3ã7ã11ãããã³4ã§å²ã£ããšãã«3ã®å°äœãäžããä»ã®æ°å€ãa 2 + b 2ã®åœ¢åŒã§è¡šçŸã§ããªãçç±ãç解ããã®ã¯éåžžã«ç°¡åã§ãïŒå¶æ°ã®2ä¹ã¯åžžã«4ã§é€ç®ããå¥æ°ã®2ä¹ã¯åžžã«4ã§å²ã£ããšãå°äœ1ãäžããŸãã4ã§å²ã£ããšãã®2ã€ã®å¹³æ¹ã®åèšã¯ã0ã1ãŸãã¯2ã®å°äœãäžããããšãã§ããŸããã3ã§ã¯ãããŸããã4k+ 1ã®åœ¢åŒã®çŽ æ°ã®è¡šçŸå¯èœæ§ã¯æçœã§ã¯ãããŸããïŒç¹ã«ãåçŽããäžå¯æ¬ ââã§ããããšã«æ°ã¥ããå ŽåïŒæãŸãã21ã®æ°21ã¯ãåèšã2ã§ãæ£æ¹åœ¢ãªãïŒã
æ§é€
èªç¶æ°ã¯ç¡éã«ãããŸãã ããã€ãã®çç±ã§ããããã¯ã©ã¹ã«çµåãããšäŸ¿å©ã§ãã ç¹ã«ãããæ°nã«ããé€ç®ã®å°äœãçµåãããšã nãæ³ãšããå°äœã«ãªããŸããå°äœxÌ ã¯ã nã§é€ç®ãããšxãšåãå°äœãäžãããã¹ãŠã®æ°ã®ã¯ã©ã¹ã§ãã ããã¯åçã§ãããå°äœxÌ ã¯x + nâkã®åœ¢åŒã®ãã¹ãŠã®æ°ã§æ§æãããŸããããã§ã kã¯æŽæ°ã§ãã ãã®æçš¿ã®ãã¬ãŒã ã¯ãŒã¯å ã§ã¯ããã¹ãŠã®æ®åºã¯ã¢ãžã¥ãp ïŒå°å ¥éšãšåãå¥æ°ã®çŽ æ°ïŒã«ãªããŸãã åœç¶ã pã§é€ç®ããæ®åºãã€ãŸãæ£ç¢ºã«pã®æ®åºãšåãæ°ã®ç°ãªãæ®åºããããŸãã èªç¶æ°ã®ç¡éãšæ¯èŒããŠãæ®åºãžã®ç§»è¡ã¯ãªãã·ã§ã³ã®æ°ãå€§å¹ ã«æžãããŸãã
ã¯ã©ã¹æäœã¯åžžã«æå³ããªããªãã ããšãã°ãçŽ æ°ã®ã¯ã©ã¹ãè€åæ°ã®ã¯ã©ã¹ã«è¿œå ããããšããŠãæå³ããããŸãããæ°åã®ã¿ãè¿œå ã§ããçŽ æ°ãšè€åæ°ã®åèšã«ã¯ã¯ã©ã¹ã«å ±éã®ããããã£ã衚瀺ãããŸããã ããŒãããžãŒã¯ã©ãã®ã¡ã³ããŒã¯ãçŽ æ°ã®ã¯ã©ã¹ãšè€åæ°ã®ã¯ã©ã¹ãåèšãããšãçŽ æ°ãšè€åæ°ã®åèšã§åèšã§ããæ°ã®ã¯ã©ã¹ãäžãããšèšãããšãã§ããŸãã
ãã ããæ§é€ã®å Žåãèªç¶æ°ãããç¶æ¿ããããå ç®ãæžç®ãããã³ä¹ç®ã¯ãä»ã®æ§é€ãäžããŸãã ããšãã°ã2Ì +3Ì =5Ì ïŒå°äœ2ã®ä»»æã®æ°ãåããæ®ã3ã®ä»»æã®æ°ãåãããããã®åèšã¯ééããªã5ã®å°äœãäžããŸããäžå¿«ãªã¢ãžã¥ãŒã«6ã ããããåçŽãªã¢ãžã¥ãŒã«ã®å Žåãæããã«ãããã¯èµ·ãããŸããã圌ããèšãããã«ã ãŒãé€æ°ã¯ãããŸãã ã ããã«ã aÌ =0Ì ã®å Žåãé€ããä»»æã®2ã€ã®å°äœã«ã€ããŠæ¹çšåŒaÌ âxÌ =bÌ ïŒé€ç®ïŒã解ãããšãã§ããçµæã¯äžæã«æ±ºå®ãããŸãã äžææ§ã¯ãéãŒãã®å°äœã®ç©ãéãŒãã§ãããšããäºå®ããåŸãããŸãã aÌ â 0Ì ã§ããããã aãšpã®æå€§å ¬çŽæ°ã¯1ã§ãïŒããã§ãåçŽãpãå¿ èŠã§ãïŒã æ¡åŒµãŠãŒã¯ãªããã¢ã«ãŽãªãºã ã¯ã aâx + pây = 1ã®ããã«xãšyãèŠã€ããŸããã€ãŸãã aÌ âïŒbÌ âxÌ ïŒ=bÌ ãšãªããŸãã
ãŒãé€æ°ããªãããšã®éèŠãªçµæïŒæ¬¡æ°nã®åäžå€æ°ã®éãŒãå€é åŒã¯ã nãè¶ ããæ ¹ãæã€ããšã¯ã§ããŸããã ïŒããã¯éåžžã®æŽæ°ã§ã¯ããç¥ãããŠããŸãããå°äœæŒç®ã䜿çšããå Žåãè¿œå ã®æ£åœåãå¿ èŠã§ãã3Ì âxÌ =0Ì 6ãæ³ãšãã3ã€ã®è§£0Ì ã2Ì ã4Ì ããããŸããïŒå®éãéåžžã®ãåãé€ç®ã¯å€é åŒfïŒxïŒã¯ã fïŒxïŒ=ïŒx-cïŒgïŒxïŒ+ ïŒå®æ°ïŒãšããŠè¡šãããšãã§ããŸããããã§ãå€é åŒgïŒxïŒã®æ¬¡æ°ã¯1æªæºã§ãã cãfïŒxïŒã®æ ¹ã§ããå Žåãå®æ°ã¯ãŒãïŒ x = cãä»£å ¥ïŒã§ãã c 'ãfïŒxïŒã®å¥ã®ã«ãŒãã§ããå Žåã gïŒxïŒã®ã«ãŒãã«ãªããŸãïŒããã§ã¯ãŒãé€æ°ããªãããšãéèŠã§ãïŒããããã£ãŠãããã»ã¹ãç¶è¡ã§ããŸãã nåã®æ ¹ãæ¢ã«èç©ãããŠããå Žåãæ®ãã®gïŒxïŒã¯å®æ°ã§ãããããã«ãŒã以å€ïŒfïŒxïŒ= 0 ïŒã§ãããæ ¹ã¯ãããããŸããã
