ç§ãã¡ã話ããŠããã©ããªçš®é¡ã®èšŒæ ã説æããããã«ãäŸãèããŠã¿ãŸãããïŒèè ãããã°ã©ã ãäœãç¹å®ã®ããšããããšäž»åŒµããã³ã³ãã¥ãŒã¿ãŒããã°ã©ã ããããŸãïŒç¹å®ã®äŸã¯å°ãåŸã§ïŒã ããã°ã©ã ãå®è¡ããŠåçãåŸãããšãã§ããŸãã ãããŠãããã°ã©ã ãè¡ãã¹ãããšãããã°ã©ã ã確å®ã«å®è¡ã§ããããã«ããã«ã¯ã©ãããã°ããã§ããïŒ çãã«å ããŠãããã°ã©ã ããã®çããæ£ãããšãã蚌æ ãæäŸããŠããããšããã§ãããã
ããå ·äœçãªäŸãèããŠã¿ãŸãããã2éšã°ã©ãã§æ倧ãµã€ãºã®äžèŽãšãã®æ倧ã®èšŒæãèŠã€ããããã°ã©ã ãå¿ èŠã§ãã
ã°ã©ãã®ãšããžãç°ãªãè²ã®é ç¹ãæ¥ç¶ããããã«ããã®é ç¹ã2è²ã§ãã€ã³ãã§ããå Žåãã°ã©ãã¯2éšãšåŒã°ããããšãæãåºããŠãã ããã ã°ã©ãå ã®ãããã³ã°ã¯ã2ã€ã®ãšããžãå ±éã®ç«¯ãæããªããããªãšããžã®ã»ããã§ãã ã°ã©ãã®åãšããžããã®ã»ããã«å°ãªããšã1ã€ã®ç«¯ãæã€å Žåãã°ã©ãã®é ç¹ã®ã»ããã¯ã«ããŒãšåŒã°ããŸãã Koenigã®å®çã«ããã°ã2éšã°ã©ãã§ã¯ãæ倧äžèŽã®ãµã€ãºãæå°è¢«èŠã»ããã®ãµã€ãºãšäžèŽããŸãã ãããã£ãŠããããã³ã°ãæ倧ã§ããããšã蚌æããããã«ãäžãããããããã³ã°ã®ãµã€ãºãšãµã€ãºãäžèŽããã«ããŒã»ãããæ瀺ããããšãã§ããŸãã å®éãåã«ããŒã»ããã¯ãã®ãããã³ã°ã®åãšããžã®å°ãªããšãäžæ¹ã®ç«¯ãã«ããŒããå¿ èŠãããããããã®ã«ããŒã»ããã¯æå°éã«ãªããŸãã ããšãã°ãå³ã®ã°ã©ãã§ã¯ãG2ãG3ãããã³M4ã§æ§æããããµã€ãº3ã®ã«ããŒã»ãããããããããããã³ã°ïŒM1ãG3ïŒãïŒM2ãG2ïŒãïŒM4ãG1ïŒãæ倧ã«ãªããŸãã ãã®ãããªèšŒæãæ€èšŒããããšã¯ãæ倧äžèŽãèšç®ããããšãããã¯ããã«ç°¡åã§ããäžèŽãµã€ãºãã«ããŒã»ããã®ãµã€ãºãšäžèŽããããšã確èªãããã¹ãŠã®ãšããžãã«ããŒãããããšã確èªããã ãã§ååã§ãã
å¥ã®äŸãèããŠã¿ãŸããããéå³å¯ãªç·åœ¢äžçåŒã®ã·ã¹ãã ãšäºææ§ã®æçä¿æ°ããã§ãã¯ããããã°ã©ã ãå¿ èŠã ãšããŸãããïŒãã¹ãŠã®äžçåŒãæºããããå€æ°ã®å€ãéžæã§ããå ŽåãäžçåŒã®ã·ã¹ãã ã¯ãžã§ã€ã³ããšåŒã°ããããšãæãåºããŠãã ããïŒã
