Stephen Wolframã®èšäºã The History and Future of Special Functionsãã®ç¿»èš³ã
翻蚳ã«ååããŠãããããªã«ã»ã°ãŒã³ã³ã«æ·±ãæè¬ããŸãã
ãã®èšäºã¯ã ãªã¬ã°ã»ããªãã§ãã®60æ³ã®èªçæ¥ãèšå¿µããã€ãã³ãã®äžç°ãšããŠãã€ãªãã€å·ã·ã£ã³ããŒã³ã§éå¬ãããWolfram Technology Conference 2005ã§è¡ãããã¹ããŒãã®é²é³ã§ãã
ããã§ãä»ãç§ã¯ä»æåãäžãããããã¯ã«æ»ããããšæããŸãã ç¹æ®æ©èœã®éå»ãšæªæ¥ã«ã€ããŠã話ããããšæããŸãã å°ãªããšãéå»30幎éãç¹å¥ãªæ©èœãç§ã®æ ç±ã®äž»é¡ã§ããã ãããŠãç§ã®ä»äºã¯ç¹å¥ãªæ©èœã®äœ¿çšãä¿é²ããäžã§å€§ããªåœ±é¿ãäžãããšæããŸãã ããããç§ã¯ä»¥åã«ãã®ãããã¯ãåãäžããããšããªãã£ãããšãããŸããŸèµ·ãããŸããã ä»ããããä¿®æ£ããæéã§ãã
æ°åŠçŸç§äºå
žããã®æç²ïŒI. M. Vinogradovç·šïŒ
ç¹æ®é¢æ°-åºçŸ©ã«ã¯ãæ°åŠã®ããŸããŸãªã»ã¯ã·ã§ã³ã§çè«çåé¡ãšå¿çšåé¡ã®äž¡æ¹ã解決ãããšãã«çããåã
ã®ã¯ã©ã¹ã®é¢æ°ã®å
šäœã
ç矩ã§ã¯ãSãfã å¹³åS. fã æ°åŠ å€æ°ã®åé¢æ³ã«ããå埮åã䌎ã埮åââæ¹çšåŒã解ããšãã«çŸããç©çåŠè ã
S. fã ã¹ãçŽæ°ãçæé¢æ°ãç¡éç©ãé次埮åãç©åè¡šçŸã埮åãå·®ãç©åæ¹çšåŒããã³é¢æ°æ¹çšåŒãäžè§çŽæ°ãçŽäº€çŽæ°ã䜿çšããŠæ±ºå®ã§ããŸãã
S.ã®æãéèŠãªã¯ã©ã¹ãžfã ã¬ã³ãé¢æ°ãšããŒã¿é¢æ°ãè¶ å¹Ÿäœé¢æ°ãšçž®éè¶ å¹Ÿäœé¢æ°ãããã»ã«é¢æ°ãã«ãžã£ã³ãã«é¢æ°ãæŸç©ç·åæ±é¢æ°ãç©åæ£åŒŠãç©åäœåŒŠãäžå®å šã¬ã³ãé¢æ°ã確çç©åã1ã€ããã³å€ãã®å€æ°ã®çŽäº€å€é åŒã®ããŸããŸãªã¯ã©ã¹ãæ¥åé¢æ°ãšæ¥åç©åãã©ã¡é¢æ°ãšãã¿ã€é¢æ°ããªãŒãã³ãŒãŒã¿é¢æ°ãèªå·±ååé¢æ°ãSãfã é¢æ£åŒæ°ã
çè«S. fã ã°ã«ãŒãã®è¡šçŸãå€å žçãªçŽäº€å€é åŒã®ãããªã²ã®åŒã®äžè¬åã«åºã¥ãç©åè¡šçŸã®æ¹æ³ãããã³ç¢ºççè«ã®æ¹æ³ã«é¢é£ããŠããŸãã
S. fã®å Žå å€ã®è¡šãããã³ç©åãšç³»åã®è¡šããããŸãã
ç矩ã§ã¯ãSãfã å¹³åS. fã æ°åŠ å€æ°ã®åé¢æ³ã«ããå埮åã䌎ã埮åââæ¹çšåŒã解ããšãã«çŸããç©çåŠè ã
S. fã ã¹ãçŽæ°ãçæé¢æ°ãç¡éç©ãé次埮åãç©åè¡šçŸã埮åãå·®ãç©åæ¹çšåŒããã³é¢æ°æ¹çšåŒãäžè§çŽæ°ãçŽäº€çŽæ°ã䜿çšããŠæ±ºå®ã§ããŸãã
S.ã®æãéèŠãªã¯ã©ã¹ãžfã ã¬ã³ãé¢æ°ãšããŒã¿é¢æ°ãè¶ å¹Ÿäœé¢æ°ãšçž®éè¶ å¹Ÿäœé¢æ°ãããã»ã«é¢æ°ãã«ãžã£ã³ãã«é¢æ°ãæŸç©ç·åæ±é¢æ°ãç©åæ£åŒŠãç©åäœåŒŠãäžå®å šã¬ã³ãé¢æ°ã確çç©åã1ã€ããã³å€ãã®å€æ°ã®çŽäº€å€é åŒã®ããŸããŸãªã¯ã©ã¹ãæ¥åé¢æ°ãšæ¥åç©åãã©ã¡é¢æ°ãšãã¿ã€é¢æ°ããªãŒãã³ãŒãŒã¿é¢æ°ãèªå·±ååé¢æ°ãSãfã é¢æ£åŒæ°ã
çè«S. fã ã°ã«ãŒãã®è¡šçŸãå€å žçãªçŽäº€å€é åŒã®ãããªã²ã®åŒã®äžè¬åã«åºã¥ãç©åè¡šçŸã®æ¹æ³ãããã³ç¢ºççè«ã®æ¹æ³ã«é¢é£ããŠããŸãã
S. fã®å Žå å€ã®è¡šãããã³ç©åãšç³»åã®è¡šããããŸãã
æ°åŠã®å€ãã®æŠå¿µãšãªããžã§ã¯ãã®æŽå²ã¯ãå€ä»£ãããã³ã®æ代ã«ãŸã§ããã®ãŒãããšãã§ããŸãã å®éã4000幎åã®ãããã³ã§ããããŸããŸãªè€éãªæŒç®ãè¡ã60é²æŒç®ãéçºãããç©æ¥µçã«äœ¿çšãããŠããŸããã
åœæãå ç®ãšæžç®ã®æäœã¯éåžžã«ç°¡åã§ãããšèããããŠããŸããã ããããããã¯ä¹ç®ãšé€ç®ã®æäœã«ã¯é©çšãããŸããã§ããã ãããŠããã®ãããªã¢ã¯ã·ã§ã³ãå®è¡ããããã«ãç¹æ®æ©èœã®ããã€ãã®é¡äŒŒæ§ãéçºãããŸããã