åçŽãªã¢ãžã¥ãŒã«ã«ããæ§é€ã¯ãå ç®ãæžç®ãä¹ç®ã§ããŸãã éãŒãã®æ§é€ã¯åå²ã§ããŸãã ããããã¹ãŠã®æäœã«ã¯ãã¿ã€ãaÌ âbÌ =bÌ âaÌ ã®éåžžã®ããããã£ããããŸãã ã¹ããŒãããã¯ã¯ãåçŽãªã¢ãžã¥ãŒã«ã«ããæ§é€ããã£ãŒã«ãã圢æãããšèšããŸã ïŒãããŠãåå²ããããšãäžå¯èœã§ãä»ã®ãã¹ãŠãåãã§ããè€åã¢ãžã¥ãŒã«ã«ããæ§é€ã¯å¯æç°ã§ã ïŒã ãããŠããã®åéãæéãšåŒã¶ã®ã«è³¢ãæ¬ã§ããå¿ èŠã¯ãããŸããã æ®å·®ãã£ãŒã«ãã¯å¯äžã®æéãã£ãŒã«ãã§ã¯ãããŸããããä»ã®æçµãã£ãŒã«ãã¯å¿ èŠãããŸããã
æ¥åæ²ç·ã«ã€ããŠå°ã
pãæ³ãšããæ¥åæ²ç·ïŒåãå¥æ°çŽ æ°ïŒã¯ãæ¹çšåŒy 2 = x 3 + a 2 x 2 + a 4 x + a 6ã®è§£ã®éåãšèããããšãã§ããŸããããã§ã x ã y ãããã³ãã¹ãŠã®aã¯å°äœã§ãïŒå解ã¯1ãšåŒã°ããŸãïŒ point ïŒã«å ããŠããã¢xãyãæããªã1ã€ã®ç¹å¥ãªãã€ã³ãOã æ¹çšåŒã®å³èŸºã¯æ£æ¹åœ¢ã§é€ç®ããªãã§ãã ãããããããªããšæ¥åæ²ç·ã«ãªããŸãããã¿ã€ãy 2 =ïŒx-1Ì ïŒ 2 ïŒx +2Ì ïŒã®æ¹çšåŒã§ã¯ãå€æ°yãz = y /ïŒx-1Ì ïŒã«çœ®ãæããŠäŸåé¢ä¿ãååŸã§ããŸã3床ã§ã¯ãªã2床ã
pâ 3ã®å Žåãå€æ°xã®ä»£ããã«x + a 2/3ãåã ã x 2ã®é ãåãé€ããŸãã
xãyã¯æééåã«å±ãããããæ¥åæ²ç·äžã®ç¹ã®æ°ãæéã§ããããšã¯æããã§ãã ãããã®ããã€ïŒ ããã¯äžè¬çã«é£ãã質åã§ãã y 2 = x 3 -kâxã®åœ¢åŒã®æ²ç·ã«å¶éããŸãã ãã®ãããªæ²ç·ã®å Žåãå®å šãªèšŒæã1ã€ã®Habrãã¹ãã«å ¥ããããšãã§ããŸãïŒããªãé·ããã®ã§ããïŒã
äºæ¬¡æ§é€ãšéæ§é€
ãŸãç°¡åãªè³ªåãããŠã¿ãŸãããã æ¹çšåŒy 2 = cã®è§£ã¯ããã€ãããŸãããããã§ã yãcã¯å°äœã§ãã p = 7ã®äŸïŒ
y | 0Ì | 1Ì | 2Ì | 3Ì | 4Ì | 5Ì | 6Ì |
y 2 | 0Ì | 1Ì | 4Ì | 2Ì | 2Ì | 4Ì | 1Ì |
解ãååšããcã®éãŒãã®å°äœã¯ã 2次å°äœãšåŒã°ããŸãã 解ãååšããªãå°äœcã¯2次å°äœãšåŒã°ããŸãã äºæ¬¡çãªéæ§é€ã¯æ§é€ã§ããããšã«æ³šæãã䟡å€ããããŸããäºæ¬¡çã§ããããšã¯åœŒã幞éã§ã¯ãªãã£ããšããã ãã§ãã ã«ãžã£ã³ãã«èšå·


æ¥åæ²ç·ã«æ»ããŸãã åºå®xã®ãªãã·ã§ã³yã®æ°ãæ²ç·äžã®ãã€ã³ãã®ç·æ°y 2 = x 3 -kâxã¯ããã¹ãŠã®xãåèšããç¹å¥ãªãã€ã³ããå¿ããã«æžãçããããšãã§ããŸãã

ããã§ã2ä¹åã®pã®å±éã®æåã®çŽæãããåŒãæ瀺ããæºåãã§ããŸããã å®ç gãä»»æã®2次éå°äœãšããŸãã pã4ã§é€ç®ããŠäœã1ãåŸãããå Žåã

