®éšã§ãã 䜿ãæ £ãããã¶ã€ã³ã®ãµããŒãã¯æå°éã§ããã 代ããã«ãã·ã³ããªãã¯åŒã®å€æã«ã«ãŒã«ã䜿çšãããšããèãæ¹ãäžå¿ã«å±éãããŸããã ããæå³ã§ã¯ãSMPã¯ç¢ºç«ãããäŒçµ±ããããŸãã«ãé ããšããã«ãããšæããŸãã çµå±ã®ãšãããããã°ã©ãã³ã°èšèªã¯ãã³ã³ãã¥ãŒãã£ã³ã°ã«é¢ãã人éã®æŠå¿µããã³ã³ãã¥ãŒã¿ãŒãå®è¡ã§ããå®éã®ã³ã³ãã¥ãŒãã£ã³ã°ãšçµã³ä»ããªããã°ãªããŸããã ãŸããèšèªãã©ãã»ã©åŒ·åã§ãã£ãŠãã人ã ããããç解ããã®ã«ååãªã³ã³ããã¹ããæã£ãŠããªãå Žåãèšèªã§ã§ããããšã¯ã»ãšãã©ãããŸããã ãããMathematicaã§å¯èœãªéãèªèã§ããå€èŠ³ãäžããæ¬åœã«å¿ èŠãªå Žåã«ã®ã¿ãªãã¿ã®ãªããã®ãå°å ¥ããæ ¹æ¬çã«æ°ãããã®ãäœãããšåžžã«è©Šã¿ãçç±ã§ãã
ã·ã¹ãã èšèšã®éèŠãªãã€ã³ãã®1ã€ã¯ããã®äžã§äœãéèŠããç¥ãããšã§ãã SMPã§ã¯ããããããã»ãã³ãã£ãã¯ãã³ãã¬ãŒããã«å€å€§ãªåŽåãè²»ãããŸããã ãã®å®çŸ©ããããšããŸãããïŒ
f[$x+$y, $x, $y] := {$x, $y}
ã
f[a+b, a, b]
ãããã«å¯Ÿå¿ããããšã¯æããã§ãã ãããã
f[7, 3, 4]
ã©ãã§ããïŒ SMPã§ã¯ããã¿ãŒã³ã¯æºããããŸããã7ã¯
$x+$y
æ§æ圢åŒã§ã¯ãããŸããã ãããå®è£ ããã«ã¯å€å€§ãªåŽåãå¿ èŠã§ããã ç°¡åãªäŸã§ã¯ããã¹ãŠãçŽ æŽãããèŠããŸããã ããããæçµçã«ã¯ãããã¯ããã»ã©é »ç¹ã«å¿ èŠã§ã¯ãããŸãããå¿ èŠãªå Žåã圌ãã¯ãããé¿ããããšããŸãããã®ãããªæ§é ã¯ããã°ã©ã ã®å¯èªæ§ã倧ããæãªãããããããäœãããã®ãç解ããã®ãé£ãããªããŸãã
ååž°å¶åŸ¡ã«ã€ããŠãåæ§ã®ããšããããŸããã ãããã®æ§æã¯ã
f[$x] : $xf[$x-1]
ïŒ
f[1]
ãæå®ããã«ïŒãé¿ããã¹ãã ãšèããŸããããªããªãããããã«ã¯ç¡éã«ãŒããããã
f[-1]
ã
f[-2]
ãèšç®ããããšãããã
f[-2]
ãããŠãæåŸã«ãããæç¹ã§0ã«ããä¹ç®ãçºçãããŸã§ç¶ããŸãã ããŠãSMPã§ã¯ãããã©ã«ãã§ãŒããåºåãããŸããã SMPã¯ååž°ããªãŒã®åãã©ã³ããèšç®ããã®ã§ã¯ãªããå®æçã«åæ¢ããèšç®ãããŠããªããã¹ãŠã®ãã©ã³ããåçŽåããããšããããã§ãã ã¹ããŒãã§ãšã¬ã¬ã³ãã§ããã ãããã誰ãããã®åäœãèšå®ããããšãããšããã¹ãŠãè€éãããŠç解ã§ããªããªããæçµçã«ã¯èª°ãããã䜿çšããŸããã§ããã
ãããŠããŠãŒã¶ãŒå®çŸ©ã®æ§æããããŸããã 圌ã¯ãäŸãã°ãäžçœ®æŒç®åãšããŠã
U
ãïŒäŸãã°ã
union
ãïŒãèšå®ããããšãèš±å¯ããŸããã ãããŠã誰ãããuããšããé¢æ°ãå°å ¥ãããŸã§ããã¹ãŠãããŸããããŸããã ãŸãã¯ã誰ããèªåã®æ§æã®å人ã«ãªããŸã§ã
SMPã¯å€ãã®ããšãæããŠãããŸããã Mathematicaã®åã«SMPããªããã°ãããã»ã©è¯ããªãã§ãããã ãããŠä»ãSMPã®ãšã©ãŒã«ã€ããŠèããŠã¿ããšããããããããã®ãšã©ãŒã¯ãã¹ãŠéå»ã®ãã®ã§ãããšããäºå®ã«æºè¶³ããŠããŸãã SMPãšMathematicaã®èšèšã«é¢ãã25幎éã®äœæ¥ã®åŸããããã®ã»ãšãã©ã¯åçŽãªã¿ã¹ã¯ã®ã«ããŽãªã«åé¡ãããŸãã
SMPã§æé«ã®ã¢ã€ãã¢ãåºãŠããªãããšãã©ãã»ã©é »ç¹ã«ãããã¯ããããã§ãã ãããŠãå®éãç§ã¯ãã¶ã€ã³ã«é¢ããçŸåšã®èŠè§£ã«éåžžã«èå³ããããSMPãç«ã¡äžãããã©ããªãã§ããããã ãããŠãããã¯ç§ã圌女ãæããããã解æŸãã圌女ãåã³ä»äºã«ãããçç±ã®äžã€ã§ãã ããªãã®äžäººããããæäŒã£ãŠãããããšãé¡ã£ãŠããŸãã