å®éãé€ç®ã¯ãéå€ã®å ç®ãšæžç®ã«åæžãããŸããã ãããŠãããªãcãªæ¹æ³ã§ã®ä¹ç®ã¯ãå¹³æ¹ã®å ç®ãšæžç®ã«åž°çããŸããã
ãããã£ãŠãã»ãšãã©ãã¹ãŠã®èšç®ã¯ããŒãã«ã®æäœã«åž°çããŸããã ãããŠããã¡ãããèå€åŠè ã¯éæ°ãšäºä¹ã®è¡šãæã€ããããã¢ã®ç²åæ¿ãèŠã€ããæ©äŒããããŸããã
ã€ãŸããããããã¢äººã¯ãç¹°ãè¿ã䜿çšã§ããæ°åŠçãŸãã¯èšç®çãªäœæ¥ãããã€ããããéåžžã«æçšãªçµæãåŸããããšããèãããã§ã«æã£ãŠããŸããã
ãããŠãããçšåºŠãŸã§ãç¹å¥ãªæ©èœã®æŽå²ã¯ããããã®ãããŒã¹ãããã·ãŒã±ã³ã¹ãæäœããåçã®çºèŠããå§ãŸããŸãã
次ã®ãããŒã¹ãã¯ãããããäžè§æ³ãå«ããã®ã§ããã ãšãžããã®ããã«ã¹ãªã³ã1650 BC ãã©ãããã«é¢ããããã€ãã®åé¡ããã§ã«å«ãŸããŠããŸãããããã®è§£æ±ºã«ã¯äžè§æ³ãå¿ èŠã§ããã 亀éè¡šã®ããããããã¢ã®ã¿ãã¬ãããèŠã€ãã£ãããšã«èšåãã䟡å€ããããŸãã
ãã¡ããããšããµã€ã¯ã«ã¢ãã«ã䜿çšããåœæã®å€©æåŠè ã¯ããã§ã«æ¬æ Œçã«äžè§æ³ã䜿çšããŠããŸããã ãããŠãåã³ããã¹ãŠã®æ°åŠçæäœã¯ãå°æ°ã®ãç¹å¥ãªãé¢æ°ãæ±ãããšã«ãªããŸããã
圌ããã³ãŒããã¢ãŒã¯ãšåŒãã§ãããã®ã«å€ãã®æ³šæãæãããŸããã ãããåçã§ãã
2ã€ã®åäœåååŸãããããããã®éã«ã¯äžå®ã®è§åºŠããããŸãã ãããã®éã®åé³ã®é·ãã¯ïŒ ããã§ãã³ãŒãã®é·ãã®è§åºŠã®ãããã³ã°ãè§åºŠã®ãµã€ã³ã®é¢æ°ãšåŒã³ãŸãã
ãããŠãããã«éã®åé¡ããããŸããç¹å®ã®ã³ãŒãé·ã«å¯ŸããŠ-è§åºŠã¯ã©ããªããŸããïŒ ééããªããä»ã§ã¯ã¢ãŒã¯ãµã€ã³ãšåŒãã§ããŸãã
ã®ãªã·ã£ã®å€©æåŠè ã¯ãããã®åé³ãšåŒ§ãéåžžã«çå£ã«åãæ¢ããŸããã ããã¬ãã€ãªã¹ã®ã¢ã«ãã²ã¹ãã¯ãããã§ãã£ã±ãã§ãã ãããŠã圌ãã¯èšããçŽå å140幎é ãããã«ã³ã¹ã¯ã³ãŒãè¡šä»ãã®12å·»ãåéããŸããã
ããŠãäžè§æ³ã«é¢ããã¢ã€ãã¢ã¯ãããã³ãšã®ãªã·ã£ããåºãŸãå§ããŸããã äžè§æ³ã¯ããŸããŸãªæšæºãšã«ãŒã«ãè¿ éã«ç²åŸããŸããã ãããã«ã³ã¹ã¯ãã§ã«ããããã¢äººãã360床ã®åãšããèããæ¡çšããŠããŸãã
ãããŠãæåéãã¢ã©ãã¢èªã«ç¿»èš³ãããã©ãã³èªã«èª€ã£ãŠç¿»èš³ãããã€ã³ãèªã®ãã³ãŒãããããããµã€ã³ããšããåèªãç»å ŽããŸããã 12äžçŽã§ã13äžçŽã®åãã«ãã£ããããã¯ç©æ¥µçã«äœ¿çšãå§ããŸããã
14äžçŽã«ã¯ãäžè§æ³ãæ®åããŸããã ãããŠã16äžçŽã®åã°ã«ã圌女ã¯ã³ãã«ãã¯ã¹- ãã¬ããªã¥ãŒã·ã§ã³ãã¹ã®ä»äºã§éåžžã«éèŠãªåœ¹å²ãæãããŸããã ãã®ä»äºã¯é·ãéãæ°åŠé¢æ°ãæ±ã人ã ã«ãšã£ãŠåºæ¬çãªãã®ã«ãªããŸããã
ãã®ãšããäžè§æ³ã¯ã»ãŒå®å šã«ã¢ãã³ãªå€èŠ³ã«ãªããŸããã ãã¡ãããããã€ãã®éèŠãªéãããããŸãã ããšãã°ãããŒã·ãã¹ã®çµ¶ãéãªã䜿çšã 誰ããããèããããšããããŸããïŒ åºæ¬çã«ãããã¯1-Cos [x]ã§ãã ããã¯ããæè¿ãŸã§å ¬éãããŠããäžè§è¡šã§èŠã€ããããšãã§ããŸãã ããããä»ã§ã¯ããã€ãã®äœåãªç®è¡æŒç®ã¯ãŸã£ããåé¡ã§ã¯ãªãã®ã§ããã®é¢æ°ã«ã€ããŠã¯ãã話ãã¹ãã§ã¯ãããŸããã
ããŠãäžè§æ³ã®åŸã次ã®å€§ããªãã¬ãŒã¯ã¹ã«ãŒã¯å¯Ÿæ°ã§ããã 1614幎ã«ç»å ŽããŸããã
ããã¯ãä¹ç®ããã³é€ç®ãå ç®ããã³æžç®æŒç®ã«æžããæ¹æ³ã§ããã
é·å¹Žã«ãããã察æ°ãæã€å€ãã®ããŒãã«ãç»å ŽããŸããã å®éãããŒãã«ã®äœ¿çšã¯ã300幎以äžã«ããã£ãŠååšããŠãããŠããã¿ã¹æšæºã«ãªã£ãŠããŸãã