ãŸããæåã®æ¬åŒ§å ã®æ°åã¯å¥æ°ã®æŽæ°ã§ããã2çªç®ã®æ¬åŒ§å ã®æ°åã¯å¶æ°ã®æŽæ°ã§ãã pã4ã§é€ç®ãããšãå°äœã3ã«ãªãå Žåãæ¬åŒ§å ã®äž¡æ¹ã®åèšã¯ãŒãã«ãªããŸãïŒã€ãŸããæ¥åæ²ç·äžã®ç¹ã®æ°ã¯p + 1ã«ãªããŸã ïŒã
蚌æ
ãã¹ãã¯ãã§ã«é·ãããã蚌æ ã¯ãã¿ãã¬ã®äžã§åé€ãããŸãã ç¥èŠãæãªãããšãªãå®å šã«ã¹ãããã§ããŸãã
ããŒã1ãã±ãŒã¹p = 4k + 3ããã³ããªãã£/å¥æ°ã®åé¡ã
éãŒãã®æ®åºcãååŸããããã1Ì
ããpÌ
- 1allãŸã§ã®ãã¹ãŠã®æ®åºã§ä¹ç®ãããšããã¹ãŠã®ç©ã¯éãŒãã§ããããã¢ããšã«ç°ãªããŸãïŒ câx = câyã®å Žåã câïŒxyïŒ= 0 which x = yã®å Žåã®ã¿ïŒãã€ãŸãã 1Ì
ããpÌ
-1Ì
ãŸã§ã®ãã¹ãŠã®æ®åºã®ããçš®ã®é åã«ãªããŸãã ãããã£ãŠã 1Ì
â2Ì
â...âïŒpÌ
-1Ì
ïŒ=ïŒcâ1Ì
ïŒâïŒcâ2Ì
ïŒâ...âïŒcâïŒpÌ
-1Ì
ïŒïŒ= c p-1 â1Ì
â2Ì
â...âïŒpÌ
-1Ì
ïŒããã³c p-1 =1Ì
ïŒãŒã以å€ã®å°äœcã®å ŽåïŒ ïŒããã¯ãã§ã«ããŒã®å°ããªå®çã®èšŒæã§ãã ãïŒ
ãããã£ãŠãå€é åŒx p-1 -1 =ïŒx ïŒp-1ïŒ/ 2 -1ïŒïŒx ïŒp-1ïŒ/ 2 +1ïŒã®æ ¹ã¯p-1ã§ãã ãããã£ãŠãåãã©ã±ããã«ã¯ïŒp-1ïŒ/ 2ã®ã«ãŒãïŒãã©ã±ããã®æ¬¡æ°ã®æ倧å¯èœæ°ïŒããããŸãã åäºæ¬¡å°äœã¯ãæåã®ãã©ã±ããã®ã«ãŒãã§ãïŒ x = c 2ã®å Žåã次ã«x ïŒp-1ïŒ/ 2 = c p-1 =1Ì ïŒããããã®ïŒp-1ïŒ/ 2ããããŸã ãã€ãŸãããã¹ãŠã®äºæ¬¡å°äœã«å¯ŸããŠ2çªç®ã®ãã©ã±ãããæ®ããŸãã ãããã£ãŠã cã®ã«ãžã£ã³ãã«èšå·ã¯c ïŒp-1ïŒ/ 2ãšåãæ®åºã«å±ããŸãã ïŒããã¯ãªã€ã©ãŒã®åºæºã®èšŒæã§ããïŒã
çµæãšããŠã
ã
-1Ì ã¯2次å°äœã§ããïŒ ç¬Šå·ã«äŸåïŒ-1ïŒ ïŒp-1ïŒ/ 2 pã 4ã§å²ã£ããšãã«å°äœ1ãåŸãããå Žåã ïŒp-1ïŒ/ 2ã¯å¶æ°ã ïŒ-1ïŒ ïŒp-1ïŒ/ 2 = 1 ã-1Ì ã¯2次å°äœã§ãã pã4ã§å²ããšãå°äœã3ã«ãªãå Žåããã¹ãŠãéã«ãªãã-1Ì ã¯2次ã®éå°äœã«ãªããŸãã
å®çã®åçŽãªéšåïŒ pã¯ã4ã§å²ã£ããšãã«å°äœ3ãäžããŸãã次ã«ãåæ¬åŒ§å ã§ã xãš-xã®é ã¯ã-1ã®ã«ãžã£ã³ãã«èšå·ãæããããšã§äºãã«ç°ãªããŸããã€ãŸãã笊å·ãå察ã§ãåèšã0ã«ãªããŸãã x =0Ì ãé€ããŠããããã¯åèšããŒãã®ãã¢ã«åå²ããã x = 0 withã®é ã¯ãŒãã§ãããåèšã¯0ã§ãã
pã4ã§å²ã£ããšãã«äœã1ãäžããå Žåã xãš-xã®é ã¯çããããããã®åèšã¯å¶æ°ã§ãã ãããã£ãŠãå šäœã®éãå¶æ°ã§ãããæ¬åŒ§å ã®æ°å€ã¯å®éã«ã¯æŽæ°ã§ãã åæžåŸã®ããªãã£/å¥æ°ã¯ããã»ã©è€éã§ã¯ãããŸããïŒå®çã®æåã®ãã©ã±ããã«ã¯3ã€ã®ãŒãé ããããæ®ãã®é ã¯ïŒp-3ïŒ/ 2ã€ã®ãã¢ã«åå²ãããåãã¢ã®åèšã¯Â±2ã§ãã 4ã§é€ç®ãããšãã®ç¬Šå·ã䜿çšãããšãå°äœã¯2ã«ãªãã4ã§é€ç®ãããšãã®å šéã¯p-3ãšåããã€ãŸã2ã«ãªããŸããååã«é€ç®ãããšãå¥æ°ã«ãªããŸãã å®çã®2çªç®ã®ãã©ã±ããã«ã¯ããŒãé ã1ã€ãšïŒp-1ïŒ/ 2ã®ãã¢ã2ã€ããã4ã§é€ç®ããæçµäœãã¯0ã«ãªããŸããååã«é€ç®ãããšãå¶æ°ãæ®ããŸãã
