ç«å±±åŽç«ã®ã·ãã¥ã¬ãŒã·ã§ã³
æ Œåãã«ããã³æ³ã䜿çšã ïŒcïŒ ãœãŒã¹
ãã®èšäºã§ã¯ã Lattice Boltzmann Method ïŒLBMïŒã®æµäœååŠãã¢ãã«åããããã®æ°å€çææ³ã«ã€ããŠèª¬æããŸãã ãã·ã¢èªã§ã¯ãæ Œåãã«ããã³æ¹çšåŒã®æ¹æ³ã 䞊ååã®å®¹æããå€çžæµãã·ãã¥ã¬ãŒãããæ©èœãããã³å€å質åªäœå ã®æµããã·ãã¥ã¬ãŒãããèœåã«ãããŠãä»ã®æ¢ç¥ã®æ¹æ³ïŒããšãã°ã æéèŠçŽ æ³ ïŒããã®ã ããã«ãèšç®ã¢ã«ãŽãªãºã ã«ã¯æãåçŽãªç®è¡æŒç®ã®ã¿ãå«ãŸããŠããŸãã ãã®æ¹æ³ã¯éåžžã«æ°ãããããã«åºã¥ããæåã®åçšè£œåã2010幎é ã«ç»å Žãå§ããŸããã
ããã«ã¯æµäœç©çåŠã«é¢ããäžé£ã®èšäºãæ¢ã«ãããŸãããããã®èšäºã¯ãã®è«ççãªç¶ç·šãããããŸããã ããã¯ãæµäœååŠãšã¢ããªã³ã°æ¹æ³ãããç¥ã£ãŠãã人ã ã«åœ¹ç«ã€ããã«æžãããŠããããã®åéã®åå¿è ïŒããšãã°ããœãããŠã§ã¢ãšã³ãžãã¢ã®æè²ãåãã人ã ïŒã«ç解ã§ãããã®ã§ãã ãã¡ããããã®ç¹ã«é¢ããŠã¯ãå°é家ã«ãšã£ãŠè©³çŽ°ããããã®ãå€ããããååãªã¹ããŒã¹ããªããã®ããããŸãã èšäºã¯ããªã倧ããããšãå€æããŸããããããã€ãã®éšåã«åããããšã¯æããŸããã
ãªãããããã¹ãŠå¿ èŠãªã®ã§ããïŒ ããæ£ç¢ºã«ã¯ãã©ã®ç£æ¥ã§æµäœååŠãã·ãã¥ã¬ãŒãããå¿ èŠããããïŒ
- èªç©ºæ©å»ºèšããã±ããç§åŠãèªåè»ç£æ¥ïŒè»äœç¹æ§ããšã³ãžã³é転ãããºã«ïŒ
- å·¥æ¥ååŠïŒç©è³ªã®åé¢ãååŠåå¿åšïŒ
- æ°è±¡åŠãå°è³ªåŠïŒå€å質åªäœãç 岩ããã ãéãæµäœã®æµãïŒ
- ãã®ä»ã®ãšã³ãžãã¢ãªã³ã°ç£æ¥ïŒé¢šåçºé»æïŒ
- è¬ïŒè¡æµããªã³ãïŒ
ãã®èšäºã«ã¯æ¬¡ã®ã»ã¯ã·ã§ã³ãå«ãŸããŸãã
- ç©çåŠã®ã¬ãã¥ãŒ-åºæ¬çãªå¿ é æ¹çšåŒã®é«ã¬ãã«ã®ã¬ãã¥ãŒ
- åºæ¬çãªèãæ¹ã¯ãã¢ã«ãŽãªãºã ã®åºæ¬åçã®èª¬æã§ã
- æè¡ç詳现âãœãŒã¹æ¹çšåŒã®ãã詳现ãªèª¬æãèšç®ã¹ããŒã
- ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒ
- ãã«ããã³æ¹çšåŒ
- é¢æ£ãã«ããã³æ¹çšåŒ
- ã³ã³ãã¥ãŒãã£ã³ã°å³
- 空éåææ Œå
- 平衡ååžé¢æ°
- éå§çž®æ§
- ç²åºŠãšã¬ã€ãã«ãºæ°
- ããäžåºŠããã¹ãŠäžç·ã«
- éå€
- ã¢ã«ãŽãªãºã ã®è¿œå
- èœãšãç©Ž
- æ¢åã®ãœãªã¥ãŒã·ã§ã³
- äœãèªã
ç©çã®æŠèŠ
æµäœååŠãšç©ºæ°ååŠã¯ããããšã»ã¹ããŒã¯ã¹æ¹çšåŒã«ãã£ãŠå·šèŠçã«èšè¿°ãããŸãã åæããã³å¢çæ¡ä»¶ãšåªäœã®ãã©ã¡ãŒã¿ãŒã«å¿ããŠãåç¬éã«ããã空éã®åç¹ã§ã®æ¶²äœã®å§åãå¯åºŠãé床ãã©ã®ããã«ãªããã瀺ããŠããŸãã
äžæ¹ãåžèæ°äœã®å Žåã空éã®åç¹ã§ã®ç²åé床ååžå¯åºŠãæéãšãšãã«ã©ã®ããã«å€åãããã説æãããã«ããã³æ¹çšåŒãæå¹ã§ãã ç¹å®ã®ãã€ã³ãã§ç²åé床ååžãçµ±åãããšãç¹å®ã®ãã€ã³ãã§å¯åºŠãšå·šèŠçé床ãååŸã§ããŸãã èšãæããã°ãå·šèŠçã«ã¯ããã«ããã³æ¹çšåŒã¯ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒãšåçã§ãã
äž»ãªã¢ã€ãã¢