èªç¶å¯Ÿæ°ãšææ°ãçŸä»£ã®åœ¢ãèŠã€ããã®ã«æ°å¹ŽããããŸããã ãããã17äžçŽã®åã°ã«ã¯ãç§ãã¡ã«éŠŽæã¿ã®ããåºæ¬çãªæ©èœããã¹ãŠç»å ŽããŸããã ãããŠãã以æ¥ãä»ãŸã§ããããã¯å®éãã»ãšãã©ã®äººãç¥ã£ãŠããå¯äžã®æ瀺çãªæ°åŠé¢æ°ã§ãã
ãŸãã17äžçŽã®çµããã«åŸ®ç©åãçŸããããšãããããŸãã ãããŠããããçŸä»£è¡šçŸã®ç¹å¥ãªæ©èœãçŸãå§ããæã§ãã ãããã®å€ãã¯ããã«ç»å ŽããŸããã
18äžçŽã®ã©ããã§ããã«ããŒã€ã®1人ã¯ãããããåºæ¬é¢æ°ã®ç©åãåºæ¬é¢æ°ã«ãªããšããèããæå±ããŸããã ã©ã€ããããã¯åäŸããããšæã£ãã ã ãããããã®è¡šçŸã¯ããã§ã¯ãããŸããã§ããã æ°å¹ŽéŽã æ¥åç©åã®æŽ»çºãªè°è«ããããŸããã å°ãªããšãã·ãªãŒãºã«é¢ããŠã¯ã ãããŠããã»ã«ã®æ©èœãçºèŠãããŸããã
ãããŠã18äžçŽã®20代ãŸã§ã«ããªã€ã©ãŒã¯ã³ã³ãã¥ãŒãã£ã³ã°ã®äžçã«çªå ¥ãå§ããã°ããã§ããã ãããŠã圌ã¯ç§ãã¡ã®æšæºçãªç¹å¥ãªæ©èœã®å€ãã«ã€ããŠæžããŸããã
圌ã¯ã ã¬ã³ãé¢æ°ãéä¹æŠå¿µã®çºå±ãšããŠçºèŠããŸããã 圌ã¯ããã€ãã®ã¢ããªã±ãŒã·ã§ã³ã§ããã»ã«é¢æ°ãå®çŸ©ãã æ¥åç©åãç 究ãã ãŒãŒã¿é¢æ°ãå°å ¥ãã å€å¯Ÿæ°ãç 究ããŸããã
éåžžã圌ã¯é¢æ°ã«ç¹å®ã®ååãä»ããŸããã§ããã
ãããåŸã ã«ã圌ãæžããæ©èœãããŸããŸãªäººã ã«ãã£ãŠäœ¿çšãããããã«ãªããŸããã ãŸããå€ãã®å Žåãäžå®æé䜿çšããåŸãç¹å®ã®æå®ãšååããã§ã«åãåããŸããã
ç¹å¥ãªæ©èœã®åºçŸã«ã¯ãããã«ããã€ãã®ã¢ã¯ãã£ããã£ã®ããŒã¹ãããããŸããã 18äžçŽã®çµããã«ã¯ãæœåšçãªçè«ãšå€©äœååŠããããŸããã ãŸããããšãã°ãé·ãéã©ãã©ã¹é¢æ°ãšåŒã°ããŠããã«ãžã£ã³ãã«é¢æ°ã¯ã1780幎é ã«ç»å ŽããŸããã 1820幎代ã«ã¯è€éãªåæãäžè¬çã«ãªããããŸããŸãª2åšæé¢æ°ãåºçŸãå§ããŸããã åœæããã®åéã§äººã ã®éã®ã³ãã¥ãã±ãŒã·ã§ã³ãååã«ç¢ºç«ãããŠãããšã¯èšããŸããã ãã®ãããæçµçã«ã¯ãåãæŠå¿µã®ããŸããŸãªäºææ§ã®ãªãè¡šèšãç»å ŽããŸããã ãã®æã«çŸããåé¡ã¯ä»æ¥ã§ãé¢é£ãããããã°ãã°MathematicaãµããŒããžã®åŒã³åºããåŒãèµ·ãããŸãã
æ°å¹ŽåŸãé«èª¿æ³¢è§£æãå¢ããå¢ããããŸããŸãªçŽäº€å€é åŒïŒãšã«ããŒããã¬ã€ã°ã©ãªã©ïŒãåŸãããŸããã
ããŠããã§ã«19äžçŽã®åãã«ã¯ãç¹æ®ãªæ©èœã®ãåç©åãå šäœãçŸããŠããããšãæããã§ããã ãããŠãããã¯ã¬ãŠã¹ã«ããããã¹ãŠãŸãšããæ¹æ³ãèããããŸããã
圌ã¯è¶ 幟äœåŠã·ãªãŒãºã調æ»ããŸããããå®éã«ã¯ãŠã©ãªã¹ã«ãã£ãŠ1650幎代ã«æ¢ã«éãããŠããã圌ã®åèªã«ã¡ãªãã§åä»ããããŸããã ãããŠåœŒã¯æ©èœã«æ°ã¥ãã ïŒ ã¬ãŠã¹è¶ 幟äœé¢æ° ïŒå®éã«å€ãã®æåãªç¹æ®é¢æ°ãã«ããŒããŠããŸãã
19äžçŽåã°ãŸã§ã«ãç¹ã«ãã€ãã§ç¹å¥ãªæ©èœã«å€ãã®æ³šæãæãããŸããã ãã®æç¹ã§ããã®ãããã¯ã«é¢ããå€ãã®æç®ãç»å ŽããŸããã ãããã£ãŠãããã¯ã¹ãŠã§ã«ã19äžçŽã®70幎代ã«é»ç£æ°çè«ã«é¢ããç 究ãæžãããšãã圌ã¯ç¹å¥ãªæ©èœã®æ°åŠçè£ çœ®ã«å€ãã®æéãå²ãå¿ èŠã¯ãããŸããã§ããã åç §ã§ããæç®ã¯ãã§ã«ãããããããŸããã
é¢æ°ã®ããããã£ã説æããçŽç²ã«ç§åŠçãªè«æã«å ããŠããããã®å€ãæã€ããŒãã«ãäœæãããŸããã 誰ãå®éã«èããããšããªã人ãããŸãã ãããŠãæã«ã¯éåžžã«æåã§ã-ã€ã³ãããšã¢ãªãŒãããã¯ã¹ãŠã§ã«ãªã©ã
