
翻蚳è ã®ã³ã¡ã³ãïŒHPMORã®èè ã Lesswrongããã³ãã®ä»ã®èè ã§ããYudkowskyã¯ãèªç¶ç§åŠã«ããããã€ãžã¢ã³çµ±èšã®å©ç¹ã«é¢ããç«å Žã察話ã®åœ¢ã§è¡šæããŸããã ãã®ãããªå¯Ÿè©±ã¯ãå€ä»£ãŸãã¯ã«ããµã³ã¹ã®å€å žã§ãããç»å Žäººç©ã¯ã¢ã€ãã¢ãè¡šçŸããããŒãã絡ã¿åã£ãè°è«ãšå¿ ç¶çã«æããªã·ã³ããªãã£ãªãšå ±æããŸãã 察話ã¯éåžžã«é·ããèªãã®ã«çŽ20åããããŸãããç§ã®æèŠã§ã¯äŸ¡å€ããããŸãã
å
責äºé
ãã€ãžã¢ã³èŠåã«è©³ãããªãå Žåã¯ãã¢ãŒãã¿ã«ã®Webãµã€ãã«è©³çŽ°ãªçŽ¹ä»ããããŸãã
- ãã®å¯Ÿè©±ã¯ããã€ãžã¢ã³æ¯æè ã«ãã£ãŠæžãããŸãã ã 以äžã®ãã€ã¢ãã°ã§ã®ç§åŠè ã®çºèšã¯ã ãã¥ãŒãªã³ã°ã®ç±ç䞻矩ã®ã€ããªãã®ãŒãã¹ãã«åæ Œããªãå ŽåããããŸãã 圌ãã¯ã確çãžã®é »åºŠã¢ãããŒãã®æ¯æè ã®è°è«ãšåè«ã«æ¬æãæããªãå¯èœæ§ããããŸãã
- èè ã¯ã以äžã«èª¬æããææ¡ãä»åŸ10幎éã§å¹ åºãç§åŠçã«åãå ¥ãããããšã¯èããŠããŸããã ããããæžã䟡å€ã¯ãããŸããã
ãã€ãžã¢ã³èŠåã«è©³ãããªãå Žåã¯ãã¢ãŒãã¿ã«ã®Webãµã€ãã«è©³çŽ°ãªçŽ¹ä»ããããŸãã
ã¢ãã¬ãŒã¿ãŒïŒããã°ãã¯ã ä»æ¥ãç§ãã¡ã®ã¹ã¿ãžãªã§ïŒ ç§åŠè ãååŠå¿çåŠãªã©ã®åéã®å°é家ãç·Žç¿ããŠããŸãã ç§åŠã®åçŸæ§ã®å±æ©ãPå€ããã€ãžã¢ã³çµ±èšã®äœãã§çœ®ãæããããšã§ãã©ãã«ãããŠå æã§ããããšã蚌æããããšããçžæã®Bayesovets ...
åŠçïŒãã¿ãŸãããã€ã¥ãã¯ã©ãã§ããïŒ
ã¢ãã¬ãŒã¿ãŒïŒ ...ãããŠãæåŸã«ãç§ã®å³ã®ç解ã®åŠçã
ã¢ãã¬ãŒã¿ãŒïŒBayesovets ãæåã«ããªãã®ææ¡ã®æ¬è³ªãæããŠãã ããã
BayesovetsïŒå€§ãŸãã«èšã£ãŠããã€ã³ãã¯ããã§ãã ã³ã€ã³ããããšããŸãããã ç§ãã¡ã¯ããã6åæããŠãã·ãªãŒãºãLLCOORãã芳å¯ããŸãïŒãããïŒPer .ïŒä»¥éO-OryolãR-ReshkaïŒ ã ã³ã€ã³ã«äœãåé¡ããããšçãã¹ãã§ããïŒ
ç§åŠè ïŒãªãã
BayesovetsïŒããã®ã³ã€ã³ã¯ã»ãã®äžäŸã§ãã ãã©ã³ãã£ã¢ã®ãµã³ãã«ã«ã2ã€ã®Cookieãå«ããã¬ãŒããæäŸãããšããŸãã1ã€ã¯ç·ã®ã¹ããªã³ã¯ã«ããã1ã€ã¯èµ€ã§ãã æåã®5人ã¯ç·ã®ã¯ãããŒãåãã6人ç®ã¯èµ€ã®ã¯ãããŒãåããŸãã 人ã ãç·ã®æ¯ããããã¯ãããŒã奜ããšããã®ã¯æ¬åœã§ããããããšããã®ãããªçµæã¯ã©ã³ãã ãšèŠãªãããæ¹ãè¯ãã®ã§ããããïŒ
åŠçïŒããããã人ã ã¯ç·ã®æ£æ°Žã奜ãã®ã§ã¯ãªãããšçãå¯èœæ§ããããŸãã å°ãªããšããç·è²ã®ã¹ããªã³ã¯ã«ã®ãããªå¥åŠãªå®éšã«å¿é¡ããåŸåã®ããå¿çåŠã®åŠçã¯å€ãã 6åã®èŠ³å¯ã®åŸã§ãããããçãããšãã§ããŸãããããçš®ã®æç²ããããšæãããŸãã
ç§åŠè ïŒããã¯çããããšã¯æããŸããã å€ãã®ä»®èª¬ã¯N = 6ã§ææã«èŠããŸãããN = 60ã§ã¯ç¢ºèªãããŸããã
BayesovetsïŒå人çã«ã¯ãç§ãã¡ã®ãã©ã³ãã£ã¢ã¯èµ€ããããã³ã°ã奜ãŸãªãããå°ãªããšãããŸã奜ãŸãªããšæãã§ãããã ããããäžè¬ã«ããããã®äŸã¯ãPå€ãçŸä»£ã®ç§åŠçµ±èšã§ã©ã®ããã«èæ ®ãããŠãããããããŠãã€ãºã®èŠ³ç¹ãããããã®äœãééã£ãŠãããã瀺ãããã ãã«æãã€ããŸããã
ç§åŠè ïŒãããã30人ã®ãã©ã³ãã£ã¢ã§ããçŸå®çãªäŸãæãã€ãããšã¯ã§ããŸãããïŒ
BayesovetsïŒå¯èœã§ãããçåŸã¯ãã§ã«äœãç解ããŠããŸããã
åŠçïŒããã¯ç¢ºãã§ãã
BayesovetsïŒã ããã芪æãªãå°é家ïŒã¯ã·ãã¯ã·ãã¯ã·ãã¯ã·ãã¯ã·ãå°Ÿã éèŠãªã®ã¯ããã®çµæããçµ±èšçã«ææããšåŒã¶ãã©ããã§ãã
ç§åŠè ïŒãã¹ã¿ãŒãããã¯éèŠã§ã¯ãããŸããã ã³ã€ã³ãå ¬æ£ã§ãããšããåž°ç¡ä»®èª¬ïŒãŸãã¯ã¹ããªã³ã¯ã«ã®è²ãã¯ãããŒã®éžæã«åœ±é¿ãäžããªããšããåæ§ã®åž°ç¡ä»®èª¬ïŒã§ã¯ã64ã®ã±ãŒã¹ã®ãã¡14ã§åããŸãã¯ããé¡èãªçµæãåŸãããŸãã
åŠçïŒããã ç§ã¯æ£ããç解ããŠããŸããããã¯ãLLCOOOãšRRORRRã®çµæããåãããã以äžã«é¡èãã§ãããšèããŠããããã§ããåèš14åããã6ã¹ããŒã®çµæã®åèšæ°ã¯2 6 = 64ã§ãã 14/64ã¯22ïŒ ã§ããã5ïŒ ãããé«ããããçµæã¯p <0.05ã®ã¬ãã«ã§ã¯ææãšã¯èŠãªãããŸããã ã ããïŒ
ç§åŠè ïŒããã§ãã ãŸããå®éã«ã¯ãLLCOOOã®çµæã§ãã£ãŠããå®éšãäžæ¢ããŠãã¯ã·ã«ãã£ãŠåžžã«ã³ã€ã³ãè±èœãããšããäºå®ã«é¢ããèšäºãæžãã¹ãã§ã¯ãªãããšã«æ³šæããŠãã ããã
BayesovetsïŒäºå®ããã€ã§ãã³ã€ã³ãæããã®ãæ¢ããããšãã§ãããªããããªãã¯èªåããå¿ èŠããããŸãïŒãã¯ã·ã®æ°ãå ¬ã«èŠããå®éšãæ¢ãããã®ãããªç¬éãèŠã€ããå¯èœæ§ã¯ã©ããããããã§ããããïŒããããŠããã¯På€ãã©ãã€ã ã§ããŸã£ããç°ãªã話ã
ç§åŠè ïŒç§ã¯6ã€ã®å®éšã ããæå³ããŸãã-ã¯ãããŒã®è²ãç 究ããŠããããã¯æ·±å»ã§ã¯ãããŸããã ããããã¯ããããªããæ£ããã§ãã
åŠçïŒã©ãããŠãããéèŠãªã®ã§ãããã³ã€ã³ãæããã®ããããããšãã§ããŸããïŒ
BayesovetsïŒãã°ããã質åã§ãã
ç§åŠè ïŒå®éãPå€ã¯è€éãªãã®ã§ãã æ°åãååŸããŠããã°ã©ã ã«å ¥ãããã®ããã°ã©ã ãæäŸãããã®ãå ¬éããããšã¯ã§ããŸããã ã³ã€ã³ãæ£ç¢ºã«6åããªããããçµæã«é¢ä¿ãªãåæ¢ããããšãäºåã«æ±ºå®ããå ŽåãLLCOOOãŸãã¯RRRRRRã®çµæã¯64åã®ãã¡å¹³å2åããŸãã¯ã±ãŒã¹ã®3.1ïŒ ã§ååŸãããŸãã ããã¯p <0.05ã§éèŠã§ãã ããããããªããå®éã«æ¬ºceçã§äžcruæ ãªåœé è ã§ãããšä»®å®ããŸãã ãŸãã¯ãèªåãäœãããŠããããç解ããŠããªãç¡èœãªåŠçã ããŒã«ã®æ°ãäºåã«éžæãã代ããã«ãçµ±èšçã«ææãªçµæãåŸããããŸã§ã³ã€ã³ãæããŸãã ã³ã€ã³ããŸã£ããåãåæ°æããããšãåãã£ãŠæ±ºããå Žåãçµ±èšçã«éèŠã§ã ã ããããå®éã«ã¯ãäºåã«ããã決å®ããŠããŸããã çµæãåŸãããŠããåæ¢ããããšã«ããŸããã ããã¯ã§ããŸããã
åŠçïŒããŠãã©ããã§èªãã ã®ã§ãããããã§äœãæªãã®ãç解ã§ããŸããã§ããã ããã¯ç§ã®ç 究ã§ãããååãªããŒã¿ããããã©ãããããç¥ãå¿ èŠããããŸãã