å¯åºŠã®é«ã液äœã®å Žåããã«ããã³æ¹çšåŒã¯é©çšã§ããªããšããäºå®ã«ããããããããããã¢ãã«åããããšãåŠã¹ã°ããããã®æ¶²äœã®ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒãã¢ãã«åã§ããŸãã ã€ãŸããããã«ãã£ãŠæœè±¡åã®åºç€ã¬ãã«ïŒé«å¯åºŠæ¶²äœã®åŸ®èŠçæ¹çšåŒïŒãç©ççã«æ£ãããªãå®è£ ïŒåžèæ°äœã®åŸ®èŠçæ¹çšåŒïŒã«çœ®ãæããŸãããäžäœã¬ãã«ïŒå·šèŠçãããšã»ã¹ããŒã¯ã¹æ¹çšåŒïŒã¯æ£ããèšè¿°ãããŸãã
ãã®ç¶æ³ãäžã®å³ã«ç€ºããŸãã
ãã®äžã®çå笊ã¯ãã©ã®æ¹çšåŒã埮èŠçã¬ãã«ã§ã®é«å¯åºŠæ¶²äœã®æåã説æããã®ãããããªããšããäºå®ã象城ããŠããŸãã æã ã圌ãã¯ã埮èŠçãã®ä»£ããã«ãã¡ãœã¹ã³ããã¯ããšèšããŸã-埮èŠçèšè¿°ã¯åã ã®ååãšååã®æåã®èšè¿°ã§ããããã«ããã³æ¹çšåŒã¯ååã®æµããèšè¿°ãããšããæå³ã§ã
ã³ã³ãã¥ãŒã¿ãŒã¯é£ç¶éã®æäœæ¹æ³ãç¥ããªãããããã«ããã³æ¹çšåŒãé¢æ£åããå¿ èŠããããŸãïŒæéã空é座æšïŒã¢ããªã³ã°çšã®ç©ºéããŒããååŸïŒãããã³å空éããŒãã§å¯èœãªç²åæ¹åã æ¹åã¯ç¹å¥ãªæ¹æ³ã§éžæãããåžžã«ããã€ãã®é£æ¥ããŒããæããŸãã
æè¡çãªè©³çŽ°
ãã®å€§ããªã»ã¯ã·ã§ã³ã«ã¯ãå ã®æ¹çšåŒã®ãã詳现ãªèª¬æãšèšç®ã¹ããŒã ã®å°åºãå«ãŸããŠããŸãã æ¬åœã«éèŠãªæ¹çšåŒã¯ãæè¡çèæ¯ãæã€ãã¹ãŠã®èªè ã«ãšã£ãŠæ確ã§ãªããã°ãªããŸããïŒç·åœ¢ä»£æ°ã®åºç€ãç©åèšç®ãå¿ èŠã§ãïŒã ç解ã§ããªããããã®æ¹çšåŒã¯ãããããéèŠã§ã¯ãããŸããïŒãããã¯nablaãããå Žåã§ãïŒã ãã¯ãã«ã¯å€ªåã§ç€ºãããŠããŸãã
ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒ
éå§çž®æ§ã®æ¶²äœãšæ°äœã®å·šèŠçãªåååŠã®æ¹çšåŒã®å€åœ¢ã¯æ¬¡ã®ããã«ãªããŸãã
ïŒ1ïŒ
ããã§ãvã¯æµéãÏã¯æµäœã®å¯åºŠãpã¯æµäœå ã®å§åãfã¯å€åïŒéåãªã©ïŒã§ãã
éäžè§åœ¢ãšåå°é¢æ°ãäœã§ãããããããªããŠãå¿é ããå¿ èŠã¯ãããŸãããå°æ¥å¿ èŠã«ãªãããšã¯ãªããèšç®ã¢ã«ãŽãªãºã ã«ã¯æãåçŽãªç®è¡æŒç®ã®ã¿ãå«ãŸããŸãã
詳现ãªçµè«ãšç©ççãªæå³ã¯WikipediaãšHabréã§èª¿ã¹ãããšãã§ããŸãããããã§ã¯äž»ãªã¢ã€ãã¢ã瀺ããŸãã
液äœäžã®å°éã粟ç¥çã«éžæãããã®åãã远跡ããŸãã æå®éã®æµäœã«äœçšããå é床ã¯ãïŒiïŒå·Šãå³ãäžãäžãªã©ã®å§åã«ãã£ãŠæ±ºãŸããŸãã ïŒããã«ããããã¯äºãã«éšåçã«è£åããŸãïŒãïŒiiïŒæµäœå ã®å éšæ©æŠåã®äœçšã«ãã£ãŠïŒiiiïŒå€åã«ãã£ãŠã äžæ¹ãå é床ã¯ãåææç¹ã®åææéãšã液äœã®äœç©ãååšããæ°ããæç¹ã®æ¬¡ã®æç¹ã®é床ã®å·®ã§è¡šãããšãã§ããŸãã
ãããã®éããã¥ãŒãã³æ¹çšåŒF = maã«ä»£å ¥ãããšãåçŽãªå€æã®åŸãäžèšã®æ¹çšåŒãåŸãããŸãã å·ŠåŽã¯maãå³åŽã¯Fã§ãã
ãã«ããã³æ¹çšåŒ
ãã®æ¹çšåŒã¯ã座æšãšé床fïŒrãvãtïŒã«æ²¿ã£ãç²åã®ç¢ºçå¯åºŠã®ååžé¢æ°ã§åäœããŸãã å€fïŒxãyãzãv x ãv y ãv z ãtïŒdx dy dz dv x dv y dv zã¯ãæétã§ã®ç²åã®å²åãxããx + dxãyã®ç«æ¹äœã«ããããšã瀺ããŸãto y + dyãzããz + dzãé床ã¯v xããv x + dv x ãv yããv y + dv y ãv zããv z + dv z 次ã®ããã«æžãããšãã§ããŸã ã