ãããã£ãŠãå€é åŒx p-1 -1 =ïŒx ïŒp-1ïŒ/ 2 -1ïŒïŒx ïŒp-1ïŒ/ 2 +1ïŒã®æ ¹ã¯p-1ã§ãã ãããã£ãŠãåãã©ã±ããã«ã¯ïŒp-1ïŒ/ 2ã®ã«ãŒãïŒãã©ã±ããã®æ¬¡æ°ã®æ倧å¯èœæ°ïŒããããŸãã åäºæ¬¡å°äœã¯ãæåã®ãã©ã±ããã®ã«ãŒãã§ãïŒ x = c 2ã®å Žåã次ã«x ïŒp-1ïŒ/ 2 = c p-1 =1Ì ïŒããããã®ïŒp-1ïŒ/ 2ããããŸã ãã€ãŸãããã¹ãŠã®äºæ¬¡å°äœã«å¯ŸããŠ2çªç®ã®ãã©ã±ãããæ®ããŸãã ãããã£ãŠã cã®ã«ãžã£ã³ãã«èšå·ã¯c ïŒp-1ïŒ/ 2ãšåãæ®åºã«å±ããŸãã ïŒããã¯ãªã€ã©ãŒã®åºæºã®èšŒæã§ããïŒã
çµæãšããŠã

-1Ì ã¯2次å°äœã§ããïŒ ç¬Šå·ã«äŸåïŒ-1ïŒ ïŒp-1ïŒ/ 2 pã 4ã§å²ã£ããšãã«å°äœ1ãåŸãããå Žåã ïŒp-1ïŒ/ 2ã¯å¶æ°ã ïŒ-1ïŒ ïŒp-1ïŒ/ 2 = 1 ã-1Ì ã¯2次å°äœã§ãã pã4ã§å²ããšãå°äœã3ã«ãªãå Žåããã¹ãŠãéã«ãªãã-1Ì ã¯2次ã®éå°äœã«ãªããŸãã
å®çã®åçŽãªéšåïŒ pã¯ã4ã§å²ã£ããšãã«å°äœ3ãäžããŸãã次ã«ãåæ¬åŒ§å ã§ã xãš-xã®é ã¯ã-1ã®ã«ãžã£ã³ãã«èšå·ãæããããšã§äºãã«ç°ãªããŸããã€ãŸãã笊å·ãå察ã§ãåèšã0ã«ãªããŸãã x =0Ì ãé€ããŠããããã¯åèšããŒãã®ãã¢ã«åå²ããã x = 0 withã®é ã¯ãŒãã§ãããåèšã¯0ã§ãã
pã4ã§å²ã£ããšãã«äœã1ãäžããå Žåã xãš-xã®é ã¯çããããããã®åèšã¯å¶æ°ã§ãã ãããã£ãŠãå šäœã®éãå¶æ°ã§ãããæ¬åŒ§å ã®æ°å€ã¯å®éã«ã¯æŽæ°ã§ãã åæžåŸã®ããªãã£/å¥æ°ã¯ããã»ã©è€éã§ã¯ãããŸããïŒå®çã®æåã®ãã©ã±ããã«ã¯3ã€ã®ãŒãé ããããæ®ãã®é ã¯ïŒp-3ïŒ/ 2ã€ã®ãã¢ã«åå²ãããåãã¢ã®åèšã¯Â±2ã§ãã 4ã§é€ç®ãããšãã®ç¬Šå·ã䜿çšãããšãå°äœã¯2ã«ãªãã4ã§é€ç®ãããšãã®å šéã¯p-3ãšåããã€ãŸã2ã«ãªããŸããååã«é€ç®ãããšãå¥æ°ã«ãªããŸãã å®çã®2çªç®ã®ãã©ã±ããã«ã¯ããŒãé ã1ã€ãšïŒp-1ïŒ/ 2ã®ãã¢ã2ã€ããã4ã§é€ç®ããæçµäœãã¯0ã«ãªããŸããååã«é€ç®ãããšãå¶æ°ãæ®ããŸãã
ããŒã2.ã±ãŒã¹p = 4k + 1ã
pã4ã§å²ã£ããšããå°äœ1ãäžããŸããå®çã®æåã®ãã©ã±ãããa ã2çªç®ãbã§è¡šããŸãã aãšbãæŽæ°ã§ããããšã¯æ¢ã«ç¥ã£ãŠããŸãã
ããã蚌æããããã«ã次ã®å¥åŠãªéNã2ã€ã®æ¹æ³ã§èšç®ããŸãïŒ5ã€ã®æ®åºã®æ°ïŒ x 1 ãy 1 ãx 2 ãy 2 ãt ïŒã§ã2ã€ã®åŒãåæã«æºããããããã«ããŸãïŒ y 1 2 = x 1 3 -tâx 1ããã³y 2 2 = x 2 3 -tâx 2 ã
æåã®æ¹æ³ã§ã¯ãæåã«tãä¿®æ£ãã xãyãã4ã®æ°ãèšç®ããŸãããã®åŸããã¹ãŠã®tã®çµæãè¿œå ããŸãã åºå®tã®å Žåããã¢ïŒ x 1 ãy 1 ïŒã¯æ²ç·ã®ä»»æã®éç¹æ®ç¹y 2 = x 3 -tâx ã2çªç®ã®ãã¢ïŒ x 1 ãy 1 ïŒã¯åãæ²ç·ã®ä»»æã®éç¹æ®ç¹ããã®ãããªãã¢ã®ç·æ°ã¯ãéç¹æ®ãã€ã³ãã®æ°ã®2ä¹ã«çãããªããŸãã ïŒå®éããããå¥åŠãªéãæ€èšããŠããçç±ã§ããa2ãšb 2ã«è¿ã¥ããããšãã§ããŸãã ïŒ t = 0ã®å Žåãæ¹çšåŒy 2 = x 3ã¯æ¢ã«è¿°ã¹ãããã«ãæ¥åæ²ç·ãå®çŸ©ãããæ¹çšåŒãšåæ°ã®è§£ãæã¡ãŸãz 2 = x ïŒããã§y = zâx ïŒãã€ãŸãæ£ç¢ºã«p t = 1ã®å Žåã p + 2aã®è§£ãåŸããã t = g - p + 2bã®è§£ãåŸãããŸãã ä»ã®tå€ã¯ã©ãã§ããïŒ
