ã¹ãã£ãŒãã³ã»ãŠã«ãã©ã ã«ããèšç®ç¥èã®ç¿»èš³ãšçŽç²æ°åŠã®æªæ¥
ãã®ç¿»èš³ãæäŒã£ãŠããã人ã ã«æ·±ãæè¬ããŸãããŽã©ãã£ã¹ã©ãã»ã°ã©ãŽã¬ãïŒ ãã ã© ïŒã ã€ãªã€ã»ãã«ãã§ãã¹ã㌠ãã»ã«ã²ã€ã»ã·ã§ããã¥ã¯ïŒ opckSheff ïŒã ã¢ã³ãã» ã³ãã¬ã³ã³ ã
ã¯ããã«
1äžçŽä»¥äžã«ãããã4幎ããšã«ãäžçã®ããæç¹ã§ãåœéæ°åŠè äŒè°ïŒICMïŒãéå¬ãããŸãã 1900幎ããããããã«ããŒããæåãªæ°åŠã®åé¡ã®ã³ã¬ã¯ã·ã§ã³ãçºè¡šããä»æ¥ã«è³ããŸã§äžçäžã®æ°åŠè ã®ç 究ã®æ¹åæ§ãå®ããŠããŸãã
ä»å¹Žã ICMã¯ãœãŠã«ã§éå¬ãããä»æ¥ã¯ãœãŠã«ã«è¡ããŸãã 1990幎ã«äº¬éœã§ICMã«åå ããããšããããŸãã ããããMathematicaã¯ããã2æ³ã§ãæ°åŠè ã¯ããã«æ £ãå§ããã°ããã§ããã å€ãã®äººããã§ã«ãããã©ãã§ã䜿ã£ãŠããŸãããICMã«ã¯ããç§ã¯çŽç²ãªæ°åŠããã£ãŠããŸãã ãããããããšã«ã Mathematicaã§äœãã§ããŸããïŒã
24幎åŸãäžçäžã®çŽç²æ°åŠã®åéã®ã»ãšãã©ã®å°é家ããäœããã®åœ¢ã§Mathematicaã·ã¹ãã ã䜿çšããŠããŸãã ããããããã«ãããããããå€ãã®çŽç²ãªæ°åŠè ã¯ãäœäžçŽã«ãããã£ãŠæ£ç¢ºã«-æãšçŽã§ãã¹ãŠããç¶ããŠããŸãã
1990幎ã«ICMè°äŒã«åºåžããŠä»¥æ¥ããã®äŒçµ±çãªããã»ã¹ã«ãã¯ãããžãŒãã©ã®ããã«çµã¿èŸŒãããšãã§ãããã«ã€ããŠèããããšãæ¢ããŠããŸããã ãããŠä»ãã©ãããããšãã話ããããšæã£ãŠããŸãã 泚æããå¿ èŠããããŸãïŒå€ãã®è©³çŽ°ã¯ãŸã ç§ã«ã¯äžæã§ãã ããããèšç»ãå®è¡ããããã«ã¯ãäžçäžã®ã»ãšãã©ã®çŽç²ãªæ°åŠè ã®æ¯æŽãšååãå¿ èŠã§ãã ãã¹ãŠãããŸããã£ãå Žå-çµæã¯å°è±¡çã§ããããšãçŽæãããŸã-Mathematicaã·ã¹ãã ïŒããã³è¥ãäžä»£ã®Wolfram | AlphaïŒããã¹ãŠã®èšç®æ°åŠãå€æŽããã®ãšåãããã確å®ã«çŽç²ãªæ°åŠè ã«äœæ¥æ¹æ³ãå€æŽãããŸãã æœåšçã«ããã®çµæã¯çŽç²ãªæ°åŠãæ°ããé»éæ代ã«å°ãå¯èœæ§ããããŸãã
çŽç²ãªæ°åŠã¯ãŒã¯ãããŒ
äžè¬ã«ããã®åé¡ã¯éåžžã«è€éã§ãã ããããç§ã«ãšã£ãŠæãéèŠãªåºçºç¹ã®1ã€ã¯ãèšç®æ°åŠãšçŽç²æ°åŠã§äœ¿çšãããæ¹æ³ã®éãã§ãã èšç®æ°åŠã§ã¯ãéåžžãç¹å®ã®èšç®äžã®åé¡ãæèµ·ãããéåžžã®æ°åŠã®äœæ¥ã»ãã·ã§ã³ãšåæ§ã«ãçµæãåŸãããã«è§£æ±ºãããŸãã çŽç²ãªæ°åŠã§ã¯ãéã«ãããã€ãã®æ°åŠçãªãªããžã§ã¯ããçµæãŸãã¯æ§é ãåããããããã«é¢ããŠããã€ãã®ä»®èª¬ã圢æããã次ã«ä»®èª¬ã®åŠ¥åœæ§ã®èšŒæãæ瀺ãããŸãã