ãã®é¢æ°ã¯éåžžã調æ»äžã®ã·ã¹ãã å ã®ã¬ã¹ã®è³ªéã«æ£èŠåãããŠãããããåãã€ã³ãã§ã®å·šèŠçãªã¬ã¹å¯åºŠã¯ããã¹ãŠã®å¯èœãªé床å€ã«ã€ããŠãç¹å®ã®ãã€ã³ãã§ã®ç¢ºçå¯åºŠã®åèšïŒç©åïŒãšããŠæ±ºå®ãããŸãã
ã ïŒ2ïŒ
åæ§ã«ãå·šèŠçãªé床ã¯
ã ïŒ3ïŒ
æ¹çšåŒãå°åºããããã®åºæ¬çãªèãæ¹ã¯ããããšã»ã¹ããŒã¯ã¹æ¹çšåŒã®å°åºã«äŒŒãŠããŸãã äžããããå°ããªäœç©å ã®äžããããç¬éã«ãäžããããæ¹åïŒããæ£ç¢ºã«ã¯çãæ¹åã®åéïŒã«é£ã¶ååã®ããŒã ã粟ç¥çã«éé¢ããŸãããã dtã®çãæéã®åŸããããã¯ïŒé床ã®ååšã«ããïŒé£æ¥ç¹ã«ãããå€åã«ããååã®å éã«ããé床èªäœãå€åããŸãã ããã«ããã¹ã®ãã®ã»ã°ã¡ã³ãã§ã¯ãäžéšã®ååãä»ã®ååãšè¡çªããŠé床ãå€åããå ã®ããŒã ã«å«ããããšãã§ããªããªããŸãã äžæ¹ãå察æ¹åã«é£ãã§ããåãäœç©ã®ååã®è¡çªã®çµæãšããŠããããã®ããã€ãã¯é床ã®æãŸããæ¹åãç²åŸããããããããŒã ã«è¿œå ããŸãã
ããã¯æ¬¡ã®ããã«èšè¿°ã§ããŸãã
ãïŒ4ïŒ
ããã§ãFã¯å€åãmã¯ååã®è³ªéãdN collã¯è¡çªã«ããããŒã å ã®ç²åæ°ã®å€åã§ãã
äžè¬çãªçšèªã§æ±ºå®ãããããã«ãdN collã®å€ã¯ãªãŒããŒããé ããããŸãŸã«ãªããŸãã å¿ èŠãªã®ã¯ããã®æšæºçãªè¿äŒŒã§ããBatnagar-Gross-Crook ïŒBGKïŒã ãã§ãã ãã®è¿äŒŒã§ã¯ãdN collã¯æ¬¡ãšçãããªããŸãã
ãïŒ5ïŒ
ããã§ãf eqã¯å¹³è¡¡ååžé¢æ°ã Maxwell-Boltzmannååž ãÏã¯ããããç·©åæéã§ãã
çµæãšããŠã
ã ïŒ6ïŒ
f eqã¯ãç¹å®ã®ãã€ã³ãã§ã®å·šèŠçãªå¯åºŠãšé床ã«äŸåããããšã«æ³šæããŠãã ããïŒã€ãŸããæé»çã«åº§æšãšæéã«äŸåããŸãïŒã å°æ¥å¿ èŠã«ãªãã®ã¯ãã®æ¹çšåŒã§ãããéåžžã¯dtã§é€ç®ããã
ãïŒ7ïŒ
ããã§ãã€ã³ããã¯ã¹vã®nablaã¯ãé床å€æ°ã«é¢ããŠnablaã§ãã
é¢æ£ãã«ããã³æ¹çšåŒ
ã³ã³ãã¥ãŒã¿ãŒã§é£ç¶ãã«ããã³æ¹çšåŒã®ãã€ããã¯ã¹ãã·ãã¥ã¬ãŒãã§ããããã«ããã«ã¯ãé¢æ£åããå¿ èŠããããŸãã ãããè¡ãã«ã¯ããŸã空é座æšã®åäžãªã°ãªãããå°å ¥ããŸããã°ãªããã®ã¹ãããããã¹ãŠã®è»žã«æ²¿ã£ãŠåãã«ããŸãã 液äœã®æåã¯ãã°ãªããã®ããŒãã§æ£ç¢ºã«æ±ºå®ãããŸãã å®éãç¹å®ã®ç©ºéããŒãã«ã®ã¿ååãé 眮ã§ããŸãã ããã«ãæéãé¢æ£åããå¿ èŠããããŸãã液äœã®ç¶æ ãäºãã«çããæéã§å€æããŸãã ããã«ãååãç¹å®ã®é床å€ã®ã¿ãæã€ããšãèš±å¯ããŸããããã«ãããæéã¹ãããã§ååãé£æ¥ããŒãã«ç§»åã§ããããã«ãªããŸãã ãããã®èš±å¯ãããæ¹åã¯ããã¹ãŠã®ç©ºéããŒãã§åãã§ãã æããã«ã察è§ç·æ¹åã®ç²åé床ã¯ãé察è§ç·æ¹åã®ç²åé床ããã倧ãããªããŸãã
çŽæçã«ã¯ãç¡éã«å°ããªæéã¹ããããšç©ºéæ Œåã¹ãããã§ããã®é¢æ£ã·ã¹ãã ã¯éåžžã®ãã«ããã³æ¹çšåŒã«é²ã¿ãå·šèŠçéçã®ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒã«é²ããšçµè«ä»ããããšãã§ããŸãã å¥åŠãªããšã«ãããã¯ããã»ã©åçŽãªè³ªåã§ã¯ãªããä»ã®ãšãã延æããŸãã
ãããªã説æã§ã¯ãæ Œåã®ã¹ããããé·ãã®åäœã§ãããæéã®ã¹ããããæéã®åäœã§ãããããªåäœç³»ã§ãããšæ³å®ãããŠããŸãã