ç§åŠè ïŒ På€ã®èŠç¹ã¯ãåž°ç¡ä»®èª¬ãåæ Œããªããšãããã¹ããäœæããããšã§ãã èšãæããã°ãç«ã®ãªãç ãããŸãäžè¬çã§ãªãããšã確èªããŸãã ãããè¡ãã«ã¯ãç®çã®çŸè±¡ããªãå Žåã«ãçµ±èšçã«ææãªãçºèŠãçæããªãããã«ç 究ãæŽçããå¿ èŠããããŸãã ã³ã€ã³ãæ£ç¢ºã«6åã²ã£ããè¿ãïŒãããŠãã®æ°ãäºåã«æ±ºå®ããïŒå Žåããã§ã¢ã³ã€ã³ãã6åã®ã¯ã·ãŸãã¯6åã®å°ŸãåŸã確çã¯5ïŒ æªæºã§ãã ã³ã€ã³ã奜ããªã ãæããŠãåæãã®åŸã«På€ãæ°ããå ŽåïŒããŒã«ã®æ°ãäºåã«ããã£ãŠãããµããããŠããå ŽåïŒãé ããæ©ããp <0.05æªæºã«ãªããã£ã³ã¹ã¯ 5ïŒ ãã¯ããã«è¶ ããŸãã ãããã£ãŠããã®ãããªå®éšã§ã¯ã20ã±ãŒã¹äž1ã±ãŒã¹ãããã¯ããã«é »ç¹ã«ç«çœã®ãªãç ãæ€åºãããŸãã
BayesovetsïŒå人çã«ã¯ããã®åé¡ã次ã®ããã«å®åŒåããã®ã奜ãã§ããã³ã€ã³ãæããŠãOOOOORãç²åŸãããšããŸãããã åæã«ããªããã¢ãã©ãŒã«ã®ã¿ç¥ãããŠããå¿ã®å¥¥æ·±ãã«ãããªãïŒã¢ãã©ãŒã¯è³¢æã§ãããç¥ã£ãŠããïŒ ãäºåã®æãã®æ°ã§ãçµæã¯éèŠã§ã¯ãããŸããã p = 0.22 3ãæåŸãã»ã³ããã©ã³ã·ã¹ã«èªããç«ãŠãŠå°ŸãæãããŸã§ã³ã€ã³ãæããå Žåããã®çµæã¯çµ±èšçã«ææã§ãããp = 0.03ãéåžžã«è¯å¥œã§ãã 確çã1ã®å Žåã1ããŒã«ã¯1/32ã®6å以äžã®ã¹ããŒãåŸ ã€å¿ èŠãããããã§ãã
åŠçïŒäœïŒ
ç§åŠè ïŒãã¡ãããããã£ã®ãããªãã®ã§ãã å®éã«ã¯ã1ã€ã®å°ŸãæããããŸã§èª°ãã³ã€ã³ãæããŸããã ããããå®éã«ã¯Bayesovetsã¯æ£ããã§ããPå€ã¯ãã®ããã«æ©èœããŸãã å³å¯ã«èšãã°ãåŸãããçµæã®äžã§çµæãã©ãã»ã©ãŸãã§ããããèŠã€ããããšããŠããŸãã æåã®å°Ÿã®åã«ã³ã€ã³ãæãã人ã¯ãçµæãåŸãããšãã§ããŸã{PãORãOORãLLCãOOORãLLCOOR ...}ãªã©ã 6å以äžã®ã·ã§ãããè¡ãããçµæã®ã¯ã©ã¹ã¯{LLCOOORãLLCOOORãLLCOOOOR ...}ã§ããããã®åèšç¢ºçã¯1/64 + 1/128 + 1/256 ... = 1/32ã§ãã ãããŠãã³ã€ã³ãæ£ç¢ºã«6åæãã人ã¯ãã¯ã©ã¹{ããã...}ã®çµæã®1ã€ãåãåããŸãã å®éšã®ç®çäžãLLCOOORã¯LLCOROãLLCOROOãªã©ãšåçã§ãã ãã®ããããããã¯ãã¹ãŠçŽæã«åããŸãã æåã®å®éšãå®éã«è¡ã£ãå ŽåãLLCOORã¯éèŠãªçµæã«ãªããæ£çŽãªã³ã€ã³ã§ã¯ããããã«ãããŸããã 2çªç®ã®å®éšãå®æœããå ŽåãLLCOORã¯éèŠã§ã¯ãããŸãããæ£çŽãªã³ã€ã³ã䜿çšããŠããåæ§ã®ããšãæã çºçããããã§ãã
BayesovetsïŒå®éšã®çµæãããªãã®èãã«äŸåããŠãããšããäºå®ã«æ©ãŸãããããšããããŸããïŒ
ç§åŠè ïŒããã¯è¯å¿ã®åé¡ã§ãã çµæã«ã€ããŠãããã€ããã€ãŸããã³ã€ã³ãã©ã¡ãã®åŽã«èœã¡ããã«ã€ããŠæåéããããã€ããªããã©ããªçš®é¡ã®ç 究ã§ãè²»çšã¯ããããŸããã ã©ã®ãããªå®éšãè¡ããããã«ã€ããŠãããã€ããš-å¹æã¯åãã«ãªããŸãã ã ãããããªãã¯ãããåãåã£ãŠãã©ã®ã«ãŒã«ã§ã¹ããŒãè¡ãããããæ£çŽã«èšãå¿ èŠããããŸãã ãã¡ãããç§åŠè ã®é ã®äžèº«ã¯ãã³ã€ã³ãã©ã¡ãã®é¢ã«ããããããæçœã§ã¯ãããŸããã ãããã£ãŠã被éšè ã®æ°ãã©ã®ããã«æ±ºå®ãããããèšè¿°ããã®ã§ã¯ãªããåæãã©ã¡ãŒã¿ãŒã埮調æŽããããšã¯åžžã«å¯èœã§ããããæ°ã«å ¥ãã®ä»®èª¬ã確èªããçµ±èšçæ€å®ãéžæããŸã...ããªããæããªãå€ãã®ããšãèããããŸãã ãŸãããœãŒã¹ããŒã¿ãæ¹ãããããããç°¡åã§ãã è±èªã§ã¯ãããã¯Pãããã³ã°ãšåŒã°ããŸãã ãããŠå®éã«ã¯ããã¡ãããäºå®ã®åŸã«çºæãããæããªåž°ç¡ä»®èª¬ãããã¯ããã«å°ãªãæ¹æ³ã§ç«ã䜿ããã«ç ãçæããŸãã ããã¯æ·±å»ãªåé¡ã§ãããåçŸæ§ã®å±æ©ãããçšåºŠé¢é£ããŠããŸãããã©ã®åé¡ãã¯æ確ã§ã¯ãããŸããã
åŠçïŒããã¯...åççã§ããïŒ ããããããã¯ããªããé·ãé察åŠããå€ãã®äŸãæŽçããå¿ èŠããããã®ã®1ã€ã§ããããã®åŸãã¹ãŠãæããã«ãªããŸããïŒ
BayesovetsïŒãªãã
åŠçïŒã€ãŸãïŒ
BayesovetsïŒ ãåŠçãããªãã¯æåããæ£ããã£ãããšããæå³ã§ã å®éšè ãèãããã®ããã³ã€ã³ãã©ã¡ãã®åŽã«èœã¡ããã«åœ±é¿ããªãå Žåã圌ã®èãã¯ãæãã®çµæãå®å®ã«ã€ããŠæããŠããããšããäºå®ã«åœ±é¿ãäžããã¹ãã§ã¯ãããŸããã ç§ã®èŠªæãªãåŠçãããªãã«æããããçµ±èšã¯ãããªããå éšçã«äžè²«æ§ãä¿ã€ããšããæ°ã«ããŠããªããæ²ãã£ãæŸèæã®é床ã«è€éãªæã«ãããŸããã 倩åœã®ããã«ã圌女ã¯ããªãã®é ã§äœãèµ·ãã£ãŠãããã«å¿ããŠç°ãªãééã£ãçµæãåºããŸãïŒ ãããŠãããã¯äžéšã®ç§åŠè ããææãšæ¹æ³ããå°ãã ãŸãããšããåŸåãããã¯ããã«æ·±å»ãªåé¡ã§ãã
ç§åŠè ïŒããã¯...æ§ããã«èšã£ãŠãæ·±å»ãªå£°æã§ãã ããããæããŠãã ãããç§ã¯ããªãã«å°ããŸãïŒäžå¹žãªããšã«ãç§ãã¡ã¯äœãããŸããïŒ
BayesovetsïŒæ¬¡ã®ããã«åæããŸããLLCOORã®ãã®ç¹å®ã®çµæã¯ã1/64ãŸãã¯çŽ1.6ïŒ ã®ç¢ºçã§ãå®å šã«ãã©ã³ã¹ã®åããã³ã€ã³ã6åæããããšã§ååŸã§ããŸãã ã³ã€ã³ã®ãã©ã³ã¹ãäžå®å šã§ãããšãã§ã«çã£ãŠãããšããŸãã ãããŠäžå®å šã§ããã ãã§ãªãã6åã®ãã¡å¹³å5åã¯ã·ãèœãšããããªæ¹æ³ã§ã ããã¯ããã¡ããåçŽãªåçŽåã§ãããå°ãåŸã§çŸå®çãªä»®èª¬ã«é²ã¿ãŸãã ãããã£ãŠããã®ä»®æ³ã®äžæ£ãªã³ã€ã³ã¯ãïŒ5/6ïŒ 5 *ïŒ1/6ïŒ 1ã®ç¢ºçã§LLCOORã·ãŒã±ã³ã¹ãçæããŸãã ããã¯çŽ6.7ïŒ ã§ãã ãããã£ãŠã2ã€ã®ä»®èª¬ããããŸãããã³ã€ã³ã¯æãäžè¬çã§ãããšãã³ã€ã³ã¯5/6ã±ãŒã¹ã§ã¯ã·ã«ãã£ãŠèœãšãããŸããã 2çªç®ã®ã±ãŒã¹ã®ãã®ç¹å®ã®çµæã¯ãæåã®ã±ãŒã¹ã®4.3åã®å¯èœæ§ããããŸãã å¥ã®ä»®æ³ã®äžæ£ãªã³ã€ã³ã®LLCOORã·ãŒã±ã³ã¹ã®ç¢ºçã¯ã6åã®ãã¡5åãããŒã«ã§ããå Žåã0.01ïŒ ã§ãã ã ãã誰ããçªç¶ããããç§ãã¡ã®ç®ã®åã«ãã2çªç®ã®ã³ã€ã³ã ãšæã£ããã圌ã®ä»®èª¬ã«åè«ããããšãã§ããŸãã ãã®ç¹å®ã®çµæã¯ã6åã®ãã¡1åã ãã€ãŒã°ã«ã«ãã£ãŠèœãšãããã³ã€ã³ããããå ¬æ£ãªã³ã€ã³ã®æ¹ã146åé«ãå¯èœæ§ããããŸãã åæ§ã«ãç§ãã¡ã®ä»®æ³ã®èµ€ãã¯ãããŒæ奜家ã¯ãç·ãé£ã¹ãå¯èœæ§ãã¯ããã«äœãã§ãããã