ãã®ãããªã¯ãŒã¯ãããŒã«ãã¯ãããžãŒãå¹æçã«å°å ¥ããã«ã¯ã©ãããã°ããã§ããïŒ 1ã€ã®ç°¡åãªæ¹æ³ããããŸã-Wolfram | AlphaãèããŠãã ããã 2 + 2ãå ¥åãããšãWolfram | Alphaã¯Mathematicaãšåãããã«4ã®å¿çãè¿ããŸããããããã new york ããã 2.3363636 ãããŸãã¯ã cosïŒxïŒlogïŒxïŒ ããšå ¥åãããšãããããæ°ããããªãåçŽãªãçããã 代ããã«ãWolfram | Alphaã¯ãå ¥åããããŒã¿ã«é¢ããäžé£ã®ãèå³æ·±ãäºå®ããå«ãã¬ããŒããçæããŸãã
ãã®çš®ã®çãã¯ãçŽç²ãªæ°åŠã®ã¯ãŒã¯ãããŒã«å®å šã«é©åããŸãã æ°åŠçãªãªããžã§ã¯ããçµæããŸãã¯æ§é ãå ¥åãããšãéåžžã«è³¢æãªæ°åŠè ã®ååãã§ããããã«ãã·ã¹ãã ã¯ãããã«ã€ããŠäœããäŒããããšããŸãã å¿ èŠã«å¿ããŠãç¥ãããããšãæ£ç¢ºã«ã·ã¹ãã ã«äŒããããšãã§ããŸãããŸãã¯ãçå®ã§ããå¯èœæ§ã®ããã¹ããŒãã¡ã³ãã瀺ãããšããã§ããŸãã ããããWolfram | Alphaã§åãããšã¯ããããã«ã€ããŠäœãæããŠããããŸããïŒããªã©ã®è³ªåã«å¯ŸããçããèŠã€ãããããªãã®ã§ããMathematicaã§ã¯ããç§ãå°ãããã®ã«å¯Ÿããçãã¯äœã§ããïŒã
Wolfram | Alphaã¯ãããããçš®é¡ã®æ°åŠãªããžã§ã¯ãã§æ¢ã«å€ãã®ããšãè¡ãããšãã§ããŸãã ããšãã°ã æ°å€ ã æ°åŒ ã ã°ã©ã ã 確çååžãªã©ãå ¥åãããšãWolfram | Alphaã¯æŽç·Žãããã¢ã«ãŽãªãºã ã䜿çšããŠãå ¥åãããããŒã¿ã«é¢ãã詳现ãªã¬ããŒãã詳现ãªã¬ããŒãã®åœ¢åŒã§äœæããŸãã
ããããçŽç²ãªæ°åŠãæ±ããšãã«å®éã«åœ¹ç«ã€ããã«ããã«ã¯ãWolfram | Alphaã·ã¹ãã ã«äœãä»ã®ãã®ãå¿ èŠã§ãã ç¹å®ã®æ°åŠçãªããžã§ã¯ããæäœããããšã«å ããŠãæœè±¡çãªæ°åŠçæ§é ãæäœããèœåãå¿ èŠã§ãã
çŽç²ãªæ°åŠã®ç¡æ°ã®èšäºã¯ããFã¯ãã®ãããªæ§è³ªãæã€ãã£ãŒã«ãã ãšä»®å®ããŠãã ããããšããèšèã§å§ãŸããŸãã ãããã£ãŠãåŸããã·ã¹ãã ããã£ãŒã«ãFã«é¢ããå®çãšäºå®ãèªåçã«æäŸããæ¬è³ªçã«ããã£ãŒã«ãFã«é¢ããæ¬æ Œçãªèšäºãåå¥ã«äœæã§ããããã«ãé¡äŒŒã®ãã®ãå°å ¥ã§ããå¿ èŠããããŸãã
ããã§ã¯ããã®ãããªã·ã¹ãã ãäœæããã«ã¯äœãå¿ èŠã§ããïŒ ååãšããŠäœæããããšã¯å¯èœã§ããïŒ ãã®ãããªã·ã¹ãã ã«å¿ èŠãªããã€ãã®ã³ã³ããŒãã³ãããããŸã-ãããã¯è€éã§ãããããããäœæããã®ã«å€ãã®æéãããããŸãã ãããã Mathematica ãWolfram | Alphaã A New Kind of Science ïŒã»ã«ãªãŒãããã³ãšé¢é£ãããã¯ã«é¢ããåºæ¬çãªã¢ãã°ã©ãã¯ã A New Kind of Science ãã§ãïŒã§ã®çµéšã«åºã¥ããŠãæ£ããã¬ã€ãã³ã¹ãšååãªåªåã§ããã¹ãŠãã§ãããšç¢ºä¿¡ããŠããŸãäœæãããŸããã