ç°¡åã«ããããã«ã以äžã§ã¯å€åããªããšä»®å®ããŸãã ã€ã³ããã¯ã¹iã䜿çšããŠãèš±å¯ãããé床æ¹åã«1ããQãŸã§ã®çªå·ãä»ããŸãã ããã§ãæéã¹ãããã§ç¹å®ã®ããŒãããæ¹åiã«é£è¡ããç²åã®è³ªéãf iã§è¡šããšãåŒïŒ6ïŒã¯æ¬¡ã®ããã«ãªããŸãã
ã ïŒ8ïŒ
ããã§ã¯ãã¿ã€ã ã¹ãããã1ã«çããããšãèæ ®ããïŒ6ïŒã®ãã¹ãŠã®dtã1ã«çœ®ãæããŸããã f i eqã¯ãç¹å®ã®ããŒãã§ã®å·šèŠçãªè³ªéãšé床ã«äŸåããé¢æ£çãªå¹³è¡¡ååžå¯åºŠã瀺ããŸãã ã©ã®ç¹å®ã®ããŒãããf i eqã䜿çšãããã¯ç€ºããŸããã§ãããæét + 1ã§ã¯r + v i tãããæétã§ã¯rããã§ãã èšç®ã¹ããŒã ã§ã¯ãæå»t + 1ã§ããŒãr + v i tã䜿çšããæ¹ã䟿å©ã§ããããšãããããŸãããã®åŸãäžèšã®æ¹çšåŒã¯ãæ¡æ£ã¹ããããšè¡çªã¹ãããã®2ã€ã®ã³ã³ããŒãã³ãã«å解ã§ããŸãã
ã¹ããªãŒãã³ã°ã¹ãããïŒ
ã ïŒ9ïŒ
è¡çªã¹ãããïŒ
ã ïŒ10ïŒ
ããã§ããã«ãä»ãã®f iã¯ãiæ¹åã®ãµã€ãã«å°çããããå°çããä»ã®ç²åãšãŸã è¡çªããŠããªãç²åã®è³ªéã瀺ããŸãã ã¹ããªãŒãã³ã°ã¹ãããã¯ã移æµã¹ããããšåŒã°ããããšããããŸãã
é¢æ£åãããé床æ¹åã®å ŽåãåããŒãã®è³ªéãšå·šèŠçé床ã¯æ¬¡ã®ããã«èšç®ãããŸãã
ã ïŒ11ïŒ
以äžã§ã¯ãæ Œåã®åäžã®ç©ºéã¹ãããã§ãåäžã®ããªã¥ãŒã ãåããŒãã«é¢é£ä»ãããã質éãšå¯åºŠã®å€ãäžèŽããããã質éã§ã¯ãªãå¯åºŠãã©ãã«ã§ãèšè¿°ããŸãã
平衡ååžé¢æ°ã¯ãç¯ç¹ã®è³ªéãšå·šèŠçãªé床ã«äŸåããããšã瀺ããŸãã ãããã£ãŠãã¹ããªãŒãã³ã°ã¹ãããã®åŸãåããŒãã®è³ªéãšé床ãåèšç®ãã平衡ååžé¢æ°ãåèšç®ããŠãããè¡çªãèµ·ããå¿ èŠããããŸãã
ãããã£ãŠãèšç®ã¹ããŒã ã®åã¹ãããã§ãç²åããäŒæãããå¿ èŠããããŸããã€ãŸããããŒãrããæ¹åiã«é£ã¶ç²åãããŒãr + v iã«ç§»åããå¿ èŠããããŸãïŒãã¹ãŠã®ç²åãšæ¹åã§ãããè¡ããŸãïŒã ãã®åŸã質éãé床ãããã³å¹³è¡¡ååžé¢æ°ãåèšç®ããå¿ èŠããããŸãã æåŸã«ãç¹å®ã®ãµã€ãã«å°çããç²åããè¡çªããããå¿ èŠããããŸããã€ãŸããç²åãæ¹åã«ååé ããŸãã
ã³ã³ãã¥ãŒãã£ã³ã°å³
2次å ã·ã¹ãã ã®äŸã§èšç®ã¹ããŒã ã説æããŸãã 空éããŒããžã®é¢æ£åãšãããã®éã®é¢ä¿ïŒã€ãŸãã蚱容ãããé床ã®æ¹åïŒã以äžã®å³ã«ç€ºããŸãã 空éããŒãã¯åã§ç€ºãããããŒãéã®æ¥ç¶ã¯çŽ°ãç·ã§ç€ºãããŸãã
次ã®å³ã¯ãã¹ããªãŒãã³ã°ãšè¡çªã®ãã¢ã®1ã€ã®å埩ã瀺ããŠããŸãã è²ä»ãã®ç¢å°ã¯ãé£ã¶ååã®æµããè¡šããŠããŸãã è²ã®åŒ·ãã¯ãç¹å®ã®ã¹ããªãŒã ãé£è¡ããååã®è³ªéããšã³ã³ãŒãããŸããç¢å°ã®é·ãã¯ãã¿ã€ã ã¹ãããã§ã¹ããªãŒã ã移åããçµè·¯ã«ã»ãŒå¯Ÿå¿ããŸãïŒç¢å°ã¯ããŒãã®äžå¿ããããŒãã®äžå¿ã«ç§»åããå¿ èŠãããããããããã®ã¿ã§ãïŒã
空éåææ Œå
LBMã§ã¯ãã©ãã£ã¹ã¯èš±å®¹ãããé床ãã¯ãã«ã®ã»ããã§ãïŒå空éããŒãã§åãïŒã ããã¯ããšã³ãã£ãã£ãšããŠã®ã©ãã£ã¹ã®æšæºçãªæ°åŠçãªå®çŸ©ãšäžè²«æ§ãããã䞊å転éã«ãã£ãŠç©ºéã°ãªããå šäœãååŸã§ããŸãã
LBMã§ã¯ãã©ãã£ã¹ã«ã¯ããŒãããããèªäœãžã®ãŒããã¯ãã«ãå«ãŸããŠããå¿ èŠããããŸããããã¯ãç¹å®ã®ããŒãããã©ãã«ãé£ã°ãªãããŒãã£ã¯ã«ãè¡šããŸãã LBMã§ã¯ãã©ãã£ã¹ã¯éåžžãç¥èªDnQmã§ç€ºãããŸããããã§ãnã¯ç©ºéã®æ¬¡å ãmã¯ã©ãã£ã¹ã®ãã¯ãã«ã®æ°ã§ãã ããšãã°ãD2Q9ãD3Q19ãªã©ã