y 2 = x 3 -tâxãã€cããŒã以å€ã®å°äœã®å Žåã c 6 y 2 = c 6 x 3 -c 6 tâxã§ãããããã¯ïŒc 3 yïŒ 2 =ïŒc 2 xïŒãšåç3 -c 4 tâïŒc 2 xïŒ ã ã€ãŸãã ïŒxãyïŒãtã®æ¹çšåŒã®è§£ã§ããå Žåã ïŒc 2 xãc 3 yïŒã¯c 4 tã®æ¹çšåŒã®è§£ã§ããããã解ã®æ°ã¯tããã³c 4 tãšäžèŽããŸãã c 4ã®åœ¢ã®ããã€ã®ç°ãªãéãŒãæ®åºïŒ äžæ¹ã§ã¯ãå°ãªããšãïŒp-1ïŒ/ 4 ïŒ ïŒp-1ïŒã®cã®å€ã¯4ãè¶ ããªãã°ã«ãŒãã«ãçµåãã§ããŸããäžæ¹ã ïŒp-1ïŒ/ 4ãæŽæ°ã®å Žåããã¹ãŠãã®ãããªæ®å·®ã¯å€é åŒx ïŒp-1ïŒ/ 4 -1ã®æ ¹ã§ããããããã以äžïŒp-1ïŒ/ 4ã¯ååšã§ããŸããã ãããã£ãŠãæ£ç¢ºã«ïŒp-1ïŒ/ 4åãããŸã ã
ãããã£ãŠã ïŒp-1ïŒ/ 4æ²ç·ã«ã¯p + 2aã®éç¹æ®ç¹ããããå¥ã®ïŒp-1ïŒ/ 4æ²ç·ã«ã¯p + 2bã®éç¹æ®ç¹ããããŸãã ããã¯ãã§ã«å¿ èŠãªãã¹ãŠã®ååã§ãã
y 2 = x 3 -tâxã®å Žåã g 3 y 2 =ïŒgâxïŒ 3- ïŒg 2 tïŒïŒgâxïŒ ã åºå®xã®å Žåãæ¹çšåŒg 3 y 2 = ...ã®è§£ã®æ°ã¯2-æ¹çšåŒy 2 = ...ã®è§£ã®æ°ã§ãã ãããã£ãŠã t = g 2 ïŒãããã£ãŠïŒp-1ïŒ/ 4åæ§ã®æ²ç·ïŒã®æ²ç·äžã®éç¹æ®ç¹ã®æ°ã¯2p-ïŒp + 2aïŒ= p-2aã§ãã åæ§ã«ã t = g 3ã®æ²ç·äžã®éç¹æ®ç¹ã®æ°ã¯2p-ïŒp + 2bïŒ= p-2bã§ãã
ãããã£ãŠãæåã®èšç®æ¹æ³ã¯
Nãèšç®ãã2çªç®ã®æ¹æ³ã§ã¯ããŸãx 1ãšx 2ãä¿®æ£ããããªãã«ã®æ°tãšyãèšç®ããŸãããã®åŸããã¹ãŠã®ãã¢xã®çµæãè¿œå ããŸãã x 1 = x 2 =0Ì ã®å Žåãæ£ç¢ºã«pãªãã·ã§ã³ããããŸããyã¯äž¡æ¹ãšããŒãã§ãªããã°ãªããã tã¯ä»»æã§ãã x 1 =0Ì ããã³éãŒãx 2ã®å Žå ã y 1 = 0 ã§ããå¿ èŠãããã y 2ã¯ä»»æã§ããã tã¯æ確ã«èšç®ããã pãªãã·ã§ã³ãåã³ååŸãããŸãã ãŒãx 2ãšéãŒãx 1ã®ç¶æ³ã¯å¯Ÿç§°çã§ãã æåŸã«ãäž¡æ¹ã®xããŒã以å€ã«ããŸãã 次ã«ã t = x 1 2- ïŒy 1 2 / x 1 ïŒã§ãæ¡ä»¶ïŒx 2 / x 1 ïŒy 1 2 = y 2 2 + x 2 ïŒx 1 2 -x 2 2 ïŒã§ãã¢ã®æ°yãèšç®ããå¿ èŠããããŸãã
x 1 = x 2ã®å Žåãæ¹çšåŒã¯yã®2ä¹ãäžèŽããããã®æ¡ä»¶ã«å€ããã yã®ç°ãªããã¢ã¯1 + 2ïŒp-1ïŒãååŸããŸãã x 1 = -x 2ã®å Žåã pã¯4ã§å²ã£ããšãã«äœã1ãäžãã-1Ì ã¯2次å°äœã§ãããããç¶æ³ã¯äŒŒãŠããŸãã
x 2 / x 1ã±1Ì ã«çãããªã2次å°äœã®å Žåã c 2 = x 2 / x 1ã§ãããããªéãŒãã®cããããŸãã 次ã«ïŒc 2 y 1 2 -y 2 2 ïŒ=ïŒcây 1 -y 2 ïŒïŒcây 1 + y 2 ïŒ= x 2 ïŒx 1 2 -x 2 2 ïŒ ãåŒcây 1- y 2ã¯ãŒã以å€ã®ä»»æã®å°äœã§ããã cây 1 + y 2ãäžæã«æ±ºå®ããŸã ããããã£ãŠã y 1ãšy 2ã決å®ããŸãã åèšp-1ãªãã·ã§ã³ã
x 2 / x 1ã2次ã®éå°äœã®å Žåãæ¥åæ²ç·ãšåæ§ã«ã解ã®æ°ã¯2p -2次ã®å°äœã®å Žåã®è§£ã®æ°ãã€ãŸã2p-ïŒp-1ïŒ= p + 1ã§ãã