éèŠãªã³ã³ããŒãã³ãã¯ãæ°åŠçãªæŠå¿µãšæ§é ã®æ£ç¢ºãªèšå·èšè¿°ã®å¯çšæ§ã§ãã Mathematicaã·ã¹ãã ã«ã¯ããã®ååäžçŽä»¥äžã«ãããç 究ã®çµæãã»ãšãã©ããã§ã«ååšããŠããŸãã ãããã£ãŠã Wolframèšèªã¯å¹ŸäœåŠçãªãªããžã§ã¯ã ã æ¹çšåŒ ã 確çéçš ã æ°éè©ãªã©ãè¡šçŸããæãæœè±¡çãªæ¹æ³ãçŽæ¥çµ±åããŸããããããWolframèšèªããããŸã§æã£ãŠããªãã®ã¯ãäŸãã°å šåå°ãæœè±¡å矀ããã«ã«ãå¹³æ¹ãªã©ã®çŽç²ãªæ°åŠã®æŠå¿µã®è¡šçŸã§ãã
Mathematicaãã©
äœäžçŽã«ãããã£ãŠãå€ãã®æ°åŠè ãããŸããŸãªåé¡ãç 究ããŠããŸããã ããããWolframèšèªãæ¡åŒµããŠçŽç²ãªæ°åŠã®åé¡ã®å šç¯å²ãã«ããŒãããMathematica Puraãã®ãããªããšãããããšã¯å¯èœã§ããããïŒ ééããªããçãã¯ã€ãšã¹ã§ãã ãã®åé¡ã解決ããããšã¯é©ãã»ã©èå³æ·±ãã§ãããããèšèªã®æ§é ã®è€éãªç 究ââãå¿ èŠã«ãªããŸãã
ç§ã¯35幎éãã®ãããªèšèªã®æ§é ãéçºããŠããŸãããããã¯ç§ããããŸã§ã«ééããäžã§æãé£ããç¥çäœæ¥ã§ãããšèšããŸãã æ確ãªæèãšå¯©çŸçã§å®çšçãªã¢ãããŒãã®çµã¿åãããå¿ èŠã§ãã ç©äºã®æãæ·±ãç解ãéæããå¯èœãªéããã¹ãŠãçµ±äžããããã«ãåžžã«ãããææ¡ããå¿ èŠããããŸãããäœæ¥ã®çµæã¯åžžã«ãç©äºãæãç°¡åã§æçœãªæ¹æ³ã§è¡šãããªããã£ãã§ãªããã°ãªããŸããã
çŸæç¹ã§ã¯ãçŽç²ãªæ°åŠïŒããšãã°èšäºïŒãèšè¿°ããäž»ãªæ¹æ³ã¯ã æ°å°ãªãè¡šèšæ³ã«å ã㊠ã æ°åŠè¡šèšãšèªç¶èšèªã®æ··åã§ãã ãããŠãããã¯ãçŽç²ãªæ°åŠã®ããã®æ£ç¢ºãªèšå·èšèªãéçºãããšãã®åºçºç¹ã§ããã¹ãã§ãã
äœããã®æ¹æ³ã§æ°åŠè¡šèšããã§ã«ãã®åé¡ã解決ããŠãããšæããããããŸããããå®éã«ã¯ãæ°åŠè¡šèšã䜿çšããŠæšæºåãããæ¹æ³ã§è¡šçŸã§ããæ§é ãæŠå¿µã¯ããã»ã©å€ããããŸããããããã¯ãã§ã«Wolframèšèªã§å©çšå¯èœã§ãã
ããã§ã¯ãããã«å ã«é²ãã«ã¯ã©ãããã°ããã§ããããïŒ æåã®ã¹ãããã¯ãå¿ èŠãªããªããã£ããç解ããããšã§ãã Wolframèšèªå šäœã«ã¯çŸåšãçŽ5,000åã®çµã¿èŸŒã¿é¢æ°ãšäœçŸäžãã®çµã¿èŸŒã¿æšæºåããŒã¿ãªããžã§ã¯ããå«ãŸããŠããŸãã çŽç²ãªæ°åŠãå¹ åºããµããŒãããã«ã¯ãããããæ°äžã®æ°ããããŒã¿ãªããžã§ã¯ããŸãã¯æ¢åã®æ§é ãè£å®ããªã³ã¯ããé¡äŒŒç©ãšãšãã«ãçŽ1,000ã®è¿œå ã®æ©èœãå¿ èŠã«ãªããšæãããŸãã
é¢æ°ç©ºéãªã©ã®ãã¡ã€ã³ãæ€èšããŠãã ããã ããããããã®é åã«ã¯ãé¢æ°ç©ºéãå®çŸ©ããFunctionSpaceé¢æ°ãããã¯ãã§ãã 次ã«ãé¢æ°ã¹ããŒã¹ã§ã®æäœãå¿ èŠã«ãªããŸããããšãã°ãPushForwardïŒãããã³ã°ã®ã¢ã¯ã·ã§ã³ã®äžã§ã€ã¡ãŒãžã枬å®ïŒãŸãã¯MetrizableQïŒèšéå¯èœãªã¹ããŒã¹ãã©ããïŒã§ãã 次ã«ããCInfinityãïŒç¡é埮åå¯èœé¢æ°ã®ç©ºéïŒãªã©ãããŸããŸãªãã©ã¡ãŒã¿ãŒåãªãã·ã§ã³ã䜿çšããŠãå€ãã®æ¢ç¥ã®é¢æ°ç©ºéãå®çŸ©ããå¿ èŠããããŸãã