2次å LBM空éã§ã¯ãã©ãã£ã¹ã¯ãããšãã°ã5ã€ã®ãã¯ãã«ïŒããŒãããããèªäœãžã®2ã€ã®åçŽã2ã€ã®æ°Žå¹³ãã¯ãã«ããã³ãŒããã¯ãã«ïŒã§æ§æããããäžã®å³ã®ããã«9ã€ã®ãã¯ãã«ïŒåçŽ2ãæ°Žå¹³2ã察è§4ã1ãŒãïŒã ãããã¯ãããããD2Q5ããã³D2Q9ã©ãã£ã¹ã§ãã
ã©ãã£ã¹ãéžæããããã®æãããªèŠå ã¯æ¬¡ã®ãšããã§ãã1.ã·ãã¥ã¬ãŒã·ã§ã³ã®ç²ŸåºŠïŒçŽæçã«ãã©ãã£ã¹å ã®ãã¯ãã«ãå€ãã»ã©ãã·ãã¥ã¬ãŒã·ã§ã³ã®ç²ŸåºŠãäžãããŸãïŒ2.èšç®ã³ã¹ãïŒD2Q5ã©ãã£ã¹ã§ã®èšç®ã¯D2Q9ã§ã®èšç®ãããéããªããŸãïŒã å¥åŠãªããšã«ããããã¯æãéèŠãªèŠå ã§ã¯ãããŸããã æãéèŠãªèŠå ã¯ãNavier-Stokesæ¹çšåŒã®åçŸæ§ãšãæ Œåãã¯ãã«ã«åºã¥ãããã€ãã®ãã³ãœã«ã®å¯Ÿç§°æ§ã§ãã
äžè¬çã«äœ¿çšãããã°ãªã«ã¯ãD2Q9ãD3Q15ãD3Q19ã§ãã ã°ãªã«D2Q9ããã³D3Q19ã以äžã«ç€ºããŸãã åºæ¬çãªæ Œåãã¯ãã«ã¯ãéåžže iãŸãã¯c i ïŒåäœæéã¹ãããã§ä»¥åã«å°å ¥ãããé床v iãšäžèŽããŸãïŒãšããŠç€ºãããŸãã 以äžã§ã¯ãè¡šèše iã䜿çšããŸãã
D2Q9ã®åºåºãã¯ãã«ãèšè¿°ããŸãã
ïŒ11ïŒ
ããã³D3Q19ã®å ŽåïŒ
ïŒ12ïŒ
ç¹°ãè¿ããŸãããã¿ã€ã ã¹ãããã¯ãŠããã£ã«çãããšä»®å®ããŠãããããv i = e iã§ãã
平衡ååžé¢æ°
é£ç¶çãªå Žåã平衡ååžé¢æ°ïŒ Maxwell-Boltzmannååž ïŒã¯
ã ïŒ13ïŒ
以åã¯æªç¥ã®éããããŸãïŒRã¯æ®éçãªæ°äœå®æ° ãTã¯æž©åºŠãDã¯ç©ºéã®æ¬¡å ãvã¯é床ãã¯ãã«ã§ã確çå¯åºŠãæ±ããŸãã ããã§ã¯ãã¬ã¹ã®ã¢ã«è³ªéã¯1ã«çãããªããŸãïŒç§ãã¡ã«ãšã£ãŠã¯éèŠã§ã¯ãããŸãã-å·šèŠçãªå¯åºŠã®ã¿ãéèŠã§ãïŒã ããã¯ãã·ãã¥ã¬ãŒã·ã§ã³ã§ã®è³ªéåäœã®å€åãšèããããšãã§ããŸãã ããã«ãé¢æ°ã¯å±æçãªå·šèŠçãªå¯åºŠã«æ£èŠåãããçµ±äžæ§ã§ã¯ãããŸããã ãŸããéåžžãã¬ã¹uã®å·šèŠçãªé床ã¯vããåãé€ãããªãããšã«æ³šæããŠãã ããã ããã¯éåžžãå®åžžã¬ã¹ã®å Žåã«ååžãç 究ãããããã§ãããMaxwell-Boltzmannååžã䜿çšããã«ã¯ãç¹å®ã®æç¹ã§ç¹å®ã®ç¹ã§çŸåšã®ã¬ã¹é床ã§ç§»åããå±ææ £æ§åºæºåº§æšç³»ã«ç§»åããå¿ èŠããããŸãã uãåŒããšããã®ãããªé·ç§»ã«ãªããŸãã
空éå ã®ç¹å®ã®ãã€ã³ãã§ãååã®é床ååžã平衡ã«ãªã£ããšä»®å®ããŸãã ãã®ååžã¯ãå·šèŠçãªè³ªéÏãšé床uã«äŸåããŸãã äžæ¹ãååžé¢æ°ããÏãšuãèšç®ã§ããŸãïŒåŒïŒ2ïŒããã³ïŒ3ïŒãåç §ïŒã æããã«ããã®èšç®ã¯æ£ããÏãšuãäžããå¿ èŠããããŸãïŒã€ãŸããããæå³ã§ã¯ãããã¯ååžé¢æ°ã«å¯Ÿããè¿œå ã®å¶éã§ãïŒã
ã ã ïŒ14ïŒ
é¢æ£çãªå Žåã®å¯åºŠãšé床ã®èšç®ã«åãèŠä»¶ã課ããŸãã
ã ïŒ15ïŒ
é¢æ£å¹³è¡¡ååžé¢æ°ã®äž»ãªèŠä»¶ã¯ãç¡éå°æéã¹ããããšæ Œåã¹ãããã®æ¥µéã§ã®ãããšã»ã¹ããŒã¯ã¹æ¹çšåŒã®åçŸã§ãã ããã¯ãäžããããÏãšuã«ã€ããŠãé£ç¶ã±ãŒã¹ãšé¢æ£ã±ãŒã¹ã§å¹³è¡¡ååžé¢æ°ã䜿çšããŠããããå床èšç®ããããšãããšãçµæãäžèŽãããšããäºå®ã«çžåœããŸãïŒé¢æ£ã±ãŒã¹ã§ã¯è³ªéã¯å¯åºŠã§ã¯ãªã質éãæå³ãããšããäžèšã®æ³šæãåç §ïŒã eã