ãããã£ãŠã19äžçŽã®çµããã®ãã£ãšåã«ãä»æ¥ç§ãã¡ãæ±ãã»ãšãã©ãã¹ãŠã®ç¹å¥ãªæ©èœããã§ã«äœæãããŠããŸãã ããããä»ã«ããããŸããã ããšãã°ã ã°ãã«ããã¢ã³ãšã¯äœãèããããšããããŸããïŒ ç§ãåäŸã®é åèæžã§åœŒã«äŒã£ãæ¹æ³ãèŠããŠããŸãã ã°ãã«ããã¢ã³ã¯ãã¬ãŠã¹ã®çåŸã§ããã¯ãªã¹ããã»ã°ãŒããŒãã³ã«ã¡ãªãã§åä»ããããŸããã äžè§é¢æ°ãšåæ²ç·é¢æ°ãšã®é¢ä¿ã確ç«ããã¡ã«ã«ãã«å³æ³ã®æ圱ãšå¯æ¥ã«é¢é£ããŠããŸãã ããããã°ãã«ããã¢ã³ã¯çŸä»£æåŠã«ã¯ã»ãšãã©èŠåœãããŸããã
ããŠã19äžçŽã®æåŸã®æ°å幎éã«ãç¹å¥ãªæ©èœã®éçºã«å€§éã®ç¥çè³æºãæè³ãããŠããŸããã ç§ã¯ããã¹ãŠãäžå€åŒãã·ãžãŒã®çè«ã®æ¹åããŸãã¯ãã¯ããªã¢ææ代ã®ä»ã®ç¹åŸŽçãªæ°åŠçé¡æã«åãã£ãŠçºå±ãããšä¿¡ããŠããŸãã å®éãæœè±¡åãšäžè¬åã«å¯ŸããçŽç²ãªæ°åŠã®å žåçãªæã¯ãç¹å¥ãªæ©èœãarbitraryæçãªãã®ã«ããç¹ã«çµã³ä»ããŠããŸããã ããã¯ãäžè¬çãªçååŠãç 究ãã代ããã«ãåç©åã§å¥åŠãªåç©ãç 究ãããããªãã®ã§ãã
ãã ããçè«ç©çåŠã®é²æ©ã«ãããç¹æ®æ©èœãžã®é¢å¿ãåã³é«ãŸã£ãŠããŸãã ã¡ã«ããºã ã 匟æ§ã®çè«ã é»ç£çè«ã ãã®åŸã1920幎代ã®éåååŠã§ã¯ãæãåºæ¬çãªã¿ã¹ã¯ã§ãããã©ãžã§ã© å€é åŒããšã«ããŒãå€é åŒãªã©ã®ç¹å¥ãªé¢æ°ã䜿çšããå¿ èŠããããŸããã ãããŠãæ£ä¹±ã®çè«ããããŸãããããã¯ããããããã»ãŒãã¹ãŠã®ç¹å¥ãªæ©èœã®ãåç©åãã䜿çšããŠããŸããã
ããã«ãããçŽç²ãªåœ¢ã®åé¡ã¯äœããã®åœ¢ã§ç¹å¥ãªæ©èœã«é¢ããŠåžžã«è§£æ±ºã§ãããšããèããçãŸããŸããã ãããŠãééããªããæç§æžã¯ãã®èããä¿é²ããŸããã ãããã§è°è«ãããåé¡ã¯ãç¹å¥ãªæ©èœã«é¢ããŠéåžžã«ç°¡æœã«å®åŒåãããããã§ãã
ãã¡ãããããã€ãã®ã®ã£ããããããŸããã 5次ã®å€é åŒã 3ã€ã®å£äœã®ä»äºã ãããããããã¯ããŸãã«ãéæšæºã§ããã çŸä»£ã®ç¢ºçè«ã«å¿ èŠãªãã®ã§ã¯ãããŸããã
äžè¬ã«ãç¹æ®æ©èœã®ç¯å²ã¯éåžžã«åºç¯å²ã§ãã ç¹ã«ã€ã®ãªã¹ã§ã¯ãããŒãã«ã®äœæãéåžžã«å¢ããå¢ããŠããŸãã å®éããã®å°åã¯åœå®¶ã«ãšã£ãŠæŠç¥çã«éèŠã§ããã ç¹ã«ãããã²ãŒã·ã§ã³ã®ãããªãã®ã®ããã«ã å€ãã®ããŒãã«ãå ¬éãããŸããã ããã§ã¯ãäŸãã°ã1794幎ããã®è¯ãéžæã åããŠèŠããšããããã«ã¯ããçš®ã®ã¿ã€ã ã·ããã®å ŽæããããšæããŸããã
ïŒå®éããã®ãŠã«ãã¡ã ã¯ãã«ã®ãŒã®ç ²å µéã®å°æ ¡ã§ãããç§ã¯åœŒãšèŠªhaveãæã£ãŠããã®ã¯ã7äžçŽã«äœãã§ããèãŠã«ãã©ã ã»ã©ã§ã¯ãªããšæããŸãïŒã
åœæã¯ããŒãã«ãéèŠãªåœ¹å²ãæãããŠããããã1820幎代ã«æ£ç¢ºãªããŒãã«ãã³ã³ãã€ã«ããããã«èšèšãããããããžå·®åãã·ã³ãç»å ŽããŸããã ãããŠã19äžçŽã®çµãããŸã§ã«ãç¹å¥ãªæ©èœãç·šéã®åºç€ã«ãªããŸããã
æ©æ¢°åŒèšç®æ©ã¯ãŸããŸãæ®åããè±åœãšç±³åœã§ã¯ãç¹æ®ãªæ©èœã®ããŒãã«ãäœæãã倧èŠæš¡ãªãããžã§ã¯ãããããŸããã ããšãã°ã30幎代ã®WPAãããžã§ã¯ãïŒ Works Progress Administrationãããžã§ã¯ã ïŒã®ããã«ã倧æduringã®éã«äººã ã¯æ°åŠé¢æ°ã®å€ã®èšç®ã«å¿ããã£ãã
ãã®åŸã圌ãã®è²¡ç£ãäœç³»åããçå£ãªä»äºãå§ãŸããŸããã ããããã«å€ãã®äœæ¥ããããŸããããããããã®è²¢ç®ã¯ããã»ã©å€§ãããããŸããã§ããã 誰ããèªåãéèŠãªåœ¹å²ãæãããŠãããšæã£ãŠããŸãããã ã¡ãªã¿ã«ã1909幎ã«æåã«åºçããã30æ¥ã«ã¯ã€ã©ã¹ããæã«å ¥ããã¢ã¡ãªã«ã®ã€ãŒã³ã±ãšãšã ãã®è¡šçŽã§ãã
ã¡ãªã¿ã«ããŸã£ããæªããããŸããã