äœã¬ãã«ã§ã¯ãã·ã³ããªãã¯åŒã«ãªããŸãã ããããWolframèšèªã§ã¯ãæçµçã«æ å ±ãçŽæ¥å ¥åãã3ã€ã®æ¹æ³ããããŸãããããã¯ãã¹ãŠã䟿å©ã§èªã¿ãããèšèªãåŸãããã«å¿ èŠã§ãã æåã®æ¹æ³ã¯ã +ãasãªã©ã®çãè¡šèšã䜿çšããããšã§ããããã¯ãéåžžã®æ°åŠè¡šèšãšãŸã£ããåãã§ãã 2çªç®ã¯ã MatrixRankãSimplexãªã©ã®éåžžã«è€éãªé¢æ°åã®äœ¿çšã§ãã 3çªç®ã¯ãèªç¶èšèªã§ã®èªç±åœ¢åŒã®å ¥åã®äœ¿çšã§ããããšãã°ããtrefoil knot ãïŒãã¬ãã©ã€ã«ãããïŒãŸãã¯ã aleph0 ãïŒaleph-0ã»ããã®ã«ãŒãã£ããªãã£ïŒã§ãã
æãäžè¬çãªæ§é èŠçŽ ãŸãã¯æ¥ç¶èŠçŽ ã®ããã€ãã«ã€ããŠçãèšé²ãå¿ èŠã§ãããé©åãªéãå¿ èŠã§ããå°ãªãããïŒLISPã®ããã«ïŒãå€ãããªãããã«ïŒAPLã®ããã«ïŒã ãŸããé¢æ°ã®ååããåã«æ®éã®åèªã§èšè¿°ãããŠããããã«ãããã®ã§ãåèªããååãèªã¿åãã ãã§é¢æ°ã®ç®çãç°¡åã«ææ¡ã§ããŸãã
ã³ã³ãã¥ãŒã¿ãŒãšäººã
ããããWolframèšèªã®çŸä»£äžçã§ã¯ãèªç¶èšèªã®èªç±åœ¢åŒã®å ¥åããããŸãã ããã§ã®ããŒãã€ã³ãã¯ãããã䜿çšãããšãå®éã®æ°åŠè ã ããç解ããŠäœ¿çšãã䟿å©ãªïŒããã®ã®ïŒããŸããŸãªèšé²ãªãã·ã§ã³ãå¹æçã«äœ¿çšã§ããããšã§ãã ããšãã°ããL2ãã¯ã察å¿ããã³ã³ããã¹ãã§ã¯ã2次ã®ã«ããŒã°ç©ºéããšè§£éã§ããŸãã èªç¶èšèªèªèã·ã¹ãã ã¯ããã®ãããªãªã¯ãšã¹ãã®è§£éã®ãããŸããã解決ãããã®ããã®æšæºçãªã·ã³ããªãã¯ãã©ãŒã ãèŠã€ããããã«æ³šæããŸãã
æçµçã«ãç¬èªã®ååãæã€çŽç²ãªæ°åŠã®åãã¶ã€ã³ãŸãã¯æŠå¿µã¯ãã·ã³ããªãã¯èšèªã§ãã®å ŽæãèŠã€ããå¿ èŠããããŸããæ°åŠè ãååãèããšããã«ç解ãããããããåéã®æ¬è³ªã
çŽç²ãªæ°åŠã®æŠå¿µã§æ©èœããæ£ç¢ºãªã·ã³ããªãã¯èšèªãäœæã§ãããšããŸãã ããã§äœãã§ããŸããïŒ
ãWolfram | Alphaã¹ã¿ã€ã«ãã§äœæ¥ã§ãããšããŸããããèªç±åœ¢åŒã§äœããå ¥åãããšãå ¥åãããããŒã¿ã¯èšèªã«ãã£ãŠè§£éããããã¹ãŠã®èšç®ãå®äºãããšãçæãããã¬ããŒããåãåããŸãã
ãããããã®ãªãã·ã§ã³ãæ€èšããããšãã§ããŸããå®å šã«èãæãããã·ã³ããªãã¯èšèªãããã°ãã³ã³ãã¥ãŒã¿ãŒã ãã§ãªã人éã«ã圹ç«ã¡ãŸãã å®éãèšèªãååã«åªããŠããããšãå€æããå Žåã人ã ã¯ãããããèªç¶èšèªãšæ°åŠè¡šèšã®å€å žçãªæ··åç©ã§ã¯ãªãããã®äžã§æ°åŠèšç®ãæžãçãå§ããã§ãããã