ã ïŒ16ïŒ
平衡é¢æ£ååžé¢æ°ãäžæã«æ±ºå®ããã«ã¯ãç¹å®ã®ãã€ã³ãã§ã®å·šèŠçãªç±ãšãã«ã®ãŒã®ç䟡æ§ã«é¢ããåæ§ã®èŠä»¶ãå«ããå¿ èŠããããŸãããç°¡æœã«ããããã«çç¥ããŠããŸãã
é床ã®æ¹åã«æ²¿ã£ãè¡çªã¹ãããã®åŒïŒ10ïŒãèŠçŽãããšãåŒïŒ16ïŒãèæ ®ã«å ¥ãããšãè¡çªã¹ãããããµã€ãå ã®ååã®å·šèŠçãªè³ªéãšé床ãå€ããªãããšã瀺ãããšãã§ããŸãã
ïŒ11ïŒãšïŒ12ïŒããã®é¢æ£é床ãã¯ãã«e i = v iãåçŽã«é£ç¶å¹³è¡¡ååžé¢æ°ïŒ13ïŒã«ä»£å ¥ãããšãçåŒïŒ16ïŒã¯æãç«ããªãããšãããããŸãã
ãŸããMaxwell-BoltzmannååžïŒ13ïŒãTaylorçŽæ°ã§å·šèŠçé床ã®2次ãŸã§æ¡åŒµãããšãçåŒïŒ16ïŒãä¿æã§ããããšãããããŸãã ããã¯ãu / sqrtïŒRTïŒãéåžžã«å°ãããšããäºå®ã«å¯Ÿå¿ããŠããŸãã ãã®å¶éã¯ããã¹ãŠã®ããŒãã§ã®ã·ãã¥ã¬ãŒã·ã§ã³ããã»ã¹äžã«åžžã«æºããããå¿ èŠããããŸãã
ãããããã€ã©ãŒçŽæ°ã«æ¡å€§ããŠãååã§ã¯ãããŸããã ãŸããé¢æ£é¢æ°f i eqã«ç¹å¥ã«éžæãããå åw iãå°å ¥ããå¿ èŠããããŸãïŒèšç®ã®è©³çŽ°ã¯ãã®çŸããèšââäºã«ãããŸã- ç¡æçããããŸã;ãã¡ããããã¹ãŠã¯è¡šé¢çãªèª¬æãããå°ãè€éã«ãªããŸã-å®éãèšç®ã¯èµ·ãããŸãïŒæ Œåãã¯ãã«ã«åºã¥ããŠãæ倧4ã©ã³ã¯ãŸã§ã®ãã³ãœã«ãä»ããŠïŒã æåŸã«ååŸ
ã ïŒ17ïŒ
ãã£ããããããŸãïŒæ Œåã®ããããšæéã¯ããããé·ããšæéã®åäœã§ãããšåžžã«ä»®å®ããŸãã ãããã£ãŠãSIããRã®å€ãååŸããããšã¯ã§ãããããã§ã®æž©åºŠã¯ã±ã«ãã³ã§ã·ãã¥ã¬ãŒããããæµäœã®æž©åºŠãšçãããããŸããã
ãããã®å€ã決å®ããããã«ã次ã®ããšã«æ³šæããŠãã ããã æµäœã«ä¹±ãããããšä»®å®ããŸããã€ãŸããããã€ãã®ããŒãã«éå°ãªè³ªéããããŸãã ãã®è³ªéã¯ã空éãããã«æåé åã®å³ç«¯ã®ããŒãã§ãåºãããå§ãã3Dã®æ¹åïŒ1ã0ã0ïŒãŸãã¯2Dã®ïŒ1ã0ïŒã«ç§»åããŸãã æéã®åäœã§ã¯ããããã®æ¹åã«æ²¿ã£ãååã¯é·ãã®åäœãééããŸããã€ãŸããé床ã¯1ã«çãããªããŸãã ããã¯ãã·ã¹ãã å ã®å€ä¹±ã®äŒæé床ãšããŠã®é³éã1ã«çããããšãæå³ããŸãã äžæ¹ãé³éã¯sqrtïŒÎ³RT /ÎŒïŒã«çãããããã§Î³ã¯æç±å®æ° ãÎŒã¯ã¢ã«è³ªéã§ãããããã¯ä»¥åã«1ã«çãããšä»®å®ããŸããã æç±å®æ°Î³ã¯1 + 2 / dã§ããdã¯ååã®èªç±åºŠã®æ°ã§ã ã çæ³çãªæ°äœã§ã¯ãããã¯ç©ºéã®æ¬¡å ã«çããã ç§ãã¡ã®ã¬ã¹ã§ã¯ãååã¯ããŒããçµã¶çŽç·ã«æ²¿ã£ãŠãã移åã§ããªãããã次å ã¯3ïŒãŸãã¯2ïŒã§ã¯ãªã1ã§ãã ã€ãŸããγ= 3ãsqrtïŒ3 RTïŒ= 1ã§ãã
éåžžãLBMã®æç®ã§ã¯ããé³éããšã¯
ã ïŒ18ïŒ
ããŠãã€ãã«ã
ã ïŒ19ïŒ
æãäžè¬çãªæ Œåã®ä¿æ°w iã®å€ãæžããŸãã
D2Q9ã®å ŽåïŒ
ïŒ20ïŒ
D3Q19ã®å ŽåïŒ
ïŒ21ïŒ
éå§çž®æ§
å°ããªå·šèŠçãªæµäœé床ã®å¶éã¯ã次ã®ããã«èšè¿°ã§ããŸãã
ã ïŒ22ïŒ
ãããæ°ã¯ãã·ã¹ãã å ã®ç¹åŸŽçãªã¬ã¹é床ãšé³éã®æ¯ã§ããããšãæãåºããŠãã ããã 次ã«ãäžèšã®å¶éã¯å°ããªãããæ°ãŸãã¯éå§çž®æ§æµäœã«å¯Ÿå¿ããŸãã å®éãé³éïŒå¯åºŠæåã®äŒæé床ïŒã倧ããå Žåãå¯åºŠæåã¯ã·ã¹ãã å šäœã«æ¥éã«åºãããå¯åºŠã¯åã³åãã«ãªããŸãã ã€ãŸãã1ã€ã®ããŒã«ã«ãšãªã¢ã§æ¶²äœãå§çž®ããããšã«æåããŸããã