20äžçŽã®åãã«ã¯ãç³èãšæšæããæ©èœã®äœç©ã¢ãã«ãäœæããããšãäžè¬çã§ããã ãããŠãã¯ãããŒãŒã¿é¢æ°ã説æããã¢ã€ãã¢ããããŸãããããã¯ãã€ãŒã³ã±ãšãšã ãã«ããMathematica Bookã®åçãã«ããŒããããã«äœ¿çšããŠããŸããã
第äºæ¬¡äžç倧æŠäžãç¹æ®æ©èœã«é¢ããå€ãã®ç 究ããããŸãããããã®çç±ã説æããã®ã¯å°é£ã§ãã ããã¯ããããããã€ãã®è»äºçããŒãºãåå ã§ããã ããããç§ã¯ãããåãªãå¶ç¶ã§ãããšä¿¡ãããã£ãŠããŸãã ãã ããäžéšã®æŠç¥ç掻åãšã®æœåšçãªãªã³ã¯ãåŠå®ãã¹ãã§ã¯ãããŸããã
ãããŠããã°ãã¹ãšãªãŒããŒãããã£ã³ã¬ãŒã®åçã¯1943幎ã«åºçãããŸããã
ããã«åºã¥ããŠã Gradstein-Gingerã®åçãç»å ŽããŸãã ã
1946幎ãããªãŒã»ãã€ããã³ã¯æ»äº¡ããç¹å¥ãªæ©èœã«é¢ãããã¹ãŠã®æ å ±ã®å€§èŠæš¡ãªã¢ãŒã«ã€ããæ®ããŸããã æçµçã«ã圌ã®æ¥çžŸã¯ãBateman Manuscript Projectãšããååã§å ¬éãããŸããã
ãã³ããã¿ã³ãããžã§ã¯ããããã³ãã®åŸã®æ°ŽçŽ ç匟éçºãããžã§ã¯ãããç¹å¥ãªæ©èœã®é¡§å®¢ããã³æ¶è²»è ãšããŠã®åœ¹å²ãæãããŸããã ããšãã°ã1951幎ã«ãåœå®¶æšæºå±ã®Milt Abramowitzã¯ãæ žç©çåŠã«å¿ èŠãªã¯ãŒãã³æ³¢åé¢æ°ã®è¡šãäœæããŸãã ã
ããããã1965幎ã«åºçãããAbramowitz-Steganã®æ¬ãåŸã ã«æé·ããç¹å¥ãªæ©èœã䜿çšããã¢ã¡ãªã«äººã«ãšã£ãŠãã³ããŒã¯ã³ã®æåŠã«ãªããŸããã
60幎代ããã³70幎代ã«ã¯ãã³ã³ãã¥ãŒã¿ãŒã®æ°å€ã¢ã«ãŽãªãºã ã®éçºã«å€ãã®æ³šæãæãããŸããã ãããŠãç¹æ®æ©èœã®èšç®ã¯ãæ°ã«å ¥ãã®å Žæã§ããã
ã»ãšãã©ã®å Žåãäœæ¥ã¯éåžžã«å ·äœçã§ãããç¹å®ã®èšç®ç²ŸåºŠã§ç¹å®ã®æ¬¡æ°ã®ç¹å®ã®ããã»ã«é¢æ°ã«èšå€§ãªæéãè²»ããããšãã§ããŸããã ããããç¹æ®ãªé¢æ°ãèšç®ããããã®ç¹å®ã®ã¢ã«ãŽãªãºã ã®ã³ã¬ã¯ã·ã§ã³ãåããã©ã€ãã©ãªãåŸã ã«ç»å ŽããŸããã ãã ããå€ãã®äººã ã¯äŸç¶ãšããŠããŒãã«ä»ãã®åèæžã䜿çšããŠããŸããããã¯ãç§åŠå³æžé€šã®æãèåãªå Žæã§ããèŠãããŸãã
ç§ããŸã ãã£ãŒã³ãšã€ãžã£ãŒã ã£ãé ãç§ã¯1970幎代åã°ã«ç¹å¥ãªæ©èœã«åŸäºãå§ããŸããã ã€ã®ãªã¹ã®åŠæ ¡ã§åŠãã å ¬åŒã®æ°åŠã¯ãç¹å¥ãªæ©èœãæå³çã«é¿ããŠããŸããã åºæ¬çãªæ©èœã®ã¿ã䜿çšããŠçããèŠã€ããããã«ãããã€ãã®ããªãããŒãªããªãã¯ã䜿çšããããšã«ãããŸããã ããŸã奜ãã§ã¯ãªãã£ãã ãã£ãšäžè¬çã§å®çšçãªãã®ã欲ããã£ãã ãããã ãããŠãç§ã¯ç¹å¥ãªæ©èœã®ã¢ã€ãã¢ã奜ãã§ããã 圌ãã¯ããå¹æçãªããŒã«ã®ããã«èŠããŸããã ããããæ°çç©çåŠã®æ¬ã§ã®åœŒãã®è°è«ã¯ãååã«äœç³»çãšã¯æããŸããã§ããã ã¯ãããããã¯ãã匷åãªæ©èœã§ããã ãããã圌ãã¯ãŸã ããarbitraryæçã§ãããå°è±¡çãªé³ã®ååãæã€å¥œå¥å¿ã®åŒ·ãçãç©ã®åç©åã®ãããªãã®ã§ãã
ããã€ãã®å®éã®ã¿ã¹ã¯ã®ããã«ç¹å¥ãªæ©èœã䜿ãå§ãããšããç§ã¯16æ³ã ã£ããšæããŸãã ããã¯äºå¯Ÿæ°ã§ããã 圌ã¯çŽ ç²åç©çåŠã§åããŠããŸãã ã ãããŠãç§ã¯ãããåã«fãšæå®ãããšèšã£ãŠæ¥ããããæããŸãã
ããããç§ã®é²è¡ã§ã¯ãå€å¯Ÿæ°ã¯å®éã«ã¯ç 究ãããŠããªãã£ããšèšããŸãã æ°çç©çåŠã«é¢ããéåžžã®æ¬ã«ã¯ãããã»ã«ç©åãæ¥åç©åãçŽäº€å€é åŒãããã«ã¯è¶ 幟äœé¢æ°ãå«ãŸããŠããŸããã ããããå€é察æ°ã¯ãããŸããã çµå±ã®ãšãããã©ã€ããããã¯ãããã«ã€ããŠæžããŸããã ããããäœããã®çç±ã§ã圌ãã¯ããªãã¿ã®ç¹å¥ãªæ©èœã®ãåç©åãã«åé¡ãããŸããã§ããã ãããŠã1970幎代åã°ã«èŠã€ããããšãã§ãããããã«é¢ããå¯äžã®æ¬åœã®æ å ±ã¯ããšã³ãžãã¢ã®ã¬ããŒãã«ãŒãŠã£ã³ã«ãã1959幎ã®é»åã¬ã³ãžã«é¢ããæ¬ã«ãããŸããã