çµæã®æ£ç¢ºæ§ãã©ã®ããã«èšŒæã§ããŸããïŒ ã·ã¹ãã ã«äºææ§ãããå Žåããã®ã·ã¹ãã ã®è§£æ±ºçã¯äºææ§ã蚌æã§ããŸãïŒãã®ãããªã·ã¹ãã ã«è§£æ±ºçãããã°ãåççãªè§£æ±ºçããããã€ãŸãæžãçããããšãã§ããããšã蚌æããã®ã¯ç°¡åã§ãïŒã ããããã·ã¹ãã ã«äºææ§ããªãããšãã©ã®ããã«èšŒæããã®ã§ããããïŒ ããã¯ãéå³å¯ç·åœ¢äžçåŒã®ã·ã¹ãã ã«äºææ§ããªãå Žåããããã®äžçåŒãéè² ã®ä¿æ°ã§è¿œå ããççŸããäžçåŒ0â¥1ãååŸã§ããããšã瀺ãFarkashè£é¡ã䜿çšããŠå®è¡ã§ããããšãããããŸãã ããšãã°ãå³ã®ã·ã¹ãã ã¯äºææ§ããªããä¿æ°1ã®æåã®æ¹çšåŒãä¿æ°2ã®2çªç®ãä¿æ°1ã®3çªç®ã®æ¹çšåŒãè¿œå ãããšã0â¥1ã«ãªããŸãã éäºææ§ã®èšŒæã¯ãéè² ã®ä¿æ°ã®ã»ããã§ãã
ãã®èšäºã§ã¯ããšããã³ã¹ãå¿ èŠãã©ããããŸãã¯ãšããã³ã¹ã®æ€èšŒãåžžã«åé¡ã®ç¬ç«ãã解決çãããç°¡åã§ã¯ãªããã©ããã«ã€ããŠèª¬æããŸãã ïŒæ倧ãããã³ã°ã«é¢ããäŸã§ã¯ã蚌ææ€èšŒãšåãæéã§åé¡ã解決ããã¢ã«ãŽãªãºã ããªãããšã蚌æããŸããã§ãããïŒèšŒæã®ãµã€ãºãå¶éããªãå Žåã蚌æãå¿ èŠã§ããã蚌æãå¿ èŠãšããå Žåãã€ãŸãã蚌æ ã®å¿ èŠæ§ã®åé¡ã¯ãã¯ã©ã¹PãšNPã®å¹³çã«é¢ããæãéèŠãªæªè§£æ±ºã®åé¡ãšåçã§ãã 次ã«ãã€ã³ã¿ã©ã¯ãã£ããªèšŒæ ïŒå¯Ÿè©±ã®èšŒæ ïŒã«ã€ããŠè©±ããŸãã ç§ãã¡ã¯ã蚌æãããŠãã声æã®å¿ å®æ§ãé€ããŠãäžå¿ èŠãªæ å ±ãé瀺ããªãæå·ã®èšŒæ ã«ã€ããŠè°è«ããŸãã ãããŠã確ççã«æ€èšŒå¯èœãªèšŒæãšãæé©ååé¡ãè¿äŒŒããããšã®é£ããã蚌æããããã«äœ¿çšãããæåãªPCPå®çã«ã€ããŠèª¬æããŸãã
ãã®èšäºã§ã¯ãå®çã®èªå蚌æãšããã°ã©ã ã®æ£ç¢ºæ§ã®èšŒæã«ã€ããŠã¯è§ŠããŸãããããããã®ãããã¯ãéåžžã«èå³æ·±ããã®ã§ãã
蚌æ ã¯å¿ èŠã§ããïŒ
èšèªãšã¯ãæéã®ã¢ã«ãã¡ãããäžã®äžé£ã®è¡ã§ãã çè«çãªã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã§ã¯ãxâLã®åœ¢åŒã®ã¹ããŒãã¡ã³ãã®èšŒæ ãéåžžèæ ®ãããŸããããã§ãLã¯èšèªã§ãxã¯äœããã®æååã§ãã ãã®çš®ã®ã¹ããŒãã¡ã³ãã¯ãæ°åŠå®çãäžè¬åããŸããæ°åŠå®çã¯ã圢åŒèšèªã§èšè¿°ãããã¹ããŒãã¡ã³ãã¯å€ãã®çã®ã¹ããŒãã¡ã³ãã«å±ãããšè¿°ã¹ãŠããããã§ãã