ããŒãã§ã®å·šèŠçé床ã®é©åãªæ倧å€ã¯ãããšãã°0.01ã§ãã
ç²åºŠãšã¬ã€ãã«ãºæ°
LBM ã®åç²åºŠ ÎœïŒéåžžãæ ŒååäœïŒã¯ã次ã®ããã«èšç®ãããŸãã
ã ïŒ23ïŒ
ããã§ãÏã¯åŒïŒ5ïŒã§åè¿°ããç·©åæéã§ããã s = 1 / sqrtïŒ3ïŒã¯ïŒ18ïŒã§å°å ¥ãããé³éãã§ãã
枩床å€åãèæ ®ããã«æµäœååŠãã¢ãã«åããå Žåãæå®ã®ãžãªã¡ããªãæã€ã·ã¹ãã ïŒããšãã°ãæé¢ãæ£æ¹åœ¢ã®ãã€ãïŒã¯ã1ã€ã®ç¡æ¬¡å ãã©ã¡ãŒã¿ãŒïŒ ã¬ã€ãã«ãºæ° ïŒã§å®å šã«èšè¿°ãããŸãã
ãïŒ24ïŒ
ããã§ãvã¯ã·ã¹ãã ã®ç¹æ§é床ïŒããšãã°ããã€ãã®äžå¿ã®é床ïŒãLã¯ã·ã¹ãã ã®ç¹æ§é·ïŒããšãã°ãæ£æ¹åœ¢æé¢ã®èŸºã®é·ãïŒã§ãã
æšæºåœ¢ç¶ã®å Žåãéåžžãç¹æ§é床ãšå€åïŒæµããæäŸããïŒã®é¢ä¿ã¯æ¢ç¥ã§ãã ãããã£ãŠãç¹å®ã®ã¬ã€ãã«ãºæ°ã§ã¢ããªã³ã°ããã«ã¯ã次ãå¿ èŠã§ãã
- ç¹æ§é床vãéžæããŸãã ããã£ãããã«ãé³ã®é床ãããã¯ããã«å°ããã¯ãã§ãã ããšãã°ã0.01ã
- ãã®ãããªé床ã«å¿ èŠãªå€åãèšç®ãã
- ïŒ23ïŒã«åŸã£ãŠç²åºŠãèšç®ããç®çã®ã¬ã€ãã«ãºæ°ãååŸãã
- ïŒ24ïŒããç·©åæéãèšç®ããŠãç®çã®ç²åºŠãåŸã
ã·ãã¥ã¬ãŒã·ã§ã³åé¡ãSIåäœã§ã³ã³ãã€ã«ãããŠããå ŽåïŒä»®ã«ãæ£æ¹åœ¢ã®ãã€ãæé¢ã®åŽé¢ã1 mããã€ãå ¥å£ã®å§åãXãã¹ã«ã«ãåºå£ã§â Yãã¹ã«ã«ïŒãæåã«ç¡æ¬¡å ã®ã¬ã€ãã«ãºæ°ãèŠã€ããäžèšã®ã¢ã«ãŽãªãºã ã䜿çšããå¿ èŠããããŸãã
ããäžåºŠããã¹ãŠäžç·ã«
ã¢ããªã³ã°ã®åã«ãåããŒãã§åæã®å·šèŠçãªè³ªéãšé床ãèšå®ããå¿ èŠããããŸãã 次ã«ãåããŒãã§èš±å¯ãããåæ¹åe iã®è³ªéæµéãèšå®ããŸãïŒèœãšãç©Žãåç §ïŒã æãç°¡åãªæ¹æ³ã¯ã平衡ååžããã®ãããŒã瀺ãããšã§ãã
ã«ãŒãã³ãããã§ã·ãã¥ã¬ãŒãããã«ã¯
- åŒïŒ9ïŒã«ããã¹ããªãŒãã³ã°ã¹ããã
- åŒïŒ11ïŒã«ããåããŒãã®å·šèŠçãªè³ªéãšé床ã®åèšç®ãåŒïŒ19ïŒã«ãããã¹ãŠã®æ¹åã®å¹³è¡¡æµã®åèšç®
- åŒïŒ10ïŒã«ããè¡çªã¹ããã
ã¢ããªã³ã°ã¯éåžžãã·ã¹ãã ãéæ¢ãããŸã§è¡ãããŸãã å®åžžæ§ã¯ãããšãã°ãé£æ¥ããã¹ãããéã®åããŒãã®å·šèŠçãªé床ãšè³ªéã®å·®ããã¹ãŠã®ããŒãã®æ倧å€ã«ãã£ãŠç¢ºèªã§ããŸãã
éå€
ã¢ã«ãŽãªãºã ã®è¿œå
ã¢ããªã³ã°ã«å€åãå«ããããšïŒããšãã°ãéåïŒã«ã¯è§ŠããŸããã§ããããããã¯ãã¹ããªãŒãã³ã°ã¹ãããã®åŒïŒ9ïŒã«å°ãè¿œå ãããŸãã
å¢çæ¡ä»¶ã«ã觊ããŸããã§ãã-ããã£ã®è¡šé¢ãã·ã¹ãã ã®å ¥å£ãšåºå£ïŒããšãã°ããã€ãã®å ¥å£ã«äžå®ã®å§åãŸãã¯é床ãã£ãŒã«ããæå®ãããŠããå ŽåïŒãã¡ãœããã¯åŸ®èŠçã¬ãã«ïŒååã®æµãïŒã§å®åŒåããããã®ãããªå¢çæ¡ä»¶ã¯å·šèŠçã¬ãã«ã§å®åŒåããããããLBMã¯ãã®ãããªæ¡ä»¶ã®ã¢ããªã³ã°ã«å€§ããªèªç±ããããŸããé¡åŸ®é¡ã¬ãã«ã§å¢çæ¡ä»¶ãèšå®ããã«ã¯å€ãã®æ¹æ³ããããå€ãã®ã¢ã«ãŽãªãºã ããããŸãã
no-slip boundary conditions ( ). bounce-back conditions ( ). , 4.6.