Wolframèšèªã§ããã°ã©ã ãäœæãããšããããªãé »ç¹ã«ããã«ã€ããŠçŽæ¥èããããšãå€æããŸãã ç§ã¯èªç¶èšèªã§ããããWolframèšèªã«ç¿»èš³ããããšã§ããããããšãæãã€ããŸããã Wolframèšèªã§æåã«æèã圢æãããã®æ§é ã¯ãããã®æèã圢æããã®ã«åœ¹ç«ã¡ãŸãã
çŽç²æ°åŠã®ããã«ååã«åªããèšå·èšèªãéçºã§ããã°ãããã¯ãšããããæ°åŠè ã«æèã«çŽæ¥äœ¿çšã§ããããŒã«ãæäŸããŸãã æ£ç¢ºãªã·ã³ããªãã¯èšèªã§èªåã®èãã説æã§ããã°ããããŸããããããŸããã®å¯èœæ§ããªãããããããè¯ãããšã§ããèšèªã®ããã¥ã¡ã³ãã§ã¯ããªããžã§ã¯ããã·ã³ãã«ã®ãããŸãã§ãªã説æãåžžã«èŠã€ããããšãã§ããŸãã
åæã«ãçŽç²ãªæ°åŠãæ£ç¢ºãªèšå·èšèªã§æžãåºããããšããã«ãèšç®ãã§ããããã«ãªããŸãã 蚌æ ãçæããŠæ€èšŒã§ããŸãã å®çãæ€çŽ¢ã§ããŸãã é¢ä¿ãšåææ¡ä»¶ãã§ãŒã³ãèªåçã«èŠã€ããããšãã§ããŸãã
ãããããŸããçŽç²ãªæ°åŠã«å¿ èŠãªã³ã³ãã¥ãŒãã£ã³ã°ããã€ã¹ãããã ãã ãšããŸãããã ãWolfram | Alpha-styleãã¯ãŒã¯ãããŒãå®è£ ããããã«ãããã©ã®ããã«äœ¿çšã§ããŸãã-ç©äºã®èª¬æãå ¥åãããããã«é¢ããããããçš®é¡ã®æ°åŠçç¥èãèªåçã«ååŸããå Žå
ãã®åé¡ã解決ããã«ã¯ãæããã«2ã€ã®ç°ãªãæ¹æ³ããããŸãã 1ã€ç®ã¯ãå ¥åãããããŒã¿ã®å¯èœãªå®çã®æœè±¡çãªãªã¹ããæ瀺ãããã®åŸãçºèŠçã¢ã«ãŽãªãºã ã䜿çšããŠèå³æ·±ãå¯èœæ§ã®ããå®çãéžæããããšã§ãã 2ã€ç®ã¯ãæ°åŠã®æç®ã§ãããŸã§ã«å ¬éãããæ°çŸäžã®å®çã®èšç®ãããããŒãžã§ã³ãäœæããããšããå§ãã次ã«ããããšä»»æã®å ¥åã¯ãšãªã®éã®æ¥ç¶ãèŠã€ããæ¹æ³ãç解ããããšã§ãã
å®éããããã®åé åã¯ãæ°åŠã®åéã§ç 究ãã©ã®ããã«è¡ããããã«ã€ããŠã®ãããã«ç°ãªãèŠè§£ãåæ ããŠããŸãã ãããŠãããããã®æ¹åã«ã€ããŠäŒããã¹ãããšããããŸãã
åæã«ããæ°åŠ
å®çã®ã·ãŒã±ã³ã¹ããå§ããŸãããã æãåçŽãªå Žåãå ¬çã®ã·ã¹ãã ãšããã®ã·ã¹ãã ã«åºã¥ãçã®å®çã®äžè²«ããå®åŒåããå§ããããšãã§ããŸãã ãããè¡ãã«ã¯ãäž»ã«2ã€ã®æ¹æ³ããããŸãã 1ã€ç®ã¯ãæ¶ç©ºã®ã¹ããŒãã¡ã³ããäœæãã çŽæ¥ãŸãã¯éæ¥çãªèšŒæ ã䜿çšããŠãçã®ã¹ããŒãã¡ã³ãã決å®ããããšã§ãã 2çªç®ã¯ã蚌æã®å¯èœãªæ¹æ³ããªã¹ãããå ¬çã䜿çšããå¯èœãªæ¹æ³ãèŠã€ãåºãããšã§ãã
ãªããžã§ã¯ããããŒã«ä»£æ°ãªã©ã®å Žåãäž¡æ¹ã®ã¡ãœããã¯ç°¡åã«å®è£ ã§ããŸãã çµæã¯ãäžé£ã®çã®å®çã«ãªããŸãã ãããã人ãããããèŠããšããããã®å€ãã¯äºçŽ°ãªããŸãã¯é¢çœããªãããã«èŠããŸãã ãããã£ãŠãã©ã®å®çãçæãããã¬ããŒãã«å«ãŸããã®ã«ãååèå³æ·±ããããšããçåãçããŸãã