èšèªLã®èšŒæã·ã¹ãã ã¯ã¢ã«ãŽãªãºã AïŒxãwïŒã§ããã2è¡ã®å ¥åxãšwãåãåããè¡wãxâLã®ã¡ã³ããŒã·ããã®èšŒæã§ããããšã確èªããŸãã ãšããã³ã¹ã·ã¹ãã ã«ã¯ãæ£ç¢ºæ§ãšå®å šæ§ãšãã2ã€ã®ããããã£ãå¿ èŠã§ãã æ£ç¢ºæ§ã¯ãäžéšã®æååxãšwã«å¯ŸããŠã¢ã«ãŽãªãºã AïŒxãwïŒã1ãè¿ãå ŽåãxâLã§ãããšè¿°ã¹ãŠããŸãã å®å šæ§ã¯ãåxâLã«å¯ŸããŠãã¢ã«ãŽãªãºã AïŒxãwïŒã1ãçæããè¡wãååšããããšã瀺ããŸãã
蚌æ ã·ã¹ãã ãååšããèšèªã¯ãåæèšèªãšåŒã°ããŸãã åæèšèªã®å¥ã®å®çŸ©ãæãã€ããå Žåã¯ãæŒç¿ãšããŠããããã®åçæ§ã蚌æããŸãã
èšèªLã¯ãxâLã«å¯ŸããŠã¢ã«ãŽãªãºã BïŒxïŒã1ãäžããxâLã«å¯ŸããŠ0ãäžãããããªã¢ã«ãŽãªãºã Bãååšããå Žåã決å®å¯èœãšåŒã°ããŸãã決å®å¯èœèšèªã«ã¯ã蚌æã空ã®èšŒæã·ã¹ãã ããããŸãã èªç¶ãªåé¡ã¯ã蚌æ ã®ã·ã¹ãã ãããèšèªã«å¯ŸããŠã解決ã¢ã«ãŽãªãºã ãå¿ èŠã§ãããã©ããã§ãã ãã®è³ªåã«å¯Ÿããçãã¯ç¥ãããŠããŸãã蚌æ ã·ã¹ãã ã¯ããã解決ã¢ã«ãŽãªãºã ã¯ãªãèšèªããããŸãã ãã®ãããªèšèªã®äŸãèãåºãããšã¯é£ãããããŸãããèªç¶ãªäŸãèãåºãããšã¯ããå°é£ã§ãã å€ãã®å€æ°ã®æŽæ°ä¿æ°ãæã€å€é åŒã§æ§æãããèšèªãèããŠã¿ãŸãããããããã®å€æ°ã¯ãå°ãªããšãããã€ãã®æŽæ°å€ã«ã€ããŠã¯æ¶æ» ããŸãã ãã®ãããªèšèªã®èšŒæã·ã¹ãã ã¯åçŽã«æ§ç¯ãããŸãã蚌æã¯ãå€é åŒãæ¶æ» ããå€æ°ã®æŽæ°å€ã«ãªããŸãã DPRMã®å®çïŒèè ã«ã¡ãªãã§åä»ããããïŒãã€ãã¹ããããã ãããã³ãœã³ãããã£ãšã»ãããïŒã¯ããã®èšèªã¯æ±ºå®å¯èœã§ã¯ãªããšäž»åŒµããŠããŸãã æŽæ°ç¹ã§å€é åŒãæ¶å€±ãããã©ããããã§ãã¯ããã¢ã«ãŽãªãºã ã¯ãããŸããã ãã®å®çã®èšŒæã®æåŸã®ã¹ãããã¯ãåŠè YuãV. Matiyasevichã«å±ãããã®å®çã¯ãã«ãã«ãã®ç¬¬10ã®åé¡ã«åŠå®çãªçããäžããŸãã
çã蚌æ
ãããŸã§ã®ãšããã蚌æããã§ãã¯ããã¢ã«ãŽãªãºã ãšèšŒæã®ãµã€ãºã«å¶éã課ããŠããŸããã 蚌æãæ€èšŒããã®ã«ãããæéãããã°ã©ã èªäœãå®è¡ãããããé·ãå Žåãç¹å®ã®ããã°ã©ã ã®çµæã®æ£ç¢ºæ§ã蚌æããããšã¯æçšã§ããããïŒ ãã®ãããªèšŒæã¯ç¡æå³ã§ãããšæãããããã蚌æã·ã¹ãã ã®å®çŸ©ã®ã¢ã«ãŽãªãºã AïŒxãwïŒãæååxã®é·ããšèšŒæwã®é·ãã§å€é åŒçã«åäœããããšãèŠæ±ããŸãããã®ãããªèšŒæã·ã¹ãã ã¯æå¹ãšåŒã°ããŸãã