, , single relaxation time. , , multiple relaxation time ( , double relaxation time).
LBM ( ).
LBMã§ã¯ãç±äŒå°çã®ååšïŒã€ãŸããã·ã¹ãã å ã®ç±äŒéãã·ã¹ãã å ã®ããŸããŸãªãã€ã³ãã§ã®æž©åºŠã®å€åãããã³ãã®çµæãã·ã¹ãã ãã©ã¡ãŒã¿ãŒã®å€åïŒå¯åºŠãªã©ïŒïŒã ãµããŒããã ãŸãã枩床ã¯ãåããLBMã¢ã«ãŽãªãºã ã䜿çšããŠãå¥åã®ãæ°äœããšããŠã¢ãã«åãããŸããããã®æ°äœã®é床ã¯äž»æµäœã®é床ã«ãã£ãŠæ±ºãŸããŸãããã®æå³ã§ã®æž©åºŠã¯ååçãªã¹ã«ã©ãŒã§ãããšèšãããŠããŸããLBMãä»ããã¬ã€ãªãŒ-ãããŒã«å¯ŸæµçŸè±¡ã®ã¢ãã«åã«é¢ããå€ãã®èšäºããããŸããå¹æçãªå®è£ ãšäžŠååã®åé¡ã«ã¯ãŸã£ãã觊ããŸããã§ããã
èœãšãç©Ž
ç±äŒå°çã䜿çšããŠã·ã¹ãã ãã¢ãã«åããå Žåã2ã€ã®ç¡æ¬¡å éã§èšè¿°ãããŸããã¬ã€ãªãŒãããŒã«å¯Ÿæµã®å Žåããã©ã³ãã«æ°ãšã¬ã€ãªãŒæ°ãéåžžéžæãããŸãããã®ã·ã¹ãã ãæ Œååäœã§åçŸããããã«ã¯ãã·ã¹ãã ã®å éšãã©ã¡ãŒã¿ãŒïŒç¹æ§é床ãå€åãç±äŒå°çïŒãæ£ããèšå®ããããšã«ããããããã®ç¡æ¬¡å éã®äž¡æ¹ãåçŸããã ãã§ã¯ååã§ã¯ãããŸãããå®éã«ã¯ãå éšãã©ã¡ãŒã¿ãŒéã«é衚瀺ã®äŸåé¢ä¿ãååšããŸãã詳现ã¯ãã¡ããã芧ãã ããã
ãã§ã«è¿°ã¹ãããã«ãã·ã¹ãã ã§ç¹åŸŽçãªé床ãéžæãããšãããããæ°ã1ãããã¯ããã«å°ããããšãå¿ããªãã§ãã ããïŒåŒïŒ22ïŒïŒã
LBMã¯ãã¬ã€ãã«ãºæ°ã倧ããã·ã¹ãã ã§ã¯äžå®å®ã«ãªãå¯èœæ§ããããŸãïŒãã ããæµãããŸã å±€æµã®å ŽåïŒã
LBM ã§ã¯ã ã¬ãªã¬ãªäžå€æ§ã¯æãç«ã¡ãŸããããã ããããã¯éåžžéèŠã§ã¯ãããŸããã
ã·ãã¥ã¬ãŒã·ã§ã³ã®éå§æã«ãèš±å¯ããããã¹ãŠã®æ¹åã®åããŒãããã®ååã®æµããæå®ããå¿ èŠããããŸããæµãã®å¹³è¡¡ååžããã°ãã°éžæãããŸãïŒåŒïŒ19ïŒïŒã平衡ã¯å®åžžæ§ãæå³ããªãããšãèŠããŠããããšãéèŠã§ããã€ãŸããé床ãå€åãªã©ã®åŸé ãããå Žåã®å®åžžååžã§ãã平衡ãšã¯ç°ãªããŸãããããã®èšç®ãããã«ç€ºããŸãïŒåç §ã«ããåŒ12ã19ã20ïŒã
æ¢åã®ãœãªã¥ãŒã·ã§ã³
LBMå°çšã®å€§èŠæš¡ã§éåžžã«æçãããªãŒãã³ãœãŒã¹ãããžã§ã¯ããPalabosïŒPArallel LAttice BOLtzmannïŒããããŸãããããžã§ã¯ãã«ã¯wikiããããŸããéçºè ã¯ãæµäœååŠã®ã¢ããªã³ã°ã«é¢ããææã®ã¢ããã€ã¹ãæäŸããŸããMATLABã§ã®å žåçãªã·ã¹ãã ã®ã¢ããªã³ã°ã«é¢ããåªãããã¥ãŒããªã¢ã«äŸ
ããããŸããããšãã°ãã¬ã€ãªãŒâãããŒã«å¯ŸæµïŒå€åãç±äŒå°çãå¢çæ¡ä»¶ãéã®æ£ããå€æãããå ŽåïŒãMATLABã§ã¯åèš160è¡ã
ããšãã°ãthisãŸãã¯thatãªã©ãå€ãã®åçšãœãªã¥ãŒã·ã§ã³ããããŸãã
åçšããã³éåçšã®LBMããã±ãŒãžã®è©³çŽ°ãªãªã¹ãã¯ãWikipediaã«ãããŸãã
äœãèªã
èšäºã«ãããã¹ãŠã®ãªã³ã¯ã«å ããŠããããã®èšäºãšæžç±ã®ãªã¹ããæšå¥šã§ããŸããåºæ¬çã«ãåæ§ã®æžç±ã®ãªã¹ããWikipediaã«ãããŸãã
ããã ãã§ã