åŠçïŒããŠãç§ã¯æ°åŠãç解ããŠããããã§ãã ããããççŽã«èšã£ãŠããã®æå³ãããããªãã
BayesovetsïŒãããã説æããŸããããŸããããã«æ³šæããŠãã ãããç§ã®èšç®ã®çµæã¯ãã³ã€ã³ãæ£ç¢ºã«6åå転ããçç±ã«äŸåããŸããã ãã¶ãã6åç®ã®æçã®åŸã«ãããŒã¿ããã§ã«ååã§ãããšå€æãããããããŸããã 5åé£ç¶ã§æããåŸã Namagiri Tayyarã倢ã®äžã§ããªãã«çŸããŠãããäžåºŠã³ã€ã³ãæããããã«ã¢ããã€ã¹ããŸããã ã³ã€ã³ã¯æ°ã«ããŸããã äºå®ã¯æ®ã£ãŠããŸãããã®ç¹å®ã®LLCOORã·ãªãŒãºã¯ãã€ãŒã°ã«ã«ãã£ãŠ6åã®ãã¡5åèœãšãããã³ã€ã³ãããæ£çŽãªã³ã€ã³ã®æ¹ã4åå°ãªãå¯èœæ§ããããŸãã
ç§åŠè ïŒããªãã®èšç®ã®å°ãªããšã1ã€ã®æçšãªæ©èœãããããšã«åæããŸãã 次ã¯ïŒ
BayesovetsïŒãããŠãçµæãéèªã«æ²èŒããŸãã 誰ã§ã仮説ã®å¯èœæ§ãèšç®ã§ãããããçããŒã¿ãšäžç·ã«äœ¿çšããããšãæãŸããã§ãã 誰ãããã³ã€ã³ã6ã®ãã¡5åã§ã¯ãªã10ãã9åèœäžããããšãã仮説ã«äºæããèå³ãæã£ããšããŸãããããã®å ŽåãLLCOOR芳枬ã·ãªãŒãºã®ç¢ºçã¯5.9ïŒ ã§ãããã¯6æããã®5ã«ã€ããŠã®ä»®èª¬ãããããã«äœãã§ãïŒ6 ã7ïŒ ïŒããã³ã€ã³ã®ãã©ã³ã¹ãå®å šã«ä¿ãããŠãããšãã仮説ã®3.7åïŒ1.6ïŒ ïŒã§ãã ãã¹ãŠã®å¯èœãªä»®èª¬ãäºåã«èãåºãããšã¯äžå¯èœã§ãããå¿ èŠã§ã¯ãããŸããã å®å šãªããŒã¿ãå ¬éããã ãã§ååã§ãã仮説ãç«ãŠãã°èª°ã§ãç°¡åã«å¿ èŠãªå¯èœæ§ãèšç®ã§ããŸãã Bayesianãã©ãã€ã ã§ã¯ãçããŒã¿ã®å ¬éãå¿ èŠã§ããããã¯ãäž»ã«ç¹å®ã®çµæã«çŠç¹ãåœãŠãããŠãããåäžã®çµæãšæãããã¯ã©ã¹ã«çŠç¹ãåœãŠãããŠããªãããã§ãã
ç§åŠè ïŒããã«åæããŸããå®å šãªããŒã¿ã»ããã®å ¬éã¯ãåçŸæ§ã®å±æ©ãå æããããã®æãéèŠãªã¹ãããã®1ã€ã§ãã ããããå人çã«ã¯ãããããã¹ãŠã®ãAã¯Bãããäœåãå¯èœæ§ãé«ãããã©ãããã°ãããããããŸããã
åŠçïŒç§ãã
ãã€ãžã¢ã³ã®ç·ïŒããã¯å®å šã«äºçŽ°ãªããšã§ã¯ãããŸãã... ãã€ãºã®ã«ãŒã«ã®çŽ¹ä»ãèªãã§ããŸããïŒ
åŠçïŒãã°ãããã çµ±èšã®ãã300ããŒãžã®æç§æžãããã«ãããŸãããç§ã¯ååã§ã¯ãããŸããã§ããã
BayesovetsïŒ 1æéã§å®éã«èªã ããšãã§ããŸãã ããã¯ãã¹ãŠæåéãäºçŽ°ãªããšã§ã¯ãªã ãã€ãŸã説æãå¿ èŠãªã ãã§ãã ããããããããŸãããå®å šãªçŽ¹ä»ããªãã®ã§ãç§ã¯äœããèããããšããŸãã ã»ãšãã©ã®å Žåãããã¯åççã«èãããŸã -ãããŠãããžãã¯ã¯æ¬åœã«æ£ãã-ããããèªæãªäºå®ã§ã¯ãããŸããã è¡ãã 次ã®æšè«ã®æ£ããã蚌æããå®çããããŸãã
ïŒãã€ãžã¢ã³ã¯ç©ºæ°ãåŸãŠããŸãïŒ
BayesovetsïŒææã®PlumeãšMiss Scarletã¯æ®ºäººã®çãããããšããŸãããã äž¡æ¹ã®äŒèšãç 究ããã®ã§ãææãç·æ§ã殺ãã®ã¯ãã¹ã¹ã«ãŒã¬ããã®2åç°¡åã ãšæããŸãã ãã®ä»®å®ããå§ããŸãã ããããæ 人ã¯æ¯æ®ºãããŠããããšãããããŸããã ãã«ãŒã ææã誰ãã殺ãããšããå Žåã圌ã¯10ïŒ ã®ç¢ºçã§æ¯ã䜿çšããããšãç¥ã£ãŠããŸãïŒãããŠã10ã®äžã§9ã®å ŽåãäŸãã°ãªãã«ããŒã奜ãã§ãããïŒã ãã¹ã¹ã«ãŒã¬ããã¯ã圌女ã殺ãããšã«æ±ºããå Žåã60ïŒ ã®ç¢ºçã§æ¯ã䜿çšããŸãã èšãæããã°ãææã«ããæ¯ã®äœ¿çšã¯ããã¹ã»ã¹ã«ãŒã¬ããã®æ¯ã®äœ¿çšããã6åå°ãªãå¯èœæ§ããããŸãã æ°ããæ å ±ãã€ãŸã殺人ã®æ¹æ³ããããããä»®å®ãæŽæ°ããPlumeããã©ãŒã«ãªãå¯èœæ§ãçŽ3åäœããšä»®å®ããå¿ èŠããããŸãïŒ2 * 1/6 = 1/3ã
åŠçïŒããããŸããã ãææãã«ãŒã ã¯ããã¹ã»ã¹ã«ãŒã¬ããããã殺ãå¯èœæ§ã3åå°ãªãããšãããã¬ãŒãºã¯ã©ãããæå³ã§ããïŒ
BayesovetsïŒä»ã«å®¹çè ãããªãå Žåãç ç²è ã殺ããã®ã¯Plumeã§ãã確çã¯1/4ã§ããããšãæå³ããŸãã æ®ãã®3/4ã¯ããã©ãŒãã¹ã«ãŒã¬ãã嬢ã§ãã確çã§ãã ãããã£ãŠãææã®çœªæªæã®ç¢ºçã¯ããã¹ã»ã¹ã«ãŒã¬ããã®çœªæªæã®ç¢ºçã®3åã®1ã§ãã
ç§åŠè ïŒãããŠä»ãç§ã¯ããªããã眪æªæã®å¯èœæ§ããšã¯ã©ãããæå³ãç¥ãããã§ãã ãã«ãŒã ã¯æ®ºäººãç¯ãããã圌ãç¯ããªãã£ãã ç§ãã¡ã¯æ®ºäººã®ãµã³ãã«ãèŠãããšãã§ãããPlumeã圌ãã®4åã®1ãæ¬åœã«æ åœããŠããããšãããããŸãã
BayesovetsïŒç§ã¯ããã«å ¥ããªãããšãæãã§ããŸãããããŸããŸãã§ãã ç§ã®è¯ãç§åŠè ããããããªããç§ã«ãã«ãŒã ãç ç²è ã殺ãããã©ããã«ã€ããŠã®è³ã1ïŒ1ã§è³ããæäŸãããªãã°ãç§ã¯åœŒãããããªãã£ããšè³ããã§ãããã ããããè³ãéã®æ¡ä»¶ã®äžã§ã圌ã®ç¡å®ã®å Žåã«1ãã«ãæ¯æãã圌ã®çœªã®å Žåã«5ãã«ãæ¯æããªããç§ã¯åãã§è²¬ä»»ãè² ããŸãã 2012幎ã®å€§çµ±é éžæã¯äžåºŠã ãè¡ããããªããã®åå©ã®ãã£ã³ã¹ã¯ããã«ãŒã ã®çœªæªæã®ããã«æŠå¿µçã«æ確ã§ã¯ãããŸããã ãããã11æ7æ¥ã«ãªããã«10ãã«ãè³ãã圌ãåã£ãå Žåã¯1000ãã«ãçŽæãããšãããããã®ãããªè³ããæåŠããããšã¯ã»ãšãã©ãããŸããã äžè¬ã«ãäºæž¬åžå Žãšå€§èŠæš¡ãªãªããããããããŒã«ããããã€ãã³ãã§6æ4åã«ãããããå Žåããã®ã€ãã³ãã¯ã±ãŒã¹ã®çŽ60ïŒ ã§çºçããŸãã åžå ŽãšããŒã«ã¯ããã®ç¯å²ã®ç¢ºçã§ååã«èª¿æŽãããŠããŸãã ãããã®ãã£ãªãã¬ãŒã·ã§ã³ãäžååãªå Žåãã€ãŸããã±ãŒã¹ã®80ïŒ ã§6ïŒ4ã®ããããåãå ¥ããã€ãã³ããçºçããå Žåã誰ããããã«æ°ä»ãããã®ãããªãããã®ããã«éæã¡ã«ãªãå¯èœæ§ããããŸãã åæã«ãåžå Žãé©åã«èª¿æŽããããŸã§ã圌ã¯ã¬ãŒãã®äŸ¡æ ŒãåŒãäžããŸãã åžå Žç¢ºçã®æšå®å€ã70ïŒ ã®ã€ãã³ãã¯å®éã«ã¯10åã®ãã¡çŽ7åçºçããããããã®ãããªç¢ºçãæå³ããªããªããšäž»åŒµããçç±ãããããŸããã