æå¹ãªèšŒæã·ã¹ãã ããããå€é åŒpãä»»æã®xâLã«å¯ŸããŠxâLãpïŒ| x |ïŒä»¥äžã®é·ãã«å±ãããšãã蚌æãããå ŽåãèšèªLã¯ã¯ã©ã¹NPã«å±ããŸãã å ¥åæååãLã«å±ããããšããã§ãã¯ããå€é åŒæéã¢ã«ãŽãªãºã ãååšããå ŽåãèšèªLã¯ã¯ã©ã¹Pã«å±ããŸããã¯ã©ã¹Pã¯ã¯ã©ã¹NPã«å«ãŸããŠããŸããPããã®åèšèªLã«ã€ããŠãèæ ®ããL圌ã¯ãã®èšŒæ ãç¡èŠããŠããã ã¯ã©ã¹Pã«å±ããªãã¯ã©ã¹NPã®èšèªãååšãããã©ããã¯çŸåšäžæã§ããã¯ã©ã¹PãšNPã®å¹³çã®åé¡ã¯ãã¯ã¬ã€ã€ã³ã¹ãã£ãã¥ãŒãããŸãšãã7ã€ã®å幎åé¡ã®ãªã¹ãã«å«ãŸããŠããŸãã ãã®åé¡ã解決ããããã«100äžãã«ã®è³éãçºè¡šãããŸããã G. YaãPerelmanã«ãããã¢ã³ã«ã¬äºæ³ã®èšŒæã«é¢é£ããŠãå€ãã®äººãMillennium Task Listã«ã€ããŠèããããšããããŸãã ã»ãšãã©ã®å°é家ã¯ãã¯ã©ã¹PãšNPã¯äžèŽããªããšèããŠããŸãã
NPã¯ã©ã¹ã®èšèªã®äŸãèããŠã¿ãŸãããã
- åææ°ã®èšèªã¯ã¯ã©ã¹NPã«ãããŸãã æ°nãåæã§ããããšã蚌æããã«ã¯ã1ãã倧ãããn = abã§ãã2ã€ã®æŽæ°aããã³bãæ瀺ããã ãã§ååã§ãã çŽ æ°ã®èšèªãã¯ã©ã¹NPã«ãããŸãããããã蚌æããã®ã¯ããå°é£ã§ãã ãããã2002幎ã«KayalãšSaxenaã¯ãåçŽãªïŒãããã£ãŠãè€åïŒæ°ã®èšèªãã¯ã©ã¹Pã«ããããšã蚌æããŸããã
- ååã°ã©ãã®ãã¢ã§æ§æãããGIèšèªãèããŠã¿ãŸãããã ã°ã©ãã®é ç¹ã«ã¯1ããnãŸã§ã®çªå·ãä»ããããããããã
ãšããžã¯ãã¡ããã©1çµã®é ç¹ãæ¥ç¶ããŸãã 2ã€ã®ã°ã©ãG 1 ïŒV 1 ãE 1 ïŒããã³G 2 ïŒV 2 ãE 2 ïŒã¯ãæåã®ã°ã©ãã®é ç¹ã«çªå·ãä»ãçŽããŠãæåã®ã°ã©ãã2çªç®ã®ã°ã©ããšäžèŽããå ŽåãååãšåŒã°ããŸãã ããã¯ãçªå·ãä»ãçŽããåŸãæåã®ã°ã©ãã®ãšããžã®ã»ããã2çªç®ã®ã°ã©ãã®ãšããžã®ã»ãããšäžèŽããããšãæå³ããŸãã èšèªGIã¯ã¯ã©ã¹NPã«ãããŸã;ã°ã©ãã®ååã®èšŒæã¯ãååãå®çŸ©ããæåã®ã°ã©ãã®é ç¹ã®é åã§ãã GIãã¯ã©ã¹Pã«ãããã©ããã¯æªè§£æ±ºã®åé¡ã§ãã ãŸããåãæ°ã®é ç¹ã«ããéååã°ã©ãã®ãã¢ã§æ§æãããGNIèšèªãæ€èšããŸãã 2ã€ã®ã°ã©ããååã§ãªãããšãç°¡åã«èšŒæããæ¹æ³ãæ確ã§ã¯ãªããããGNIèšèªãNPã«ãããã©ããã¯äžæã§ãã