ç§ã®æåã®ä»®å®ã¯ããã®åé¡ã«å¯Ÿãããã®ãããªèªåã¢ãããŒãã¯ååšãããããŸããŸãªå®çãžã®é¢å¿ã¯ã察å¿ããæ°åŠåéã®æŽå²ççºå±ã«å¿ ãäŸåãããšãããã®ã§ããã ããããæ°ããçš®é¡ã®ç§åŠã«åãçµãã§ãããšããããŒã«ä»£æ°ã§ç°¡åãªå®éšãããŸããã
ããŒã«ä»£æ°ã«ã¯14ã®å®çãããããéåžžã«èå³æ·±ãããšèŠãªãããæç§æžã§ç¹å¥ãªååãä»ããããŠããŸãã ãã¹ãŠã®å¯èœãªå®çãåããè€éãªé åºã§ïŒå€æ°ãæŒç®åãªã©ã®æ°ã§ïŒãªã¹ãããŸãããé©ãã¹ãããšãèŠã€ããŸãã-äžèšã®å®çã®å šäœã¯ãäž»ã«ãªã¹ãã®åã®ãã®ã䜿çšããŠçŽæ¥èšŒæã§ããªããã®ã«é©çšãããŸãã èšãæããã°ãååãäžããããå®çã¯ãããæå³ãããŒã«ä»£æ°ã«é¢ããæ°ããæ å ±ãäžããæå°éã®ã¹ããŒãã¡ã³ãã§ãã
ãã¡ãããããŒã«ä»£æ°ã¯æãåçŽãªäŸã§ãã ããã«ããã®æ§æäŸã§ã¯ããã¹ãŠã®å ¬çã«å¯Ÿå¿ããå®çãååŸãããšããã«ãå€ãã®æ°åŠçè«ã«ãšã£ãŠäžåçãªãèå³æ·±ããå®çã¯ãããªããšçµè«ä»ããããšãã§ããŸãã ãããããã®äŸã¯ãã©ã®å®çããã¬ããŒãã«å«ãããã¹ãã§ãã©ã®å®çããé¢çœããªããã¬ããŒãã®åãªããè£ é£Ÿãã§ããããå®éã«èªåçã«èŠã€ããæ¹æ³ããã瀺ããŠãããšæããŸãã
èå³ã®å°ºåºŠ
ãã¡ãããé¢å¿ã®åé¡ã®åé¡ã¯Wolfram | Alphaã§åžžã«çºçããŸãã æ°åŠçãªäŸã§ã¯ããã°ã©ãã®ã©ã®é åãæãèå³æ·±ãããããåŒã®ã©ã®ä»£æ¿åœ¢åŒãèå³æ·±ããããªã©ã®è³ªåã§ãã誰ããåäžã®æ°åãå ¥åããŠããããã®æ°åã®ã©ã®éãã圢åŒãé¢çœãã§ããïŒã -ãããŠããããç解ããããã«ã¯ãããããçš®é¡ã®æ°åŠçãªããžã§ã¯ããåé¡ããå¿ èŠããããŸãïŒããšãã°ã 察æ°ïŒ343ïŒãKhinchinå®æ°ãªã©ã«å¯ŸããÏã®è¡šçŸã¯ã©ã®ãããè€éã§ããïŒïŒ
ãããã£ãŠãååãšããŠãå ¥åã«å«ãŸãããã®ã«ã€ããŠãèå³æ·±ããå®çãçæããã·ã¹ãã ãæ³åã§ããŸãã Mathematicaã®éåžžã®èšç®ã§ã¯ãããŒã¿ãå ¥åããããçããåŸãããã«èšç®ããå®è¡ãããŸãããããã§ã¯èå³æ·±ãã¹ããŒãã¡ã³ããçæãããŸãã
å ¥åã®æ§è³ªãç°ãªããŸãã èšç®ã®å Žåãéåžžãå®è¡ããå¿ èŠãããæäœãåŠçããŸãã ãWolfram | Alphaã¹ã¿ã€ã«ãã§çŽç²ãªæ°åŠãæ±ãå ŽåããŠãŒã¶ãŒã¯éåžžããªããžã§ã¯ãã®èª¬æãæäŸããŸãã å Žåã«ãã£ãŠã¯ãæ瀺çã§ããããšãã°ãç¹å®ã®ã¿ã€ãã®æ°ãç¹å®ã®æ¹çšåŒãç¹å®ã®ã¿ã€ãã®ã°ã©ããªã©ã§ãã ããããå€ãã®å Žåãæé»çãªãã®ã§ãããããšãã°ãäžé£ã®å¶éã«ãããªãå ŽåããããŸãã åè¿°ã®ãã£ãŒã«ãã®äŸã§ã¯ããFããã£ãŒã«ãã«ããããšèšã£ãŠããããã®ãã£ãŒã«ããæºããã¹ãå¶éãèšå®ããŸãã