ãŸãšããŸãã x 1 = x 2 = 0㧠påã®è§£ãäžãããªãã·ã§ã³ã1ã€ãããŸãã 2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããã xã® 1ã€ããŒãã§ããã1ã€ããŒã以å€ã®å Žåãåãªãã·ã§ã³ã¯påã®è§£ãäžããŸãã x 2 =±x 1ã® 2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããããããã2p-1ã®è§£ãäžããŸãã ïŒp-1ïŒïŒïŒp-1ïŒ/ 2-2ïŒãªãã·ã§ã³ãããã x 1ã¯ä»»æã®éãŒãã®å°äœã§ããã x 2 / x 1ã¯Â± 1 1以å€ã®2次å°äœã§ããããããã®åãªãã·ã§ã³ã¯p-1ãäžããŸã決å®ã æåŸã«ã ïŒp-1ïŒ 2/2ãªãã·ã§ã³ããããŸããx1ã¯ä»»æã®éãŒãã®å°äœã§ããã x 2 / x 1ã¯2次ã®éå°äœã§ããããããã®åãªãã·ã§ã³ã«ã¯p + 1ã®è§£ããããŸãã åèš
ã
Nã®2ã€ã®åŒãæ¯èŒãããšã蚌æãå®äºããŸãã
ããã蚌æããããã«ã次ã®å¥åŠãªéNã2ã€ã®æ¹æ³ã§èšç®ããŸãïŒ5ã€ã®æ®åºã®æ°ïŒ x 1 ãy 1 ãx 2 ãy 2 ãt ïŒã§ã2ã€ã®åŒãåæã«æºããããããã«ããŸãïŒ y 1 2 = x 1 3 -tâx 1ããã³y 2 2 = x 2 3 -tâx 2 ã
æåã®æ¹æ³ã§ã¯ãæåã«tãä¿®æ£ãã xãyãã4ã®æ°ãèšç®ããŸãããã®åŸããã¹ãŠã®tã®çµæãè¿œå ããŸãã åºå®tã®å Žåããã¢ïŒ x 1 ãy 1 ïŒã¯æ²ç·ã®ä»»æã®éç¹æ®ç¹y 2 = x 3 -tâx ã2çªç®ã®ãã¢ïŒ x 1 ãy 1 ïŒã¯åãæ²ç·ã®ä»»æã®éç¹æ®ç¹ããã®ãããªãã¢ã®ç·æ°ã¯ãéç¹æ®ãã€ã³ãã®æ°ã®2ä¹ã«çãããªããŸãã ïŒå®éããããå¥åŠãªéãæ€èšããŠããçç±ã§ããa2ãšb 2ã«è¿ã¥ããããšãã§ããŸãã ïŒ t = 0ã®å Žåãæ¹çšåŒy 2 = x 3ã¯æ¢ã«è¿°ã¹ãããã«ãæ¥åæ²ç·ãå®çŸ©ãããæ¹çšåŒãšåæ°ã®è§£ãæã¡ãŸãz 2 = x ïŒããã§y = zâx ïŒãã€ãŸãæ£ç¢ºã«p t = 1ã®å Žåã p + 2aã®è§£ãåŸããã t = g - p + 2bã®è§£ãåŸãããŸãã ä»ã®tå€ã¯ã©ãã§ããïŒ
y 2 = x 3 -tâxãã€cããŒã以å€ã®å°äœã®å Žåã c 6 y 2 = c 6 x 3 -c 6 tâxã§ãããããã¯ïŒc 3 yïŒ 2 =ïŒc 2 xïŒãšåç3 -c 4 tâïŒc 2 xïŒ ã ã€ãŸãã ïŒxãyïŒãtã®æ¹çšåŒã®è§£ã§ããå Žåã ïŒc 2 xãc 3 yïŒã¯c 4 tã®æ¹çšåŒã®è§£ã§ããããã解ã®æ°ã¯tããã³c 4 tãšäžèŽããŸãã c 4ã®åœ¢ã®ããã€ã®ç°ãªãéãŒãæ®åºïŒ äžæ¹ã§ã¯ãå°ãªããšãïŒp-1ïŒ/ 4 ïŒ ïŒp-1ïŒã®cã®å€ã¯4ãè¶ ããªãã°ã«ãŒãã«ãçµåãã§ããŸããäžæ¹ã ïŒp-1ïŒ/ 4ãæŽæ°ã®å Žåããã¹ãŠãã®ãããªæ®å·®ã¯å€é åŒx ïŒp-1ïŒ/ 4 -1ã®æ ¹ã§ããããããã以äžïŒp-1ïŒ/ 4ã¯ååšã§ããŸããã ãããã£ãŠãæ£ç¢ºã«ïŒp-1ïŒ/ 4åãããŸã ã
ãããã£ãŠã ïŒp-1ïŒ/ 4æ²ç·ã«ã¯p + 2aã®éç¹æ®ç¹ããããå¥ã®ïŒp-1ïŒ/ 4æ²ç·ã«ã¯p + 2bã®éç¹æ®ç¹ããããŸãã ããã¯ãã§ã«å¿ èŠãªãã¹ãŠã®ååã§ãã
y 2 = x 3 -tâxã®å Žåã g 3 y 2 =ïŒgâxïŒ 3- ïŒg 2 tïŒïŒgâxïŒ ã åºå®xã®å Žåãæ¹çšåŒg 3 y 2 = ...ã®è§£ã®æ°ã¯2-æ¹çšåŒy 2 = ...ã®è§£ã®æ°ã§ãã ãããã£ãŠã t = g 2 ïŒãããã£ãŠïŒp-1ïŒ/ 4åæ§ã®æ²ç·ïŒã®æ²ç·äžã®éç¹æ®ç¹ã®æ°ã¯2p-ïŒp + 2aïŒ= p-2aã§ãã åæ§ã«ã t = g 3ã®æ²ç·äžã®éç¹æ®ç¹ã®æ°ã¯2p-ïŒp + 2bïŒ= p-2bã§ãã