åŠçïŒçŽåŸã§ãããã§ããã ãããã確ãã«ããã¯ç§ã«ã¯æããŸããå®éãè³åŠäž¡è«ã®argumentsãªè°è«ããããããããŸãã
BayesovetsïŒ æ¬åœã« ããããã®è°è«ããããŸãããããããã®äžè¬çãªçµè«ã¯ãããªãã®çŽèŠ³ãçå®ã«ããªãè¿ããšããããšã§ãã
ç§åŠè ïŒããŠãç§ãã¡ã¯ããã«æ»ããŸãã ãããã2ã€ã®ãšãŒãžã§ã³ãããããäž¡æ¹ãšãããã調æŽãããŠããããããã®ãã¡ã®1ã€ãã60ïŒ ãããã1ã€ãã70ïŒ ãã ãšãããã©ãã§ããããã
BayesovetsïŒã³ã€ã³ãæããŠãã©ã¡ããèœã¡ãã®ãèŠãŠããªããšããŸãããã ãã®å Žåãç§ã®ç¡ç¥ã¯ã³ã€ã³ã«é¢ããæ å ±ã§ã¯ãªããããã¯ç§ã®æ å ±ã§ãã å°å³äžã®çœãæç¹ããã®å Žæã«é åããªãããšãæå³ããªãããã«ãããã¯åšå²ã®äžçã§ã¯ãªãé ã«ååšããŸãã ããªããã³ã€ã³ãèŠãããç§ãããããªãã£ãå Žåãããªããšç§ãããã«ã€ããŠç°ãªãäžç¢ºå®æ§ã®ç¶æ ã«ããããšã¯éåžžã«åççã§ãã ç§ã100ïŒ ç¢ºä¿¡ããªãã®ã§ã確çã®èŠ³ç¹ããäžç¢ºå®æ§ãè¡šçŸããã®ã¯çã«ããªã£ãŠããŸãã 誰ãã®äžç¢ºå®æ§ã®è¡šçŸãå®éã«ç¢ºçååžã§ã¯ãªãå Žåãäžè¬ã«ããããå¿ èŠã§ãããšè¿°ã¹ãçŽ300ã®å®çããããŸãã äœããã®çç±ã§ããšãŒãžã§ã³ããäžç¢ºå®æ§ã®æ¡ä»¶ã§æèã確ççè«ã®æšæºå ¬çã®ããããã«éåãããšãå°çãéããæ°Žãè¡ã«å€ãããæ¯é çãªæŠç¥ãšæããã«å€±ãããè³ãã倩ãã泚ãããããšãåžžã«èµ·ãããŸãã
ç§åŠè ïŒããŠãããã§ç§ã¯ééã£ãŠããŸããã ããã«ãæ»ããŸããããŸããç§ã®è³ªåã«çããŠãã ãããåãåã£ãåŸãä¿¡é Œæ§ãã©ãããã°ããã§ããããïŒ
BayesovetsïŒç¢ºçè«ã®æ³åã«ããã°ããããã®åŠ¥åœæ§ã¯èšŒæ ã§ãããã«ãŒã ã«æå©ãª2ïŒ1ããã¹ã«ãŒã¬ããã«æå©ãª3ïŒ1ã«ç§ãã¡ã®å éšç確çãå€ããã®ã¯åœŒãã§ãã 2ã€ã®ä»®èª¬ãšäž¡æ¹ã®ããŒã¿ã®å¯èœæ§ãããå Žåãäžèšã®ããã«èããå€ããå¿ èŠããããŸããäœããã®æ¹æ³ã§å€æŽãããšã倩ãéããæŠç¥ã泚ã蟌ãŸããŸãããã€ãºã®å®çïŒããã¯åãªãçµ±èšçææ³ã§ã¯ãªããæ³åŸã§ãã
åŠçïŒãã¿ãŸãããããŸã ããããŸãããå®éšãè¡ã£ãŠãããšããŸãããããŠãããšãã°ããã«ãŒã ææã圌女ã®åå£ã殺ããå Žåã圌女ããã¹ã¹ã«ãŒã¬ããã®æ®ºäººç¯ã ã£ãå ŽåããããåŸãããçµæã¯6åé«ãå¯èœæ§ããããŸããææãé®æãããã©ããïŒ
ç§åŠè ïŒãŸã第äžã«ãããªãã¯å€ããå°ãªããçŸå®çãªã¢ããªãªãªç¢ºçãèãåºãå¿ èŠããããšæããŸããäŸãã°ããã¢ããªãªãªããã«ãŒããã«ãŒã ã殺ã確çã¯20ïŒ ã ãšæããŸããã次ã«ã6ïŒ1ã®å°€åºŠæ¯ãä¹ç®ãããã«ãŒã ãäžå£ã殺ããäºåŸç¢ºçã®æ¯3ïŒ2ãååŸããå¿ èŠããããŸãããããããšãPlumeã¯60ïŒ ã®ç¢ºçã§æ眪ã§ãããšèšããŸããæ€å¯åºã¯ãããç解ããå¿ èŠããããŸãã
BayesovetsïŒ ãªãã倩åœã®ããã«ïŒãã€ãžã¢ã³çµ±èšã¯ãã®ããã«åããšæ¬åœã«æããŸããïŒ
ç§åŠè ïŒããã¯ééã£ãŠåäœããŸããïŒç§ã¯åžžã«ããã®äž»ãªå©ç¹ã¯ãPå€ãå®éã«äžããªãäºåŸç¢ºçãäžããããšã§ãããäž»ãªæ¬ ç¹ã¯ããã®ããã«ã¢ããªãªãªç¢ºçãå¿ èŠã§ããããšã§ãããšä¿¡ããŠããŸããããããã¯å€©äºããå€ããå°ãªããåããªããã°ãªããªãã®ã§ãäºåŸç¢ºçã®æ£ããã¯æéã®çµãããŸã§è°è«ãããå¯èœæ§ããããŸãã
BayesovetsïŒèšäºã¯ä¿¡é Œæ§ãå ¬ââéããå¿ èŠããããŸããããæ£ç¢ºã«ã¯ãçããŒã¿ãå ¬éããèå³ã®ããããã€ãã®åŠ¥åœæ§ãèšç®ããå¿ èŠããããŸãããããã確ãã«äºåŸç¢ºçã§ã¯ãããŸããã
åŠçïŒç§ã¯åã³æ··ä¹±ããŠããŸããäºåŸç¢ºçãšã¯äœã§ããïŒ
BayesovetsïŒäºåŸ 確ç-ããã¯ãã60ïŒ ã®ç¢ºçã§Herr TroupeãPlumeææã«ãã£ãŠæ®ºãããããšãã声æã§ããç§ã®ååããã§ã«ææããããã«ããã®ãããªã¹ããŒãã¡ã³ãã¯På€ããã¯ç¶ããŸããããããŠãç§ã®æèŠã§ã¯ããããã¯å®éšçµæã§ã¯ãªãã®ã§ãå®éšèšäºã«ã¯æ²èŒãããŸããã
åŠçïŒããã...ããããŸãããç§åŠè ãããªããžã®è³ªåïŒp <0.01ã®çµæãåŸããããšããŸããããã€ãŸããããã«ãŒã ææã¯Herr Troupeã殺ããªãã£ãããšããåž°ç¡ä»®èª¬ã§1ïŒ æªæºã®ç¢ºçãæã€ãã®ã§ãã圌ãé®æãã¹ããã©ããïŒ
ç§åŠè ïŒãŸããããã¯çŸå®çãªåž°ç¡ä»®èª¬ã§ã¯ãããŸãããã»ãšãã©ã®å Žåãåž°ç¡ä»®èª¬ã¯ãã誰ã圌女ã®éå£ã殺ããããšã¯ãªãããŸãã¯ããã¹ãŠã®å®¹çè ã¯çããæ眪ã§ããããšãããããªãã®ã«ãªãã§ããããããããããªãã説æããåž°ç¡ä»®èª¬ãåãããšããŠããp <0.01ã§Plumeã®ç¡å®ãæåŠã§ãããšããŠããPlumeã99ïŒ ã®ç¢ºçã§æ眪ã§ãããšèšãããšã¯ã§ããŸããã På€ã¯ãããæããŠãããŸããã
åŠçïŒãããŠãã圌ãã¯ãã®åŸãå ±åïŒ
ç§åŠè ïŒèŠ³æž¬ãããããŒã¿ã¯å¯èœãªçµæã®ã¯ã©ã¹ã®äžéšã§ãããåž°ç¡ä»®èª¬ãçã§ããå Žåããã®ã¯ã©ã¹ã®çµæã¯1ïŒ æªæºã®ã±ãŒã¹ã§èŠ³æž¬ããããšå ±åããŠããŸããããå€ãã®På€ã¯äœãæå³ããªãã p <0.01ãããææPlumeã¯99ïŒ ã®ç¢ºçã§æ眪ãã«ç§»è¡ããããšã¯ã§ããŸãããããããç§ããããã€ãžã¢ã³ããã®çç±ã説æã§ããã§ããããäžè¬ã«ãç§åŠã§ã¯ããããã®ãå¥ã®ãã®ãšããŠè§£éããããšã¯äžå¯èœã§ããæ°åã¯ããããæå³ãããã®ãæ£ç¢ºã«ç€ºãããã以äžã§ããã以äžã§ããããŸããã
åŠçïŒäžè¬çã«åªããŠããŸããæåãç§ã¯ãã£ãšãããããã©ããããç解ããŠããŸããã§ããããä»ã¯ãŸã På€ãã©ããããããããŸããããã«ãŒã ãæçµçã«ååæã«éãã«ã¯ã©ã®ãããªå®éšãå¿ èŠã§ããïŒ
ç§åŠè ïŒå®éã«ã¯ïŒä»ã®å®éšå®€ã§ããã«2ã3ã®å®éšã§p <0.01ã®çœªæªæã確èªããå Žåã圌ã¯æ¬åœã«æ眪ã§ããå¯èœæ§ãé«ãã§ãã
BayesovetsïŒãåçŸæ§ã®å±æ©ã¯ãã -åé¡ãæèµ·ãããåŸã§ããã圌ããªãã£ãããšãå€æãããšãã«ããã¯ãªã殺人ãç¯ããŸãã
ç§åŠè ïŒãããã¯ãã
åŠçïŒã©ããããããäžå¿«ã«ãªããŸãã
ç§åŠè ïŒäººçã¯äžè¬çã«äžå¿«ãªãã®ã§ãã