ããæå³ã§ãå ¬çäœç³»ã¯å¶éãèšå®ããŸã ããã®ãããªæŒç®åã¯ããã³ããïŒã·ã§ãŒãã¡ãŒã®ã¹ãããŒã¯ïŒã§ãããšã¯è¿°ã¹ãŠããŸããã ãªãã¬ãŒã¿ãŒã¯ç¹å®ã®æ¡ä»¶ãæºããå¿ èŠããããšåçŽã«è¿°ã¹ãããŠããŸãã ã²ãŒãã«ã®å®çãããPeanoã®æšæºçãªç®è¡ã®ãããªãã®ã§ãããå¶éãå®å šã«å æããããšã¯äžå¯èœã§ããããšãããããŸããããšãã°ãæŽæ°ã®åçŽãªå ç®ãªã©ãå ¬çã®+èšå·ã«ç¹å®ã®æŒç®ãå²ãåœãŠãããšã¯ã§ããŸãã ãã¡ãããããããããšã§ãã¬ããŒãã«äœ¿çšãããã®ãå«ããã+ãã«é¢ããããªãã®æ°ã®å®çã蚌æã§ããŸãã
ãããã£ãŠãç¹å®ã®å ¥åã䜿çšããŠãããããæ£ç¢ºãªã·ã³ããªãã¯èšèªã®å¶çŽã®ã»ãããšããŠè¡šçŸããæ¹æ³ãèŠã€ããããšãã§ããŸãã 次ã«ããããã®å¶éã«åºã¥ããŠå®çãå®åŒåããããããããæãèå³æ·±ãããã®ãçºèŠçã«éžæããŸãã
ãã€ããã®ã¬ãã¹ã³ãçŽç²ãªæ°åŠè ã®ä»äºã®æãéèŠãªéšåã«ãªããšç¢ºä¿¡ããŠããŸãã ä»æ¥ãã»ãšãã©ã®çŽç²ãªæ°åŠè ã«ãšã£ãŠããã®ã¿ã¹ã¯ã¯ãäœè ãªããã®å®çã«æ £ããŠããªããããç°è³ªã«æããŸãã ãããã¯ç¹å®ã®æ°åŠè ã®èšäºããã®å®çã«äœ¿çšãããŸãã
ãããŠãããããæ°åŠçãªç¥èã®èªåçæãžã®ç¬¬2ã®ã¢ãããŒãã«ã€ãªãããŸããæžãããæ°åŠçãªèšäºã®ã³ã¬ã¯ã·ã§ã³å šäœããå§ããŠããããç¹å®ã®å ¥åãšé¢é£ä»ããŸãã ããšãã°ããèšäºXã®æ¬¡ã®å®çã¯ãäœããã®åœ¢ã§å ¥åã«é©çšã§ããŸãããªã©ãšèšããŸãã
æ°åŠããŒã¿ããŒã¹å šäœã®ç£ç£
æ°åŠã®æŽå²çåºç€ã¯ã©ã®ãããã§ããïŒ åºçãããæ°åŠèšäºã¯çŽ300äžãã€ãŸãçŽ1åããŒãžããããã®æ°ã¯å¹Žéå¹³å200äžããŒãžå¢å ããŠããŸãã ããã«ããããã®ãã¹ãŠã®èšäºã§ã¯ãæããã«çŽ500äžã®ç°ãªãå®çãå«ãŸããŠããŸãã
ãã®ãã¹ãŠã§äœãã§ããŸããïŒ ãŸãããã¡ãããåçŽãªèª¿æ»ãšåŠçã å€ãã®å Žåãèšäºã®åèªã«ã¯ãåãªãæ°åŠè¡šèšãå®çã®èšè¿°ãããã¯ããã«å€ãã®è³æãèšèŒãããŠããŸãã ããããWolfram | Alphaã®æ°åŠçã¯ãšãªã®ããã®èšèªèªèæè¡ã®å©ããåããŠãæ°åŠçèšäºã®ã¹ããã¯ã®åªããçµ±èšåŠçãå®è¡ããããšã¯ããã»ã©é£ãããããŸããã
ããããããã«å ãžé²ãããšã¯å¯èœã§ããïŒ å¯èŠæ§ãåäžãããããã«ããœãŒã¹ããã¥ã¡ã³ãã®ã¿ã°ãäœæããããšãæ€èšãã人ããããããããŸããã ããããã€ã³ã¿ãŒãããã§ã¯åããã¥ã¡ã³ããšãã®ã°ã«ãŒãããã¿ã°ãè¿œå ããããããããæŽç·Žãããæ å ±ã«åºã¥ããã·ã¹ãã ãäœæããæ¹ãã¯ããã«ç°¡åã§åªããŠãããšããäºå®ã瀺ãããã«ããã®ãããªäœæ¥ã¯æå³ããªããªããšèããŠããŸã
確ãã«ããåççã§ããã®ã¯ãå®çãå ã®èšç®å¯èœãªåœ¢åŒã«ç¿»èš³ããããšã§ãïŒèšäºããå®çãæœåºããããããæ£ç¢ºãªèšå·èšèªã§æžãçŽããŸãã