ãããã£ãŠãæåã®èšç®æ¹æ³ã¯

Nãèšç®ãã2çªç®ã®æ¹æ³ã§ã¯ããŸãx 1ãšx 2ãä¿®æ£ããããªãã«ã®æ°tãšyãèšç®ããŸãããã®åŸããã¹ãŠã®ãã¢xã®çµæãè¿œå ããŸãã x 1 = x 2 =0Ì ã®å Žåãæ£ç¢ºã«pãªãã·ã§ã³ããããŸããyã¯äž¡æ¹ãšããŒãã§ãªããã°ãªããã tã¯ä»»æã§ãã x 1 =0Ì ããã³éãŒãx 2ã®å Žå ã y 1 = 0 ã§ããå¿ èŠãããã y 2ã¯ä»»æã§ããã tã¯æ確ã«èšç®ããã pãªãã·ã§ã³ãåã³ååŸãããŸãã ãŒãx 2ãšéãŒãx 1ã®ç¶æ³ã¯å¯Ÿç§°çã§ãã æåŸã«ãäž¡æ¹ã®xããŒã以å€ã«ããŸãã 次ã«ã t = x 1 2- ïŒy 1 2 / x 1 ïŒã§ãæ¡ä»¶ïŒx 2 / x 1 ïŒy 1 2 = y 2 2 + x 2 ïŒx 1 2 -x 2 2 ïŒã§ãã¢ã®æ°yãèšç®ããå¿ èŠããããŸãã
x 1 = x 2ã®å Žåãæ¹çšåŒã¯yã®2ä¹ãäžèŽããããã®æ¡ä»¶ã«å€ããã yã®ç°ãªããã¢ã¯1 + 2ïŒp-1ïŒãååŸããŸãã x 1 = -x 2ã®å Žåã pã¯4ã§å²ã£ããšãã«äœã1ãäžãã-1Ì ã¯2次å°äœã§ãããããç¶æ³ã¯äŒŒãŠããŸãã
x 2 / x 1ã±1Ì ã«çãããªã2次å°äœã®å Žåã c 2 = x 2 / x 1ã§ãããããªéãŒãã®cããããŸãã 次ã«ïŒc 2 y 1 2 -y 2 2 ïŒ=ïŒcây 1 -y 2 ïŒïŒcây 1 + y 2 ïŒ= x 2 ïŒx 1 2 -x 2 2 ïŒ ãåŒcây 1- y 2ã¯ãŒã以å€ã®ä»»æã®å°äœã§ããã cây 1 + y 2ãäžæã«æ±ºå®ããŸã ããããã£ãŠã y 1ãšy 2ã決å®ããŸãã åèšp-1ãªãã·ã§ã³ã
x 2 / x 1ã2次ã®éå°äœã®å Žåãæ¥åæ²ç·ãšåæ§ã«ã解ã®æ°ã¯2p -2次ã®å°äœã®å Žåã®è§£ã®æ°ãã€ãŸã2p-ïŒp-1ïŒ= p + 1ã§ãã
ãŸãšããŸãã x 1 = x 2 = 0㧠påã®è§£ãäžãããªãã·ã§ã³ã1ã€ãããŸãã 2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããã xã® 1ã€ããŒãã§ããã1ã€ããŒã以å€ã®å Žåãåãªãã·ã§ã³ã¯påã®è§£ãäžããŸãã x 2 =±x 1ã® 2ã€ã®ïŒp-1ïŒãªãã·ã§ã³ãããããããã2p-1ã®è§£ãäžããŸãã ïŒp-1ïŒïŒïŒp-1ïŒ/ 2-2ïŒãªãã·ã§ã³ãããã x 1ã¯ä»»æã®éãŒãã®å°äœã§ããã x 2 / x 1ã¯Â± 1 1以å€ã®2次å°äœã§ããããããã®åãªãã·ã§ã³ã¯p-1ãäžããŸã決å®ã æåŸã«ã ïŒp-1ïŒ 2/2ãªãã·ã§ã³ããããŸããx1ã¯ä»»æã®éãŒãã®å°äœã§ããã x 2 / x 1ã¯2次ã®éå°äœã§ããããããã®åãªãã·ã§ã³ã«ã¯p + 1ã®è§£ããããŸãã åèš

Nã®2ã€ã®åŒãæ¯èŒãããšã蚌æãå®äºããŸãã
æå·åã¯ã©ãã§ããïŒ
ã«ãžã£ã³ãã«èšå·ãpåã«ãŠã³ãããŠaãšbãèšç®ããã®ã¯å®çšçã§ã¯ãããŸããã Cornacchiaã¢ã«ãŽãªãºã ã¯ããããã¯ããã«é«éã«åŠçã§ããŸã ã å®éã®å©ç¹ã¯ãaãbã®åŒãå察æ¹åã«äœ¿çšããããšã§ããå±ép = a 2 + b 2㯠ã aãšbã®é åãšç¬Šå·ã®å€åãŸã§äžæã§ããããšã蚌æã§ããããã aãšbãèŠã€ããããšã¯æ²ç·yäžã®ç¹ã®æ°ãç¥ãããšãæå³ããŸã2 = x 3 -tâxéãŒãtã®å Žåãããã¯p + 1±2aããã³p + 1±2bã«ãªããŸãã