- Hamiltonianãã¹ãããã°ã©ãã§æ§æãããHamPathèšèªãèããŸãã åé ç¹ã1åã ãééãããã¹ã ãã¹èªäœã¯ãã¹ã®ååšã®èšŒæ ãšããŠäœ¿çšã§ããããããã®èšèªã¯ã¯ã©ã¹NPã«ãããŸãã ãã®èšèªã«ã€ããŠã¯ãã¯ã©ã¹Pã«ãããã©ããã¯ããããŸããããNPå®å
šã§ããããšã¯ããã£ãŠããŸãã ç¹ã«åŸè
ã¯ãPâ NPã®å Žåã«HamPathãPã«å«ãŸããªãããšãæå³ããŸãã HamPathã®è¿œå ã¯ãããã«ããã¢ã³ãã¹ããªãå€ãã®ã°ã©ããšäžèŽããŸãã HamPathè£æ°ãã¯ã©ã¹NPã«ãããã©ããã¯äžæã§ãã
ã€ã³ã¿ã©ã¯ãã£ããªèšŒæ
ãããŸã§ãç§ãã¡ã調ã¹ã蚌æ ã¯éåžžã®èšŒæ ãšéåžžã«äŒŒãŠããŸãããã€ãŸãã蚌æ ã¯ãã©ã®ããã«æãä»ããã¯æ確ã§ã¯ãããŸããããæ€èšŒã¯ç°¡åã§ããã蚌æ ã®æ£åœæ§ããã§ãã¯ããã¢ã«ãŽãªãºã ããããšããããã¹ãã§ã ã€ãŸãã蚌æãæãã€ãããã«ã¯ãç¹å¥ãªèœåãå¿ èŠã§ããã誰ãããã®èšŒæããã§ãã¯ã§ããŸãã å®éãçŸä»£æ°åŠã®ãã¹ãŠã®èšŒæããã®æ§è³ªãæã£ãŠããããã§ã¯ãããŸããã 第äžã«ã蚌æ ã¯èªåæ€èšŒã«äŸ¿å©ãªæ£åŒãªèšèªã§æžãããŠãããã第äºã«ãããã€ãã®åéã®èšŒæ ãç解ããã«ã¯ããã®åéãç 究ããã®ã«æ°å¹Žãããã
åŠç«¥ã®æ°åŠçãµãŒã¯ã«ã§ã¯ããã®åœ¢åŒã®ã¯ã©ã¹ãããå®è·µãããŸããåäŸã«ã¯äžé£ã®ã¿ã¹ã¯ãäžããããåäŸã¯åé¡ã解決ãããšä¿¡ãããšãå£é ã§æ±ºå®ãæåž«ã«äŒããŸãã ãããŠãæåž«ãšçåŸã®éã«å¯Ÿè©±ããããããã¯æåž«ã«åé¡ã解決ããããšçŽåŸãããããçŽåŸãããªããã®ã©ã¡ããã§ãã
ã€ã³ã¿ã©ã¯ãã£ããªèšŒæã®äŸãèããŠã¿ãŸããããã°ã©ãååã®åé¡ã解決ããããã°ã©ã ããããŸãã ã°ã©ããååã§ããå Žåãããã°ã©ã ã¯ååãå®çŸ©ããé åãçºè¡ããããšã«ããããã®çãã®æ£ããã蚌æã§ããŸãã ã°ã©ããååã§ãªãããšã察話ã§èšŒæããæ¹æ³ã瀺ããŸãã ã°ã©ãG 0ãšG 1ãååã§ãããã©ããããŠãŒã¶ãŒã«ããã°ã©ã ã«å°ããããããããéååã§ãããšããçããååŸãããŸãã ãã®åŸããŠãŒã¶ãŒã¯ã³ã€ã³ãæãïŒã»ãã{0,1}ããã©ã³ãã èŠçŽ iãéžæïŒãnèŠçŽ ã»ããã®ã©ã³ãã é åãéžæããŸãïŒãã®å Žåããã¹ãŠã®é åã¯åã確çã§ãããšèŠãªãããŸãïŒÏã ãããŠåœŒã¯ãã°ã©ãG 0 ãÏïŒG i ïŒãååãã©ãããããã°ã©ã ã«å°ããŸãã i = 0ã®å Žåãããã°ã©ã ã¯ã°ã©ããååã§ãããšããçããæåŸ ããi = 1ã®å Žåãããã°ã©ã ã¯ã°ã©ããååã§ãããšæåŸ ããŸãã ã°ã©ãG 0ãšG 1ãå®éã«éååã§ããå Žåãããã°ã©ã