åŠçïŒã ãã... Bayesovetsãããªãã¯ããããåæ§ã®çããæã£ãŠããŸããïŒå°€åºŠæ¯ãååã«å€§ããå Žåãããšãã°100ïŒ1ã§ããå Žåãå®éã«ã¯ã察å¿ãã仮説ãçãšèŠãªãããšãã§ããŸããïŒ
BayesovetsïŒã¯ãããã ããããè€éã§ããã³ã€ã³ã20åæããŠãOOOOOOROOOROROROOOOOOOOOORORãååŸãããšããŸãããã£ããã¯ããã³ã€ã³ãã·ãŒã±ã³ã¹LLCOROOORORORROOOOOOORORORãäžããããšãä¿èšŒãããŠããããšãã仮説ã®å¯èœæ§ãã仮説ãã³ã€ã³ã¯ã¯ã·ãŸãã¯å°Ÿã«ãã£ãŠåæ§ã«èç¶æ§ããããã®å¯èœæ§ãããçŽ100äžåé«ããšããããšã§ããå®éã«ã¯ãå®éšã®éå§åã«å°å°ãããå°çã§ãã®ä»®èª¬ãæž¡ããªãã£ãå Žåãé«åºŠã«åèšç·ŽããããšèããŸããã·ãŒã±ã³ã¹ã®èšè¿°ã ãã§ã20ããããããããããã®ä»®èª¬ã«å°ãªããšã 2 20ïŒ1ã®è€éãã®ããã«ãã£ãäžããå¿ èŠããããŸããèšãæããã°ã尀床ã®å©ç¹ãè£ã以äžã«ã¢ããªãªãªç¢ºçãäžããŸãããããŠããããå¯äžã®èœãšãç©Žã§ã¯ãããŸãããããããããã§ãããã€ãºã«ãŒã«ãã©ã®ããã«ããªãæ©èœããããç解ããã°ãç¹å®ã®ã±ãŒã¹ããšã«ãã®éçšã§ç解ã§ããŸãã Plumeã®åŠ¥åœæ§æ¯ãä»ã®å®¹çè 1000ïŒ1ã«å¯Ÿãããã®ã§ããã容çè ã6人ãããªãå Žåã圌ã殺人è ã§ãããšããäºå®ã«å¯Ÿããå éšç確çã¯10ïŒ1ãã¯ããã«è¶ ããŠããªãã£ããšæ³å®ã§ããŸãããããããªãã99ïŒ ã®ç¢ºçã§åœŒãæ眪ã§ãããšä»®å®ã§ããŸãã
ç§åŠè ïŒããããããã§ããèšäºã«æžã䟡å€ã¯ãªãã®ã§ããïŒ
BayesovetsïŒããã§ããã©ã®ããã«å®åŒåããã...ãã€ãžã¢ã³åæã®éèŠãªæ¡ä»¶ã¯ããã¹ãŠãé¢é£æ å ±ãæ°ã«å ¥ããªããšããçç±ã ãã§ãããŒã¿ãåæããé€å€ããããšã¯ã§ããŸãããããã¯ã䜿çšãããçµ±èšã«é¢ä¿ãªããå®éã«ç§åŠã®éèŠãªæ¡ä»¶ã§ããããã€ãã®èšäºãããããããã®çµè«ã¯ãããã€ãã®èŠå ãèæ ®ãããªãã£ããããµã³ãã«ãããã€ãã®ãã©ã¡ãŒã¿ãŒã§ä»£è¡šçã§ã¯ãªãã£ãããã«ã®ã¿åŸãããŸãããç§ã¯äœã«ã€ããŠè©±ããŠããã®ã§ããïŒãããŠãïŒå®éšè ãšããŠïŒã©ã®ããã«ããŠããã¹ãŠã®é¢é£æ å ±ããäœã§ããããç¥ãããšãã§ããŸããïŒäºåŸç¢ºçãèšç®ããã®ã¯èª°ã§ããïŒèª°ããç§ãèæ ®ãã¹ãè¿œå ã®ããŒã¿ãšè¿œå ã®ä¿¡é Œæ§ãããèšäºãå ¬éãããããããŸããããç§ã¯ãŸã ãããèªãã§ããŸãããã§ããããããŒã¿ãšå°€åºŠé¢æ°ãå ¬éããã ãã§ã-ããã ãã§ãïŒç§ã¯ãã¹ãŠãèæ ®ãããšäž»åŒµããããšã¯ã§ããŸããåŒæ°ãšä»ç§ã¯ä¿¡é Œã§ããäºåŸç¢ºçãæäŸããããšãã§ããŸããããšãã§ãããšããŠãã1é±éåŸã«å¥ã®èšäºãåºãŠããå¯èœæ§ãããããããã®ç¢ºçã¯æ代é ãã«ãªããŸãã
åŠçïŒå€§ãŸãã«èšã£ãŠãå®éšè ã¯èªåã®ããŒã¿ãå ¬éãããããã®ããã€ãã®åŠ¥åœæ§ãèšç®ããã ãã§ããã®ã§ãããããã ãã§ããïŒãããŠãããããä»ã®èª°ããããããã©ããããã決å®ããã§ããããïŒ
ïŒBayesovetsçããããŸãã¯æ倧ãšã³ããããŒãšããŸãã¯å°é£ã«å¯Ÿãã眰åããããã¯ä»»æã®- -誰ããäºå確çãéžæããå¿ èŠããããŸããçµæã¯ããšã確èªããŠãã ãããå¯èœæ§ãèšç®ããããã«å¯èœãªãã¹ãŠã®ããŒã¿ãåéããããšã¯ã¬ã€ãžãŒã§ã¯ãªãããšä»ãšãã®ä»ããŸãã1é±é以å ã«æ°ããèšäºããªãªãŒã¹ãããå Žåã¯ããŸã ã«ãŠã³ãããå¿ èŠããããŸãã
åŠçïŒããªãæéããããããã§ããã
BayesovetsïŒ På€ã®ã¡ã¿åæãè¡ããšãããã«æªåããŸãããã€ãžã¢ã³ç¢ºçã®æŽæ°ã¯ã¯ããã«ç°¡åã§ããå€ãäºåŸç¢ºçã«æ°ãã尀床é¢æ°ãæããŠæ£èŠåããã ãã§ååã§ããããã ãã§ã å®éš1ã仮説AãšBã®å°€åºŠæ¯4ïŒ1ãäžããå®éš2ããããã«9ïŒ1ã®å°€åºŠæ¯ãäžããå Žåããããã¯äžç·ã«36ïŒ1ã®æ¯ãäžããŸãã 以äžã§ãã
åŠçïŒ På€ã§ãããè¡ãããšã¯ã§ããŸãããïŒ p = 0.05ã®1ã€ã®å®éšãšp = 0.01ã®å¥ã®å®éšã¯ãå®éã«ã¯p <0.0005ãæå³ããŸãããïŒ
ç§åŠè ïŒ ãªãã
BayesovetsïŒèŠªæãªãèŠèŽè ãç§ã®my æ ¢ãªç¬é¡ã«æ³šæããŠãã ããã
ç§åŠè ïŒããããå éšçãªç¢ºçãèãåºãå¿ èŠæ§ã«ã€ããŠã¯ãŸã å¿é ããŠããŸãã
BayesovetsïŒãããŠã誰ãã1ã€ã®å®éšãšãp <0.01ãçå®ã®åºæºã§ãã2ã€ã®è€è£œãæ€èšããããšã«æ±ºãããšããäºå®ãããããªãããªããæ©ãŸãã®ã§ããïŒ
ç§åŠè ïŒå éšçãªå€ã®éžæã¯ãPå€ã®è§£éã»ã©äž»èŠ³çã§ã¯ãªããšèšãããã§ããïŒãµãããšãã°ãp <0.001ã®èŠä»¶ã客芳æ§ãä¿èšŒããå¿ èŠããããšè¿°ã¹ãããšæããŸããããããããã®åŸãããªãã¯ïŒ0.1ãŸãã¯1e-10ã®ä»£ããã«ïŒ0.001ãšããæ°åãåæ§ã«æããåžã蟌ãŸãããšçããŸãã
BayesovetsïŒããã«ãä»»æã®På€ãèŠæ±ããæ¹ããåãæããäºå確çãåžãåºããããå¹çãæªãããšãä»ãå ããŸãããšãžããã®çœ°ã䌎ã確çã®å ¬çã®éåè ãè ããæåã®å®çã®1ã€ã¯ã1947幎ã«ã¢ãã©ãã ãŠã©ã«ãã«ãã£ãŠèšŒæãããŸããã圌ã¯ãã¹ãŠã®åãå ¥ããããæŠç¥ã説æããããšããããªãã芳å¯ããŠããããšã«åå¿ããæŠç¥ãäœããã®æ¹æ³ã§åŒã³åºããŸããããã¡ãããããŸããŸãªç¶æ³äžã§ã®ããŸããŸãªæŠç¥ã¯ãå€ããå°ãªããåçæ§ããããŸãã蚱容å¯èœãªæŠç¥åœŒã¯ãã¹ãŠã®å¯èœãªæ¡ä»¶ã®äžã§ä»ã®æŠç¥ã«ãã£ãŠæ¯é ãããŠããªããã®ãåŒã³åºããŸããããã®ãããWaldã¯ã蚱容å¯èœãªæŠç¥ã®ã¯ã©ã¹ã確çååžãå«ãæŠç¥ã®ã¯ã©ã¹ãšäžèŽãããã€ãžã¢ã³èŠåã«ãã芳枬ã«åºã¥ããŠæŽæ°ããå¹çšé¢æ°ãæé©åããããšãçºèŠããŸããã
åŠçïŒãã¿ãŸããããã·ã¢èªã話ããŸããïŒ
BayesovetsïŒããªãã芳å¯ããŠããããšã«é¢é£ããŠäœããããå€ããå°ãªãããäŸãã°ãéãåŸããªããçŸå®äžçãäœã§ãããã«å¿ããŠã2ã€ã®ãã¡ã®1ã€ã¯çå®ã§ããããããã®ããã€ãã®æå³ã§ããªãã®æŠç¥ã¯ã確çååžãå«ãŸããŠããããã€ãºã«ãŒã«ã«ãããæŽæ°ããã決ããŠããªãã«å±ããããšãªããæã«ã¯ãããäžåãæŠç¥ãããã€ããããŸããã€ãŸããããšãã°ããå«ç ãšããã®é¢ä¿ã蚌æããèšäºãp <0.0001ã§è¡šç€ºããããŸã§å«ç ããããŸããããšèšããŸããå°ãªããšãçè«çã«ã¯ããç§ã®æèŠã§ã¯ãå«ç ãšããã®é¢ä¿ã¯0.01ïŒ ã®ç¢ºçã§ååšããŸããããªãã®ãã£ãšããããã¯äœã§ããïŒãããã®ãããªæ¥ç¶ã®ç¢ºçãå éšçã«ååšãããšããŠããããã¯æåã®å®åŒåããæªããããŸããã