æ²ç·äžã®ãã€ã³ãã®æ°ãç¥ãããšã¯ããã®æ²ç·äžã®æå·åã«ãšã£ãŠéèŠã§ãã æ¥åæ²ç·ã§ã¯ããŒãã®åœ¹å²ã®ç¹å¥ãªãã€ã³ãOã䜿çšããŠããã€ã³ããè¿œå ããæäœïŒæå·åã«ã€ããŠå°ãªããšãäœããç¥ã£ãŠãã人ãªã誰ã§ãèããŠãããããããŸããïŒãå ¥åã§ããŸãã å ç®æŒç®ã«åºã¥ããŠãèªç¶æ°ã«ããä¹ç®ã決å®ã§ããŸãïŒ 2P = P + P ã 3P = P + P + Pãªã© ã ãããã£ãŠã nãæ²ç·ã®æ¬¡æ°ã§ããå Žåãä»»æã®ç¹Pã«å¯ŸããŠnP = Oã§ããããšã蚌æã§ããŸãã nãcãdã ãããã° ã xâïŒcPïŒ= dPãšãã圢åŒã®æ¹çšåŒã解ãããšãã§ããŸããå°äœã®é€ç®ã«å®å šã«é¡äŒŒããŠããŸããé«åºŠãªãŠãŒã¯ãªããã¢ã«ãŽãªãºã ã¯ã câx + nây = 1 ã x xïŒcPïŒ+ yâïŒnPïŒ= P ãã€ãŸãxâïŒcPïŒ= P. ããã«ã cãdãäžæã§ã cPãšdPã座æšã§äžããããŠããå Žåãæå¹ãªåå²æ¹æ³ã¯äžè¬ã«äžæã§ãã
äžããããæ²ç·äžã®ç¹ã®æ°ãèšç®ããããšã¯ããªãå°é£ã§ãïŒå€é åŒã¢ã«ãŽãªãºã ãååšããŸãããå®éã«ã¯ããªãé ãã§ãïŒã ãã€ã³ãæ°ã«é¢ããããã€ãã®ããããã£ã䜿çšããŠæ²ç·ãäœæããã«ã¯ãå¿ èŠãªãã®ãåŸããããŸã§ã©ã³ãã ä¿æ°ãåãããµã€ã¯ã«å ã®ãã€ã³ãæ°ãèšç®ããããšããŸãããåŸ ã€å¿ èŠããããŸãã 幞ããªããšã«ãå¥ã®æ¹æ³ããããŸãã
4k + 1ã®åœ¢åŒã®çŽ æ°ãšç¹å¥ãªåœ¢åŒã®æ²ç·y 2 = x 3 -tâx ïŒããæå³ãä»»æã®éãŒãtã®æ²ç·ïŒã«æºè¶³ããç¹æ°p + 1±2aãŸãã¯p + 1± 2b ãããªãã¯ãããåãããšãã§ããŸãã ä»ã®æ²ç·ã¯ã©ãã§ããïŒ
å°ãåŸã®1911幎ã«ãå¥ã®èè von Schrutkaã y 2 = x 3 -tã®åœ¢åŒã 6k + 1ã®åçŽãªåœ¢åŒãããã³è¡šçŸp = a 2 + 3b 2ã®æ²ç·ã«ã€ããŠåæ§ã®çµæãåŸãŸãã ã ãã®ãããæ²ç·y 2 = x 3 -täžã®ç¹ã®æ°ãèŠã€ããããã«ãCornacchiaã¢ã«ãŽãªãºã ãåã³å¯èœã«ããŸãã
蚌æ ã«ã€ããŠäžèš
å
šäœãšããŠã®èšŒæã¯äžèšãšåæ§ã§ã t = 1ãg 2 ãg 4ã«å¯ŸããŠ3ã€ã®æ°åaãb 1 ãb 2ã®ã¿ãçŸããŸããããã§ã gã¯ç«æ¹äœã§ã¯ãªãããããã®åèšã¯ãŒãã§ãããå¹³æ¹åãèšç®ãããŸãã åçŽãªå€æã®åŸãå¿
èŠãªãã®ãåŸãããŸãã
åŸã«ãæ¥åæ²ç·ã®çè«ãçºå±ããã«ã€ããŠã 4p = a ' 2 + dâb' 2ã®è¡šçŸãããå Žåã dã¯èªç¶ã§ããã4ã§å²ããšã0ãŸãã¯3ã®å°äœãåŸããã pãšã¯äºãã«çŽ ã§ããããšãæããã«ãªããŸãã倧ãããããšã pãéåžžã«å€§ããå Žåã§ããæ£ç¢ºã«p + 1±a 'ãã€ã³ããæã€æ²ç·ãå¹ççã«äœæã§ããŸãã 2ã€ã®æå°å€d = 3ããã³d = 4ã¯ãæ²ç·y 2 = x 3 -tããã³y 2 = x 3 -tâxã«å¯Ÿå¿ããŸãã d = 163ã®äŸïŒ

å¥æ°pâ 163ã®å Žåããã®æ¹çšåŒã¯æ¥åæ²ç·ãå®çŸ©ããŸãã 4pãæŽæ°a 'ãb'ã§a ' 2 + 163b' 2ã®åœ¢åŒã§è¡šçŸã§ããå Žåãæ¥åæ²ç·äžã®ç¹ã®æ°ã¯p + 1±a 'ã§ãã ããã§ãªãå Žåã¯ã p + 1ã§ãã æ®å¿µãªããããã®èšŒæã¯ãããŒããçè«ã䜿çšããŠãããããããã§ã¯ãã³ããããããŸããã
ãã ããéåžžãã©ãžã«ã«ãååŸãããŸãã ããšãã°ã d = 15ã®å Žå ïŒ