ã¯ãã®è³ªåã«ç°¡åã«æ£ããçããäžããŸãã ããããG 0ãšG 1ãååã®å Žåãçãã確çã®ã°ã©ãÏïŒG i ïŒã¯G 0ã®é åãŸãã¯G 1ã®é åã®ããããã«ãªããŸãããããã£ãŠãããã°ã©ã ã¯1/2以äžã®ç¢ºçã§æåŸ ãããçããè¿ããŸãã ãšã©ãŒã®ç¢ºçã¯ãã¢ã«ãŽãªãºã ãnåç¹°ãè¿ããnåã®éå§ç¹ã®ããããã§æ£ããçããäžããããå Žåã«ã¢ã«ãŽãªãºã ãæ£ããæ©èœããããšã決å®ããããšã«ããäœæžã§ããŸãã ãã®å Žåã®ãšã©ãŒç¢ºçã¯1/2 nãè¶ ããŸããã
æ€èšŒããã°ããã®äŸã§ã¯ã蚌æã¯èšŒæè ïŒããã°ã©ã ïŒãšæ€èšŒè ïŒãŠãŒã¶ãŒïŒã®éã®å¯Ÿè©±ã§ããã蚌æè ã¯éåžžã«è€éã«ãªãå¯èœæ§ããããæ€èšŒè ã¯ç°¡åãªããšããè¡ããŸããïŒå€é åŒæéèšç®ãå®è¡ããŸãïŒã èŠçŽ ãxâLã®å Žåã蚌æè ã¯ç¢ºç1ã§ãããæ€èšŒè ã«çŽåŸãããxâLã®å Žåãæ€èšŒè ã¯1/10以äžã®ç¢ºçã§ãã®ãããªèšŒæãåãå ¥ããªããã°ãªããŸããã ã·ã£ããŒã«ã®å®çã«ããã°ããã®ãããªçã察話ã䌎ã察話å蚌æã·ã¹ãã ã¯ãå€é åŒã¡ã¢ãªã䜿çšããèªèã¢ã«ãŽãªãºã ãååšãããã¹ãŠã®Lèšèªã«ååšããŸãã ç¹ã«ãã°ã©ãã«ããã«ããã¢ã³ãã¹ããªãããšãå€é åŒæéã§èšŒæã§ããŸãã
ãŒãé瀺蚌æ
蚌æ ã®æŠå¿µã¯ãæ°åŠãšã³ã³ãã¥ãŒã¿ãŒãµã€ãšã³ã¹ã ãã§ãªããæ³åŠã«ãèŠãããŸãã äŸãã°ã圌ãã¯ç¯çœªè ãéé£ãã圌ã¯èªåãç¯çœªçŸå Žã«ããªãããšã蚌æããããšãã§ããŸããã圌ãå®éã«ã©ãã«ããããäŒããããããŸããïŒäŸãã°ã圌ã¯æ人ãšäžç·ã«ããããã©ã€ãã«ããèªåã®å± å Žæãé ãããïŒã ã¢ãªãã€ã¯ç¯çœªã§ã¯ãããŸãããã圌ã®çºè¡šã¯éåžžã«æãŸãããããŸããã 蚌æãããŠããã¹ããŒãã¡ã³ããé€ããŠãäžå¿ èŠãªæ å ±ãå ±åããªããããªæ¹æ³ã§èšŒæããããšãçè«çã«å¯èœã§ããããšãããããŸãã
äŸãèããŠã¿ãŸãããïŒããäŒç€Ÿã¯ã°ã©ãã®ååã®åé¡ããã°ãã解決ããããã°ã©ã ãæžããŠããŸããããã®ããã°ã©ã ã®ç¡æçã§ã¯ãã°ã©ããååãã©ãããåçŽã«ç€ºããŠãããã°ã©ããååã®å Žåã«é åãäžããŸããã é åãååŸããã«ã¯ãããã°ã©ã ã®ææçãè³Œå ¥ããå¿ èŠããããŸãã äžæ¹ãéçºè ã¯ãã°ã©ããå®éã«ååã§ããããšããŠãŒã¶ãŒãæ€èšŒã§ããããã«ãããã®ã§ããããã®æ å ±ã¯ãŠãŒã¶ãŒããã®ååãèªåã§èŠã€ããã®ã«åœ¹ç«ã¡ãŸããã ããã¯æ¬¡ã®ããã«è¡ãããšãã§ããŸãïŒã°ã©ãG 0ãšG 1ãååã§ããå