ç§åŠè ïŒæ¬åœã§ããïŒ
BayesovetsïŒããããã€ãžã¢ã³é©åœã¯ãã®å®çããå§ãŸããŸããããã以æ¥ãåŸã ã«å¢ããå¢ããŠããŸãã WaldãPå€ã®çºæããæ°å幎åŸã«åœŒã®å®çã蚌æããããšã¯æ³šç®ã«å€ããŸããããã¯ãç§ã®æèŠã§ã¯ããã¹ãŠã®çŸä»£ç§åŠãæããã«éå¹ççãªçµ±èšã«çµã³ã€ããŠããããšãå€æããçç±ã説æããŠããŸãã
ç§åŠè ïŒããã§ã¯ãPå€ãæšãŠãŠã代ããã«å°€åºŠé¢ä¿ã®ã¿ãå ¬éããããšãææ¡ããŸããïŒ
BayesovetsïŒèŠããã«ãã¯ãã
ç§åŠè ïŒã©ããªæ¡ä»¶ã«ãé©ããçæ³çãªãœãªã¥ãŒã·ã§ã³ãæ¬åœã«ä¿¡ããŠããªãããšãç§ã¯ããªããçæ³äž»çŸ©è ã ãšæã-please蟱ãšã¯æããªãã§ãã ãããç§ã®çµéšã§ã¯ãããŸããŸãªç¶æ³ã§ããŸããŸãªããŒã«ãå¿ èŠã§ããã1ã€ãé€ããŠãã¹ãŠãæšãŠãã®ã¯äžåçã§ãã
BayesovetsïŒããŠãç§ã¯ç§ãçæ³äž»çŸ©è ã§ãããã®ãšããã§ãªããã®ã§èª¬æããæºåãã§ããŠããŸãã尀床é¢æ°ã ãã§ã¯ãåçŸæ§ã®å±æ©ã解決ããããšã¯ã§ããŸãããããå¹æçãªçµ±èšã䜿çšããããã«å šå¡ã«åçŽã«åœä»€ããã ãã§ã¯ãå®å šã«è§£æ±ºããããšã¯ã§ããŸããããªãŒãã³ã¢ã¯ã»ã¹éèªã®äººæ°ã¯ã尀床ãšPå€ã®éžæã«äŸåããŸãããã¬ãã¥ãŒã·ã¹ãã ã®åé¡ããããšã¯ç¡é¢ä¿ã§ãã
ç§åŠè ïŒãããŠãä»ã®ãã¹ãŠãããã¯äŸåããŸããïŒ
BayesovetsïŒãªããã¹ãŠã®ãã®ãã圌ãã¯äœãããããæã£ãŠå©ãã«ããŸããæ°ããŸãããã
BayesovetsïŒãŸã第äžã«ã尀床é¢æ°ã¯ããçµ±èšçã«ææãªãçµæãšãææã§ãªããçµæã®åºå¥ã匷å¶ããŸãããå®éšã®çµæããããžãã£ãããŸãã¯ããã¬ãã£ããã«ããããšã¯ã§ããŸãããåž°ç¡ä»®èª¬ãšåŒã°ãããã®ã¯ã仮説ã®1ã€ã«éãããååãšããŠä»ã®ãã¹ãŠã®ä»®èª¬ãšå€ãããŸãããã³ã€ã³ãæããŠOORORRROOOãååŸããå Žå-å®éšããp <0.05ã§åž°ç¡ä»®èª¬ãæåŠããŸãã¯ã以åã«ååŸããçµæãåçŸãã§ããªãã£ããšã¯èšããŸããã圌ã¯ã3.75ã®å°€åºŠæ¯ãæã€ã5/6ã€ãŒã°ã«ã¹ã仮説ã«å¯Ÿããæ£çŽãªã³ã€ã³ä»®èª¬ããµããŒãããããŒã¿ãè¿œå ããŸããããããã£ãŠããã€ãžã¢ã³çµ±èšã®å€§èŠæš¡ãªæ¡çšã«ããããã®ãããªå®éšã®çµæã¯ããŒãã«ã«éä¿¡ããã«ãããªããŸãããŸã£ãããªãéèªã®ç·šéè ã¯æ£çŽãªã³ã€ã³ããããŸã é¢çœãçµæãæã£ãŠããã®ã§ãããã«çŽæ¥å¯ŸåŠããªããã°ãªããŸãããããããPå€ã¯ãã®ã¢ãããŒãã«èŠåŽããŠããã ãã§ãªããåºæ¿ããïŒ p-ãããã³ã°ãäžè¬çã«ååšããã®ã¯åœŒã®ããã§ãããããã£ãŠãä¿¡é Œæ§ãžã®ç§»è¡ã¯ã誰ã«ã§ã幞çŠãããããããã§ã¯ãããŸããããééããªã圹ç«ã¡ãŸãã
BayesovetsïŒç¬¬äºã«ã尀床ã·ã¹ãã ã¯ããœãŒã¹ããŒã¿ã®éèŠæ§ããã匷調ããå¯èœãªå Žåã¯åžžã«å ¬éãä¿é²ããŸããããã¯ããã€ãžã¢ã³åæãç¹å®ã®ã¢ãã«ã«ããããããã®ç¹å®ã®çµæã®å¯èœæ§ã«åºã¥ããŠããããã§ããããã©ããããPå€ã·ã¹ãã ã¯ãç 究è ã«ãããŒã¿ããåçã«æ¥µç«¯ãªãçµæã®ã¯ã©ã¹ã®ã¡ã³ããŒã®1ã€ã«ãããªããšèŠãªãããšã匷å¶ããŸããäžéšã®åŠè ã¯ã貎éãªããŒã¿ããã¹ãŠäžç·ã«ä¿ç®¡ããããšèããŠããŸããçµ±èšã ãã§ã¯ãããŸãããããããPå€ã¯åºæ¿ããŸãããã¯ãããŒã¿èªäœã¯èšäºã«ãšã£ãŠéèŠã§ã¯ãªããç¹å®ã®ã¯ã©ã¹ã®äžéšã§ãããã©ããã«ãããã®ã§ããããã確ç«ããããšããããã«å«ãŸãããã¹ãŠã®æ å ±ã¯ããéèŠããŸãã¯ãéèŠã§ãªããåäžãããã«åŽ©å£ããããã§ãã
BayesovetsïŒç¬¬äžã«ã確çè«ã®èŠ³ç¹ããããã€ãžã¢ã³ã®èŠ³ç¹ãããå¹æã®ãµã€ãºãç°ãªããšä»®èª¬ãç°ãªããŸããç°ãªã尀床é¢æ°ãšããã«å¯Ÿå¿ããŠèŠ³æž¬ããŒã¿ã®ç°ãªã確çã察å¿ãããããããã¯è«ççã§ãã 1ã€ã®å®éšã§0.4ã®å¹æå€ãèŠã€ãããå¥ã®å®éšã§0.1ã®åãå¹æã®ãçµ±èšçã«ææãªãå€ãèŠã€ãã£ãå Žåãå®éšã¯åçŸããŸããã§ããäœãæ¬åœã«ããã®ãåãããŸããããã«ããããçµ±èšçã«ææãªãå¹æã®å€§ããããµã³ãã«ãµã€ãºã®å¢å ã«äŒŽã£ãŠæžå°ããã³æžå°ããããªãäžè¬çãªç¶æ³ãåé¿ãããŸãã
BayesovetsïŒ 4çªç®ãä¿¡é Œæ§é¢æ°ã¯ãããŒã¿ã®éçŽãšã¡ã¿åæãå€§å¹ ã«ç°¡çŽ åããŸãããããã¯ãããŒã¿ãäžåäžãªæ¡ä»¶äžã§åéãããŠããããšããçã®ä»®èª¬ãèæ ®ããŠããªãããšã«æ°ä»ãã®ã«åœ¹ç«ã€å ŽåããããŸãããã®å Žåãèãããããã¹ãŠã®ãã©ã¡ãŒã¿ãŒã«å¯ŸããŠãã¹ãŠã®é¢æ°ããŒãã«è¿ããªãããæè¯ã®ä»®èª¬ã«ãããçµåãããããŒã¿èªäœãäºæž¬ãããããã¯ããã«äœãå¯èœæ§ãåŸãããŸããåçŸæ§ãžã®ããå³å¯ãªã¢ãããŒãã«ããããã®ãããªå®éšããã®ãããªãã®ã®ç¹°ãè¿ããšèŠãªãããšãã§ãããã©ããããã°ããç解ã§ããŸãã
BayesovetsïŒ 5çªç®ã尀床é¢æ°ã¯ã圌ããèããŠããããšã«äŸåããŸããããããã¯ãããŒã¿ã«é¢ãã客芳çãªèšè¿°ã§ãã尀床å€ãå ¬éããå Žåãèªè ãã ãŸãæ¹æ³ã¯1ã€ãããããŸãããããŒã¿èªäœãæ¹ããããæ¹æ³ã§ãã Pãããã³ã°ã¯æ©èœããŸããã
ç§åŠè ïŒãŸããç§ã¯ããã匷ãçããŸããå®éãããã¯æ£çŽã§ãããã¯ã·ã«ãã£ãŠã³ã€ã³ãããé »ç¹ã«èœãšãããããšãããªãã«çŽåŸããããšæ±ºãããšããŸããã³ã€ã³ãåãåããå¶ç¶ã«ã€ãŒã°ã«ãããå°ãæã«å ¥ãããŸã§æããŠãããåæ¢ããŸããããã§äœïŒ
BayesovetsïŒã©ãããããŒã¿ãæ¹ããããªããã°ãç§ãã ãŸãããšã¯ãããŸããã
ç§åŠè ïŒåé¡ã¯ãæãããã³ã«å°€åºŠæ¯ããã§ãã¯ãããæ°ã«å ¥ãã®çè«ãè£ä»ãããšããã«åæ¢ãããšã©ããªãããšããããšã§ããã
BayesovetsïŒç¢ºçè«ã®æ¬º probabilityçãªçŸããã«é äºãããçæ³äž»çŸ©è ãšããŠãç§ã¯ããªãã«çããŸãïŒããªãã¯ç§ã«æ£çŽãªçããŒã¿ãäžããŸãããç§ã¯1ã€ã®ããšããã§ããŸãã-ãã€ãžã¢ã³ã®ã«ãŒã«ã«åŸã£ãŠä¹ç®ããŸãã
ç§åŠè ïŒæ¬åœã§ããïŒ
BayesovetsïŒãŸãã§ã