ãã®åŸãŸããªãããã¡ã€ã³ãã³å³ã®ç©åãèšç®ããªããã°ãªããŸããã§ããã ãããŠãããªãã°ãéµã§ããããšã«æ°ä»ããŸããããããããªããå¿ èŠãšãããã®ã§ãã å€å¯Ÿæ°ã¯ç§ã®å¿ å®ãªå人ãšãªããç§ã¯ãããã®ç¹æ§ãç 究ãå§ããŸããã
ãããŠããã®æã«æ°ã¥ããããšããããŸãããããã®æå³ã¯ãããªãåŸã«ãªã£ãŠåããŠå®æããŸããã , -.
, , - . - , , . - . . , -.
, , - , . . , .
, - 78- , . - Macsyma, .
. .
, . K- , .
- . " ", . .
, 1- . .
, - . â , . .
â - - . . , . , , .
- , - , , , - . , . -, 1970-, , «» .
- . . , . , ( , ). , -.
, . , , , . , . , , -.
, , . 1936- , - ( ). 1941- â - , - . 43- - ( , ). . , , , , : 1858- , 1894- 1922-. s , ã . , . , , .
, . 1899 . 1948 . , . . , . , -.
1958 . , , - - , .
, - 1953 , , , . . , . - â .
, â - . . , , , .
, , 1970- . , 1979 , SMP â Mathematica , . â .
SMP, . .
.
SMP 1981- .
. , . . , , , . . . , â . .
, . 1986 Mathematica . â , , , .
, , , . , - . , . . : " , , 90- ".
, . , , . , . . A New Kind of Science â . .
, . .
, , , Mathematica . â . . , , . . . , .
, , , , , . FunctionExpand FullSimplify . .
. , . , , , , .
, . , . â . . , , ã
. , , . , , .
, Mathematica . . . , Wolfram Functions Site . - , .
, . - , , , , , , . - , . - ( Wolfram|Alpha , . .). - . .
, . . , . . , , , , . , . . . Mathematica .
, Mathematica , . ? , , .
, Mathematica , â , . RSolve Sum DSolve Integrate . , , . 1859- 1860- â : A Treatise on Differential Equations A Treatise on the Calculus of Finite Differences . Mathematica .
, , , . . , , , 17- .
. , .
: . . , .
Wolfram Language ( Mathematica ). , . Mathematica , , .
? . ? , Mathematica, Wolfram Functions .
. -, . â . . .
, , . , . , , .
: - ? ? ? , Wolfram Functions Site. , , Wolfram Functions Site.
, Google-pagerank-.
, .
, , . , , . , , . - .
, , . , . , , , , , â . n . , . â .
p q - , . (Power) {0,0}. â {1,0}. (Erf) â {1,1}. BesselJ â {0,1}. EllipticK â {2,1}. 6- j â {4,3}. , , . , .
, : - , , , â . , .
â . Sum Mathematica . :
, ã â - . ã
, , .
, . : , .
, , . , , , , . DSolve . .
. . - .
- . DSolve . . â DSolve ? , . - , .
, , . . , , Sin[Sin[x]] . , . . . , .
. Integrate Mathematica , . , , .
- : , ? , , , . . . . , , .
. . , , , , - . , . . .
? , ?
. , , .
, â . . , . â â . .
? . , .