Žåãã©ã³ãã 眮æÏãéžæããã°ã©ãG 2 =ÏïŒG 1 ïŒãäžãããŠãŒã¶ãŒãã©ã®ã°ã©ãã®ã©ã®ååãG 0ãšG 2ãŸãã¯Gã«ããããã決å®ããããšãã§ããŸã1ããã³G 2 ããã°ã©ã ã¯ããããã®èŠæ±ã®1ã€ã«æ£ç¢ºã«å¿çããŸãã ããã°ã©ã ãååãç¥ã£ãŠããå ŽåããŠãŒã¶ãŒã®ãªã¯ãšã¹ãã«ç°¡åã«å¿çããŸããååããªãå Žåãå°ãªããšããŠãŒã¶ãŒã®ãªã¯ãšã¹ãããªã¢ã³ãã®1ã€ã«ã€ããŠã¯åäœããŸããã ãŸãããŠãŒã¶ãŒãã¯ãšãªãã©ã³ãã ã«éžæããå ŽåããŠãŒã¶ãŒãéžæãããªãã·ã§ã³ã®éã«ååãååšãã確çã¯1/2ãè¶ ããŸããã ãšã©ãŒãæžããã«ã¯ããã®ããã»ã¹ãç¹°ãè¿ããŸããæ°ããé åãéžæãããŠãŒã¶ãŒã«æ°ãããªãã·ã§ã³ãéžæããããã«ä¿ããŸãã
ã¯ã©ã¹NPã®åèšèªã«ã€ããŠãäœããã®æå·åã®ä»®å®ã®äžã§ãã¡ã³ããŒã·ããã®å€å žçãªèšŒæïŒã¯ã©ã¹NPã®ãã¹ãŠã®èšèªã«ååšããïŒã«ã€ããŠã®æ å ±ãäžåæäŸããªãããã®ãããªã€ã³ã¿ã©ã¯ãã£ããªã¡ã³ããŒã·ããã®èšŒæãæ§ç¯ã§ããŸãã èšåãããŠããæå·åã®åæã¯ãäžæ¹åé¢æ°ã®ååšã§ãã èšç®ã¯ç°¡åã ãéã¯é£ããé¢æ°ã ããšãã°ãå€ãã®äººã¯ã2ã€ã®nãããæ°ã«åºã¥ããŠç©ãæ±ããé¢æ°ã¯äžæ¹åã§ãããšèããŠããŸãã
ããããæ€èšŒå¯èœãªèšŒæ
æ°åŠã®å çã«çåŸã«å®¿é¡ãäžããŠãããã圌ãã¯åœŒã«è§£æ±ºçãããŒãã«æž¡ããŸãã æ°åŠã®å çã¯èª°ã§ã解ãå®å šã«èªãŸãã«ãã¹ãã§ããããšãæãã§ããŸãã , , . , , .
GNI. , n 2 n(n-1)/2 , n(n-1)/2 â , n . G 0 G 1 â w 2 n(n-1)/2 , n . w, H , H G 0 , , G 1 , , H G 0 , G 1 . w :
: ( i {0,1}), Ï , Ï(G i ), i, , i, . , G 0 G 1 , . G 0 G 1 , Ï(G i ) G 0 G 1 , , 1/2. 10 i Ï, 1/1024.
, . PCP- (PCP â probabalistically checkable proofs) , NP , . , ( NP) , .
PCP- â , . , , . , NP-, , , , , , P=NP. PCP- , NP- , ( ). , , , , 1000 , , P=NP.
åç §è³æ
, :
- S. Arora, B. Barak, Computational Complexity: A modern Approach
- O. Goldreich, The Foundations of Cryptogtaphy
- . . , . â .: , 1993. â ISBN 502014326X
- .. , - ,
- .. , ,
.