ç§åŠè ïŒããã§ã奜ãã«ãªããŸã§å°€åºŠæ¯ããã§ãã¯ã§ãããã©ããæ°ã«ããŸãããïŒ
BayesovetsïŒã©ããã
ç§åŠè ïŒããã£ããããããPythonã§ãããšãã°300åãŸã§ã®ã³ã€ã³ããªãããã·ãã¥ã¬ãŒãããã¹ã¯ãªãããäœæãããã³ã€ã³ãã±ãŒã¹ã®55ïŒ ã§ã¯ã·ã«ãã£ãŠèœãšãããããšãã仮説ãæ¯æããŠã20ïŒ1ã®æ¯çãç²åŸã§ããé »åºŠã確èªããŸãã
BayesovetsïŒã¯ããé¢çœãå¶ç¶ã§ããç§ã¯ããã«ã€ããŠãã¹ãŠãçºèŠãã尀床é¢ä¿ãããªãããŒãªæ¹æ³ã§ã ãŸãããªãããšãçã£ããšããç§ã¯åãããã°ã©ã ãPythonã§æžããããã®åŸãç§ã®å人ã尀床é¢ä¿ã«ã€ããŠç¥ããPythonã§äœããã®çç±ã§åãããã°ã©ã ãæžããã圌ã¯ãããéå§ãã55ïŒ ã€ãŒã°ã«ã¹ä»®èª¬ã®20ïŒ1ã®æ¯çããã£ã¹ãã·ãªãŒãºã®1.4ïŒ ã§å°ãªããšã1åèŠã€ãã£ãããšãçºèŠããŸãããããšãã°ã30ïŒ1ãŸãã¯50ïŒ1ãèŠæ±ããå Žåãåšæ³¢æ°ã¯ããã«éãäœäžããŸãã
ç§åŠè ïŒããªãã1.5ããŒã»ã³ãã®På€ãèæ ®ããã°ãããã¯ããããã§ããããããããã¯åæãã ãŸãéåžžã«å€±ç€Œãªæ¹æ³ã§ãããããããã£ãšè€éã§å¹ççã§ããïŒ
BayesovetsïŒç§ã¯...çŽ5æ³ã§ãããç§ã®æãåæã®æãåºã®äžã€ãç§ã¯åº§ã£ãŠã3ãã5ãè¿œå ãã8ã«ãªããªãããã«ããã€ãã®æ¹æ³ãèãåºãããšããŸãããããã¯ãã¡ãããå ç®ïŒããã³æ°åŠå šè¬ïŒãç解ããããã®éåžžã«çŽ æŽãããäžè¬çã«éèŠãªã¹ãããã§ããããããããã¯ãŸãã«ãããããã®ã§ããç§ãã¡ã¯å€§äººã§ããã5ãã©ã¹3ã¯å¿ ç¶çã«8ã«çããããšãç解ããŠããããã§ãã絶ãã尀床æ¯ããã§ãã¯ããã¹ã¯ãªããã¯ãåäŸã®é ãšåãããšãããŸããçè«ãç解ãããã€ãºã®ã«ãŒã«ãã ãŸãããšããã®ã¯æããã§ããããšã«æ°ã¥ããŸããéåœã 3ãããªãããŒãªæ¹æ³ã§2ãš1ã«å解ããããããåå¥ã«5ã«è¿œå ããããæåã®1ãè¿œå ããŠãã2ã«è¿œå ããããšãããããªãã®ã§ããå ç®ã®çµæã¯å®çã§ãããå®è¡ããæäœã®é åºã¯é¢ä¿ãããŸããã 3ãã5ãå ç®ããã®ãšæ¬åœã«çããå Žåãåºåã¯8以å€ã«ãªããŸããã確çè«ã®å®çãå®çã§ããã¹ã¯ãªãããå®éã«æ©èœããå Žåãããã¯ã確ççè«ã®ççŸãæå³ãããããã£ãŠãæçæ°ã䜿çšãã確çåæãåºã¥ããã¢ãç®è¡ã®ççŸãæå³ããŸããããªããšç§ãããããšãã- æ£ç¢ºã«ç®è¡ã®æšæºå ¬çåŠã§3ãš5ãè¿œå ããŠ7ãåŸãã®ãšåããããé£ããã
åŠçïŒ EããªãïŒ
ç§åŠè ïŒç§ãç解ããŠããŸããã
ãã€ãžã¢ã³ïŒeã芳枬ãè¡šããHã仮説ãè¡šããïŒXããnot Xããè¡šããPïŒHïŒã仮説ã®ç¢ºçãè¡šããPïŒX | YïŒã X ã®æ¡ä»¶ä»ã確çãè¡šããŸãïŒYãçã®å ŽåïŒã
PïŒHïŒ= PïŒ| E H * PïŒïŒEïŒïŒ+ïŒPïŒHïŒ| EïŒïŒ* P ïŒeã¯ïŒ
ãã®çµæã確çé¢æ°ã®ããã«ããã«äœããããŸãããã€ãºã®ãšãŒãžã§ã³ãã«ç¥ãããŠããæé ã¯ãæå³çã«ééã£ãæ¹åã«åœŒã®ã¢ããªãªãªç¢ºçãæŽæ°ããããšã匷å¶ããªããããããŒã¿ã®æ¹ãããå«ãŸãªãpãããã³ã°ã®ä»»æã«è€éãªé¡äŒŒç©ãç§ãã¡ãèŠãŠããããåŸãããšãã§ããããšãå šãŠã®å€æŽã«ã€ããŠEãã芳枬ããæåŸ ã§ããéã®å€åãããïŒeã¯ã
åŠçïŒäœïŒ
ç§åŠè ïŒç§ãç解ããŠããŸããã
BayesovetsïŒããããŸãããä»ã®ãšããæ°åŠãå éãããŠããããåçŸæ§ã®å±æ©ãèŠãŠã¿ãŸããããç§åŠè ã¯ã圌ãçæ³çãªæ®éçãªè§£æ±ºçãçã£ãŠãããšèšã£ããããããç§ã®æèŠã§ã¯ã尀床é¢æ°ãžã®ç§»è¡ã¯æ¬åœã«ãã¹ãã§ãäžåºŠã«å€ãã®åé¡ã解決ããŸããèããŠã¿ãã...ä»èããããäŒæ¥ãäŒèšã«é¢ããŠå€§ããªåé¡ãæ±ããŠãããšããŸãããããã®åé¡ã¯ããã¹ãŠã®ã¢ã«ãŠã³ãã£ã³ã°ãæµ®åå°æ°ç¹æ°ã䜿çšãããšããäºå®ã«é¢é£ããŠããŸãããã©ãã«ã®ååã«ãªããŸããã3ã€ã®ç°ãªãå®è£ ïŒåäŒæ¥ã®çŽ3åã®1ïŒã䜿çšããããããç¥ãäœãç¥ã£ãŠããããããããŸããããšãã°ã誰ãã1.0ããšãã1,000å0.0001ãå ç®ãã0.1ãæžç®ããŠ0.999999999999989ãååŸããŸãããã®åŸã圌ã¯å¥ã®ããã¢ã«è¡ããã³ã³ãã¥ãŒã¿ãŒã§èšç®ãç¹°ãè¿ããŠã1000000000000004ãååŸããŸãããããŠèª°ããããã ãšæããŸãããããŠããšã©ãŒã¯æ¬åœã«å·šå€§ã§ãããšä»®å®ããŸãããã3ã€ã®èªèã¯ãã¹ãŠãæŽçªçµµç»ãšããŒãæ°åã®äžèªç¶ãªçµåã®çµæã§ãããããã£ãŠããããã®éãã«ãããçµæã«ããªãæ確ãªéããåŸãããšãã§ããŸãããã¡ãã誰ããååæããšã®ã¬ããŒããäœæã§ããããã«å£²äžãéžæããŸãããããã£ãŠãéšéã®äºç®ãå°ãªããšãããèªäœãšççŸããªãå Žåãè¯ãçµæãšã¿ãªãããèªç¥ãã©ã€ãã³ã°éšéã¯ãããã20幎åã«ç Žç£ããå¯èœæ§ãé«ãã§ãããããŠãç§ã¯å€ã«åºãŠããã¹ãŠçœã§ãããèšããŸãããããã3ã€ã®èªèã®ä»£ããã«ããã®æ¹æ³ã§æäœããããšãã§ãããåé¡ã®ååã解決ãããã®ã¯ãŒã«ãªãã®ã䜿çšãããšã©ããªãã§ãããããããã®æ¹æ³ã§ã¯æäœã§ãããåé¡ã®ååã解決ã§ããŸããããã®æ¹æ³ã§ã¯æäœã§ãããåé¡ã®ååã解決ã§ããŸããã
ïŒBayesovetsãç§åŠè ã®å£°ã§ïŒïŒãç§ã¯ãã®ãããªæ®éçãªè§£æ±ºçãçã£ãŠããŸãããšã䞻任äŒèšå£«ã¯ç§ã«çããŸãã ããããconsider蟱ãšã¯æããªãã§ãã ãããããããè人ã®ããªãã¯çæ³äž»çŸ©è ã§ããç§ã®çµéšã§ã¯ãããŸããŸãªæµ®åå°æ°ç¹è¡šèšæ³ã¯ããŸããŸãªæäœã«é©ããŠããããã1ã€ãé€ããã¹ãŠã®ããŒã«ãããã«æšãŠãŠã¯ãããŸããã '