å€ãã¯ããªãåçŽãªããšãããŸãããããŠã圌ãã¯åãæ§é ãäžããŸãããŸãã¯å°ãªããšãç¹°ãè¿ãã
ãããå®è£ ããããã®åŒãèŠã€ãããšæ³åããŠã¿ãŸããããããã䜿çšãããšãããšãã°ãç¹å®ã®ã»ã«ãç¹å®ã®ã¹ãããã§ã©ã®è²ã«ãªãããç解ã§ããŸãã
ãããããã®ç·ã¯ã©ãã§ããïŒç§ã®ãæ°ã«å ¥ãã®30çªç®ã®ã«ãŒã«ã¯ïŒ
äžå®åæ°ã®å埩åŸã«äœãèµ·ãããã決å®ããå ¬åŒã¯ãããŸããïŒ
ãŸãã¯ããã®ããã«ïŒ
ããã¯æããŸãã
å®éããã®ãããªã·ã¹ãã ã¯æ¬è³ªçã«èšç®äžæ¢çŽã§ã¯ãªããšæããŸãã
ãã®ãããªã·ã¹ãã ã¯ãäœããã®èšç®ããã»ã¹ãšããŠ30çªç®ã®ã«ãŒã«ãšèŠãªãããšãã§ããŸãã ã©ã®ãããªçµæãåŸãããããäºæž¬ããããšããå Žåãããã€ãã®èšç®ãå®è¡ããå¿ èŠããããŸãã ãããŠãããæå³ã§ã¯ãçè«ç©çåŠãªã©ã®äŒçµ±çãªåéã®æåã¯ãå®éãç§ãã¡ãç 究ããŠãããã®ãããã¯ããã«è€éãªã·ã¹ãã ã®è§£æ±ºã«åºã¥ããŠããŸããã ãã®ãããå¿ èŠä»¥äžã«èšç®èœåãäœãå Žåã«ã·ã¹ãã ãäœãããããå®çŸ©ããå¿ èŠããããŸãã
ã¯ããç§ã®æ¬ã®äž»ãªã¢ã€ãã¢ã®1ã€ã¯ãç§ãèšç®çç䟡æ§ã®ååãšåŒã¶ãã®ã§ãã ãã®ååã¯ãåäœãæããã«åçŽã§ã¯ãªãã»ãšãã©ãã¹ãŠã®ã·ã¹ãã ããèšç®ã®è€éããšæ£ç¢ºã«åçã§ããããšã瀺ããŠããŸãã ç§ãã¡ã®è³ãšæ°åŠçã¢ã«ãŽãªãºã ã¯ã©ã¡ããéåžžã«è€éãªã«ãŒã«ã§æ©èœããŸãããããšãã°ã30çªç®ã®ã«ãŒã«ãããããè€éãªèšç®ãå®è¡ããããšã¯ã§ããŸããã ã€ãŸããããã¯ã30çªç®ã®ã«ãŒã«ã®åäœãèšç®äžæ¢çŽã§ããããšãæå³ããŸããåã«30çªç®ã®ã«ãŒã«ãåçŸãããããå¹æçãªããã»ã¹ã䜿çšããŠã·ã¹ãã ãã©ã®ããã«åäœãããã説æã§ããŸããã
ãããã£ãŠã30çªç®ã®ã«ãŒã«ã®æ£ç¢ºãªè§£ãåŸãããšãã§ããŸãããããšãã°ãåŒæ°ãã»ã«ã®åº§æšãšã¹ãããã§ãããé¢æ°ã®åºåãã»ã«ã®è²ã§ããåŒã§ãã
ãšããã§ã30çªç®ã®ã«ãŒã«ã®èšç®ã®æ®éæ§ã蚌æããã°ãããã蚌æã§ããŸããã€ãŸãããã®å©ããåããŠèšç®ãå®è¡ããã·ã¹ãã ããšãã¥ã¬ãŒãã§ããŸãã ãããŠãããã¯ãã®ã«ãŒã«ãæ£ç¢ºãªè§£æ±ºçãæããªãçç±ãç解ããæ¹æ³ã§ãã ããã€ãã®ç¹ã§ããã®ãœãªã¥ãŒã·ã§ã³ã¯å¯èœãªèšç®ã§ãªããã°ãªããªãããã§ãã ã€ãŸããããçš®ã®å°ããªåŒã«ã¯ãªãããªããšããããšã§ãã
ããŠãç¹å¥ãªæ©èœã«é¢ããããããäœãç¶ããŸããïŒ ããŠã倧éã®èšç®äžã®æ¢çŽæ§ã«çŽé¢ããŠããå Žåãç¹å¥ãªé¢æ°ã¯ããŸã圹ã«ç«ã¡ãŸããã å€ãã®åé¡ã§ã¯ãããçš®ã®æ°åŒãäœæããããšã¯äžå¯èœã ããã§ã-ç¹å¥ãªæ©èœãªã©ã¯é¢ä¿ãããŸããã
ç§ã®æ¬ã®äž»ãªã¢ã€ãã¢ã®1ã€ã¯ãããŸããŸãªããã°ã©ã ã®ã³ã³ãã¥ãŒãã£ã³ã°ã®äžçã§ã¯ãèšç®ã®æ¢çŽæ§ã®åé¡ãéåžžã«ç°¡åã«è§£æ±ºããããšããããšã§ãã ãããŠãç§ãã¡ããã£ãã«ééããªãçç±ã¯ãçè«ç©çåŠãªã©ã®ç¥èã®é åãèšç®äžã®æ¢çŽæ§ãç¹ã«é¿ããããã§ãã
ããããèªç¶çãç¹ã«çç©åŠãªã©ã®åéã§ã¯ãã³ã³ãã¥ãŒãã£ã³ã°ãŠãããŒã¹ã®ä»£è¡šè ã®ããåºç¯ãªãµã³ãã«ã«ééããå¯èœæ§ããããŸãã ã€ãŸããèšç®äžã®æ¢çŽæ§ãèŠã€ããããšãã§ããŸãã çè«ç§åŠã¯ãã®åéã§ã¯ããŸãé²æ©ã§ããŸããã§ããã
ããŠãä»åºŠã¯30çªç®ã®ã«ãŒã«ã®ãããªã·ã¹ãã ããŸãã¯ãèãããããã¹ãŠã®é¡äŒŒããæ¹çšåŒã®ç©ºéãæ¢çŽ¢ããªããèŠã€ããå°ããªå埮åæ¹çšåŒãèŠãŠã¿ãŸãããã
ããã§ã¯ããªããããã®ã·ã¹ãã ã§èµ·ãã£ãŠããããšãåæ ããé«ã¬ãã«ã®ç¹å¥ãªæ©èœãååšããªãã®ã§ããããïŒ
ãã¡ããã30çªç®ã®ã«ãŒã«ã«ç¹å¥ãªé¢æ°ãèšå®ããããšãã§ããŸãã ãŸãã¯ããã®UDCã®ç¹å¥ãªæ©èœã ããããããã¯äžçš®ã®æ¬ºceptionã§ãã ãããŠãç§ãã¡ããã©ããã¹ã¯ãç¹å¥ãªæ©èœãããŸãã«ããç¹å¥ãã§ããããšãæ確ã«ããŸãã ãã¡ãããçŽç²ã«åç®äžãããã«ãã30çªç®ã®ã«ãŒã«ãŸãã¯ãã®URChPã®äœ¿çšãå éãããŸãã ããããããã ãã§ãã ããã»ã«é¢æ°ã®ããã«ãç¡æ°ã®ç°ãªãã¿ã¹ã¯ã§åºçŸããããšã¯ãããŸããã ãã®ç¹å®ã®åé¡ã解決ããããã ãã«åœ¹ç«ã¡ãŸãã
äžèšãèŠçŽããŠã¿ãŸãããã äºå®ãèšç®äžã®æ¢çŽæ§ã®ããç¹å®ã®é åãããå Žåããããé¿ããããšãã§ããå€ãã®å¥åã®é åããããšããããšã§ãã 圹ã«ç«ããªãç¹å¥ãªé¢æ°ã®æå³ã¯ãå€ãã®ç°ãªãåé¡ããã®ç¹å¥ãªé¢æ°ã«ç°¡åã«éããŠããããšã§ãã
èšç®äžã®æ¢çŽæ§ããªããã¹ãŠã®åé¡ã®ç¯å²ã«ã¯ãè¶ å¹Ÿäœåã®æšæºçãªç¹æ®é¢æ°ãå«ãŸããããšãããããŸãã ãããŠããã®é åãè¶ ãããã®ã¯äœã§ããïŒ èšç®äžã®æ¢çŽæ§ã«æºã¡ãŠãããšæããŸãã ãããŠæçåã«æºã¡ãŠããŸãã ãã®ãããå€ãã®åé¡é åãããã«ã«ããŒããæ°ããéæ³ã®ç¹æ®æ©èœã¯è¡šç€ºãããŸããã ããã¯ããœãªãã³ãªã©ã®ç¶æ³ã«å°ã䌌ãŠããŸãã 圌ãã¯ããããã®åéã§åªããŠããŸãããéåžžã«å ·äœçã§ãã 圌ãã¯ããããçš®é¡ã®ã¿ã¹ã¯ã®ã¹ããŒã¹ã®éåžžã«çãé åã«äœãã§ããŸãã
ã§ã¯ããããã®æŠå¿µãããäžè¬çã«ã©ã®ããã«å®åŒåããã®ã§ããïŒ
ããŸããŸãªã·ã¹ãã ã®ç¹æ®æ©èœã®é¡äŒŒç©ãèãããããããŸããã ããã€ãã®èšç®ãå¿ èŠãšããå¯èœæ§ã®ããç¹å¥ãªãªããžã§ã¯ãã®éãããã»ããã¯ãããŸããããã®å©ããåããŠãä»ã®æçšãªãªããžã§ã¯ããååŸããããšãå¯èœã«ãªããŸããïŒ
ããªãã¯æ°åãèãããããããŸããã æ°å€ã¯ããåºæ¬ããæçæ°ã代æ°ã«ã§ããŸãã ãããã圹ã«ç«ã€ãç¹å¥ãªãæ°åã¯äœã§ããããïŒ ãã¡ããããããã¯Pi ã E ãããã³EulerGammaã§ãã ä»ã®å®æ°ã¯ã©ãã§ããïŒ æ®ãã®å®æ°ã¯ãããæåãªåçç©ã®åœ±ã«æ¶ããŸãã Wolfram Functionsã®ãŠã§ããµã€ãã«ã¯ãå®æçã«ãããã¢ããããå®æ°ãååšãããååã®ãªãäŸã¯ãããããªãã§ãããã
[ãã®å Žæã§æŒå¥ã®é²é³ãçµäºããŸã]
WolframèšèªïŒMathematicaïŒã®ç¬¬10ããŒãžã§ã³ã«ã¯äœçŸãã®ç¹å¥ãªæ©èœãçµã¿èŸŒãŸããŠããŸãã
ããã§ãããã«ã€ããŠè©³ããç¥ãããšãã§ããŸãïŒ
- WolframèšèªïŒMathematicaïŒã§å®è£ ãããç¹å¥ãªé¢æ°ã®ãªã¹ã ïŒã°ã«ãŒãããšïŒ
- Wolframèšèªã®ç¹å¥æ©èœããã¥ã¡ã³ã
ã¿ã€ãã«ç»åã§äœ¿çšãããè¡šé¢ãäœæããããã®ã³ãŒã
{nx,ny}={Prime[20],Prime[20]}; {xMin,xMax}={-8,5}; {yMin,yMax}={-3,3}; f=Interpolation@Flatten[Table[{{x,y},Abs[BesselI[x+I y,(x+I y)]+BesselJ[x+I y,(x+I y)]]},{x,xMin,xMax,N[(xMax-xMin)/nx]},{y,yMin,yMax,N[(yMax-yMin)/ny]}],1]; gradient=Grad[f[x,y],{x,y}]; stream=StreamPlot[gradient,{x,xMin,xMax},{y,yMin,yMax},StreamStyle->"Line",StreamPoints->{Flatten[Table[{x,y},{x,xMin,xMax,N[(xMax-xMin)/20]},{y,yMin,yMax,N[(yMax-yMin)/7]}],1],Automatic,Scaled[1]}]; lines3D=Graphics3D[{Opacity[0.5,White],Thick,{Cases[Normal[stream[[1]]],Line[___],Infinity]}/.{x_Real,y_Real}:>{x,y,Abs[f[x,y]]}}]; Rasterize[#,ImageResolution->150]&@Show[{Plot3D[f[x,y],{x,xMin,xMax},{y,yMin,yMax},Mesh->0,MeshFunctions->{#3&},Filling->None,ColorFunction->Function[{x,y,z},ColorData["SunsetColors"][z]],ImageSize->800,Lighting->"Neutral",Boxed->False,AxesOrigin->{0,0,0},Axes->False,AxesLabel->(Style[#,20]&/@{Re[z],Im[z],Abs[BesselI[z,z]+BesselJ[z,z]]}),PlotPoints->150,PlotRange->{0,3},BoxRatios->{1.5,1,1/2},ViewPoint->{-1.64,-2.36,1.77},ViewVertical->{0,0,1}],lines3D}]