' BayesovetsïŒç§ãçãããšããïŒããªãã«ãŽã£ããåæ°ã®è¡šçŸãçµæã¯ãæ°å€ãè¿œå ããé åºãèšç®ãè¡ãããã³ã³ãã¥ãŒã¿ãŒã«äŸåããŸããããã¶ã1920幎ãã·ã¹ãã ãäœæãããã°ããã ã£ããšãã«ãå¿ èŠãªã¡ã¢ãªãå€ãããŸãããããããä»ã¯1920幎ã§ã¯ãªãã®ã§ãã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ãç¯çŽããäœè£ã¯ãããŸãããç¹ã«ããªããããã«ããã®ã§ã3000äžã®éè¡å£åº§ïŒããã¯å®éã«ã¯ãã³ã»ã³ã¹ã§ããã¯ããç§ã®èŠè§£ã«ã¯æ¬ ç¹ããããŸããããšãã°ãå¹³æ¹æ ¹ã¯ã¯ããã«é£ãããªããŸããããããæ£çŽã«èšããšãä»äººã®çµŠæã®å¹³æ¹æ ¹ãåãå¿ èŠãããé »åºŠã¯ã©ããããã§ããïŒã»ãšãã©ã®å®éã®ã¿ã¹ã¯ã§ã¯ããã®ã·ã¹ãã ã¯ããªãã®ã·ã¹ãã ã«å£ããŸããããŸããå ¥åå€ãåœé ããã«ã ãŸãããããšã¯ãããŸãããã¡ã¢ãªå ã®ä»»æã®é·ãã®æŽæ°ãè¡šçŸããæ¹æ³ãšã2ã€ã®æŽæ°ã®æ¯ã®åœ¢ã§æçæ°ãè¡šçŸããæ¹æ³ãããã¯ãä»ç§ãã¡ãè¡šçŸããèªæã®æ¹æ³ãšåŒã¶ãã®ã§ãã³ã³ãã¥ãŒã¿ã¡ã¢ãªå ã®å®æçæ°ãæµ®åå°æ°ç¹æ°ãåãªãè¿äŒŒã§ããæçæ°ã«é¢ããå¯äžã®ãŠããŒã¯ãªå®çããããŠãäžå¹žãª3000äžã®è«æ±æžãåŠçããå Žå; å®éã«ãè¿äŒŒå€ãäºãã«äžèŽããªãå ŽåããŸãã¯èªåèªèº«ãšäžèŽããªãå Žåã誰ããããªãã®ãéãçãããšãèš±å¯ããå Žå;æåŸã«ã1920幎ã§ã¯ãªããéåžžã®ã³ã³ãã¥ãŒã¿ãŒãè³Œå ¥ããäœè£ãããã°ãã¢ã«ãŠã³ãã£ã³ã°ãå®éã®æçæ°ã«ç§»è¡ããå¿ èŠæ§ã¯æããã§ããåæ§ã«ããã€ãºã®èŠåãšãã®çµæã¯ãå ¬çã«åºã¥ããŠå³å¯ã«èšŒæãããå¯äžã®ç¢ºçå®çã®ã·ã¹ãã ã§ãããããã£ãŠãPãããã³ã°ã¯æ©èœããŸããã
ç§åŠè ïŒããã¯...倧èã§ããããªããèšãããšããã¹ãŠçå®ã§ãã£ããšããŠããå®éçãªå°é£ã¯ãŸã ãããŸããçŸåšäœ¿çšããŠããçµ±èšæ å ±ã¯ã10幎以äžã«ããã£ãŠå ·äœåãããŠããŸãã圌女ã¯èªåã®äŸ¡å€ã蚌æããŸãããããªãã®æãããã€ãžã¢ã³ãã¹ãå®éã«ã©ã®ããã«èšŒæãããŸãããïŒ
BayesovetsïŒèªç¶ç§åŠã§ã¯ãã»ãšãã©äœ¿çšãããŸããã§ãããæ§ããã«èšã£ãŠããæ©æ¢°åŠç¿ã§ã¯ãã¢ãã«ãééã£ãŠããããšã«æ°ä»ãã®ã¯éåžžã«ç°¡åã§ã-ã¢ãã«ã«åºã¥ãAIãæ©èœããªããã-ãããŠãæ©æ¢°åŠç¿ã§ã¯ã確çãžã®é »åºŠã¢ãããŒããæåŸã«èŠãã®ã¯10幎åã§ããããããŠãç§ã¯1ã€ãæãåºãããšãã§ããŸããAIãããã€ãã®ä»®èª¬ã®På€ãèæ ®ããäœæ¥ãç 究ã§ç¢ºçãå°ãªããšãäœããã®åœ¢ã§çŸããå Žåãã»ãŒç¢ºå®ã«ãã€ãžã¢ã³ã§ãããŠãã¿ãªã³ãŒãã«åºã¥ããŠäœããåé¡ãããŠããå Žåãã¯ãã¹ãšã³ããããŒã¯æå°åãããããã§ã¯ãããŸãã... AIã®På€ã®é¡äŒŒç©ã¯äœãããç¥ããŸãããããããã€ã³ãã§ããããšãææ¡ããããšæããŸããæ©æ¢°åŠç¿ã®çµ±èšã¯æ©èœãããã©ããã®ããããã§ãããããã«æããã«ãªããŸããAIã¯ãå¿ èŠãªåŠçãè¡ãããã¯ã©ãã·ã¥ããŸãããããŠèªç¶ç§åŠã§ã¯ã誰ãããŸãåºçç©ãå¿ èŠãšããŸããèšäºã§På€ã瀺ãã®ãæ £äŸã§ããããåãè¿ãã®ã€ããªãçµæã眰ããªãããšãããŸããŸèµ·ãã£ãã®ã§ãæã ã¯æã£ãŠãããã®ãæã£ãŠããã
ç§åŠè ïŒããã§ãããªãã¯ãããåç©åŠè ã®å®éšè ãšããããæ°åŠè ãããã°ã©ããŒã§ããïŒäœããã®çç±ã§ããã¯ç§ãé©ãããŸãããããæåããçµ±èšè£ 眮ãååšããããšã¯ééããããŸããããPå€ã䜿çšããçµéšã䟡å€ããããŸããã¯ããä»ã§ã¯ãããã¯ãã°ãã°äœããã®åœ¢ã§ããããŠããŸãããç§ãã¡ã¯ãããè¡ãæ¹æ³ãç¥ã£ãŠãããããã«å¯ŸåŠããæ¹æ³ãç解ãå§ããŠããŸãããããã®èœãšãç©Žã¯å°ãªããšãç¥ãããŠããŸããæ°ããã·ã¹ãã ã§ã¯ãããããåæ§ã«ãªããŸããããããããããŸãã«ãã®å Žæã§ããæ°å幎åŸã«åããŠæããã«ãªããŸããããããã圌ãã¯çŸåšã®ãã®ãããããã«å±éºã«ãªãã§ãããã
BayesovetsïŒã¯ããçãäŒèšå£«ã¯ããããåççãªæ°åã§ããã€ãã®æ°ãããšããµã€ãã£ã³ã°ãªæäœãæãä»ãã§ããããç¹ã«ãæ£ç¢ºãªæäœãäŸç¶ãšããŠèšç®ã³ã¹ããããããããããšãå€æããäœããã®åœ¢ã§è¿äŒŒããå¿ èŠãããå Žåã«ãããããä»ã§ãåãå®éšå¿çåŠãåçŸæ§ã®å±æ©ã«ãã£ãŠåŒãè£ããããã®å±æ©ãæããã«På€ã®äœ¿çšã«é¢é£ããŠããå Žåãããã¯ççŽã«èšã£ãŠãè¡çªããæŸèæã®æã«ãããªãå Žåãå°ãªããšããã£ãšäœ¿çšããããšããŸãåççãªæ¹æ³ãç§ã¯ãŸãããã¹ãŠãç Žå£ããå建ããããšãä¿ããŸããããå®éã«ã¯ãåå¿è ã«ãšã£ãŠã¯ã1ã€ã®é åïŒå¿çåŠã§ãã£ãŠãïŒã§På€ãæŸæ£ããŠãäœãèµ·ãããã確èªã§ããŸãã
ç§åŠè ïŒãããŠãã©ã®ããã«å¿çåŠè ããã®ãããªå®éšã«è©±ãããšããŠããŸããïŒ
BayesovetsïŒããããŸãããççŽã«èšã£ãŠãç§ã¯èª°ããæ¬åœã«äœããå€ããããšãæ¬åœã«æãã§ããŸãããã»ãšãã©ã®å Žåã人ã ã¯æéã®çµãããŸã§åçŽã«På€ã䜿çšããŸãããã®ãããªããšãããããã¢ã€ãã¢ããŸã 人æ°ãããå¯èœæ§ããããŸãã Open Accessãã©ãã»ã©æ©ãå®çããã®ããç§ã¯ããããé©ããèŠããŸãããåçŸæ§ã®å±æ©ãäžè¬çã«èªèãããããã«äººã ããããæ°ã«ããŠããããšãå¬ããæããŸããããããããPå€ã¯ãŸã åžå Žã«åŒãåºããã倧å¢ã®äººã ã§äžåãã«ãããã§ãããïŒçŽPerïŒ2015幎ã«å°ãªããšã1ã€ã®å¿çåŠéèªãåž°ç¡ä»®èª¬ã®æ€èšŒãæåŠããŸããïŒããããããªããç§ã¯ããããé©ãã«ãªããŸãããã®å Žåããã€ãºã®ã«ãŒã«ãšä¿¡é Œæ§ã®æ®åã«é¢ããç§ã®ä»äºã¯ç¡é§ã§ã¯ãªãã£ãããšãããããŸãã
ç§åŠè ïŒå®éšç§åŠã®å¯èœæ§ã奜ã人ã¯ããªãããšãå€æãããããããŸããããããã³På€ã¯èª°ã«ãšã£ãŠã䟿å©ã§æçšã§ãããšèããããŠããŸãã
BayesovetsïŒå€§åŠã®çµ±èšåŠã³ãŒã¹ãéåžžã«æªç©ã ã£ãã®ã§ã確çè«ãéåžžã«èããŠã圌ãã¯éããæã£ãŠããŸã-ã¯ããå€æŽã¯å€éšããæ¥ãªããã°ãªããŸããã芪æãªãåŠçããã€ãžã¢ã³ç¢ºççè«ã®çããŠé åçãªçŽ¹ä»ãèªãã§ãçµ±èšã«é¢ãã圌ã®çŽ æŽãããæç§æžãšæ¯èŒããä»åŸ6ãæéããããããããšãå人çã«æã¿ãŸããããŸãããé¡ãããŸããä¿¡é Œæ§ãèšç®ããŠãã ããã ãã
åŠçïŒãããš...ãŸããæåã«ãããèªã¿ãŸãããããã§ããïŒ
BayesovetsïŒèŠªæãªãåŠçãããªãã®éžæã«ã€ããŠèããŠãã ãããç§åŠã®ããã€ãã®å€åã¯ãåŠçãããŸããŸãªã¢ã€ãã¢ã«å²ãŸããŠæé·ãããããããé©åãªã¢ã€ãã¢ãéžæããããã«ã®ã¿çºçããŸããããã¯æåãªMax Planckã®æ Œèšã§ãããMax Planckã¯ãã³ã»ã³ã¹ãèªããªãã§ãããããšã«ãŽãæªãã¢ã€ãã¢ãšè¯ãã¢ã€ãã¢ãåºå¥ããç§åŠã®èœåã¯ãçåŸã®ç¥æ§ã«å®å šã«äŸåããŠããŸãã
ç§åŠè ïŒãããããã¯ãã§ã«ã§ã...
ã¢ãã¬ãŒã¿ãŒïŒãããŠãããã§è»¢éãå®äºããŸãããæž èŽããããšãããããŸããïŒ