ãããèªåçã«è¡ãããšã¯å¯èœã§ããïŒ æçµçã«ã¯ãã»ãšãã©ã®éšåã§å¯èœã«ãªããšæããŸãã ä»æ¥ãç§ãã¡ã¯ãã§ã«èšäºããå®çã®å°ããªæçãåãåºãã Wolfram | Alpha èšèªèªèã·ã¹ãã ã䜿çšããŠããããWolframèšèªã³ãŒãã«å€æããããšãã§ããŸãã ããããåŸã ã«å€§ããªæçã«é²ãããšãå¯èœã«ãªããæçµçã«ãå žåçãªå®çãæ£ç¢ºãªèšå·åœ¢åŒã«å€æããã«ã¯ã人ã®æãåãã«è¶³ããªãåªåã ããå¿ èŠã§ãããšããçµè«ã«éããŸãã
ãããã£ãŠãæ°åŠæç®ããã®ãã¹ãŠã®å®çãèšç®å¯èœãªåœ¢åŒã§æŽçãããšããŸãããã 次ã«äœãããŸããïŒ ãã¡ãããWolfram | Alphaã«äŒŒãèŠèŠã·ã¹ãã ãæ§ç¯ããããšãã§ããŸããããã¯ãçŽç²ãªæ°åŠã®å®è·µã«éåžžã«åœ¹ç«ã¡ãŸãã
äžæº¶æ§ã®åé¡
ãã ããå®éã«ã¯æ°åŠèªäœã«ãã£ãŠèª²ããããããã€ãã®å¶éãé¿ããããŸããã ããšãã°ãã©ã®å®çãã©ã®ãªããžã§ã¯ãã«é©çšã§ããã©ã®å®çãåçã§ããããèšãã®ã¯å¿ ããã容æã§ã¯ãããŸããã æåŸã«ããããã¯å€å žçãªçè«çã«äžæº¶æ§ã®åé¡ã§ãããå®éã«åé¡ãåŒãèµ·ãããšæãããŸãã å°ãªããšãã圌ãã¯èªå蚌æãªã©ã®åºæ¬çãªããã»ã¹ãé©çšã§ããŸãã
ãããã£ãŠãããã§èª¬æãã2ã€ã®äž»ãªã¢ãããŒãã®çµã¿åãããææ¡ãããŠããŸãã æåã«ãå ¬éãããæ°åŠçèäœç©ã®è³éå šäœãåããå ¬åŒã«500äžã®å·šå€§ãªå ¬çç³»ãšã¿ãªãããã®åŸãå®çã®é£ç¶çãªå£°æãã€ãŸããèå³æ·±ãäºå®ã®ãªã¹ãããšåŒã°ãããã®ã®æé ã«åŸããŸãã
æ°åŠïŒç§åŠãèžè¡ãïŒ
ããã§ããã®ãããªã·ã¹ãã ãäœæãããšããŸãããã 圌女ã¯çŽç²ãªæ°åŠã§æ°ããçå®ãèŠã€ãããšããéèŠãªèª²é¡ãæ¬åœã«è§£æ±ºããã®ã§ããããããããšã圌女ã¯ããã«å¯ŸåŠããªãã®ã§ããããïŒ
ããã¯ãã¹ãŠãçŽç²æ°åŠã®æ¬è³ªãšèãããããã®ã«äŸåããŠãããšæããŸãã ããã¯ç§åŠã§ããããããšãèžè¡ã§ããïŒ ãããç§åŠã§ããå Žåãããå€ãã®å®çããã°ããäœæããããšã¯ç¢ºãã«éåžžã«åªããŠããŸãã ãããããããèžè¡ã§ããã°ãããã¯äž»ãªãã®ã§ã¯ãããŸããã çŽç²ãªæ°åŠã®ä»äºãèžè¡çãªçµµã§èãããšããã®ã¢ãããŒãã®åºç€ã¯äººã®èªå·±è¡šçŸã®åœ¢ã§ãããããèªåã¢ãããŒãã¯éå¹æã«ãªãå¯èœæ§ãé«ããªããŸãã
åãããšã蚌æ ã®åœ¹å²ã«ãåœãŠã¯ãŸããŸãã äžéšã®æ°åŠè ã«ãšã£ãŠã¯ãå®çã®ã¿ãéèŠã§ãïŒå£°æãçå®ãã©ãããç¥ãããšã å®éã蚌æ ã¯ãšã©ãŒããªããšããäºå®ã ãã§ãã ããããä»ã®æ°åŠè ã«ãšã£ãŠã蚌æã¯æ°åŠã®å 容ã®éèŠãªéšåã§ãã 圌ãã«ãšã£ãŠã蚌æã¯æ°åŠçæŠå¿µã«æå¿«ãããããããããããçµ±åããç©èªã§ãã
ã§ã¯ã蚌æ ãèªåçã«çæãããšã©ããªããŸããïŒ ããèå³æ·±ãäŸããããŸããã15幎åã«æ°ããç§åŠã«åãçµãã§ããŠãããŒã«ä»£æ°ã®å ¬çã®æãåçŽãªã·ã¹ãã ã§äœæ¥ãçµãããšãã«èª¿ã¹ãŸããïŒå€æããããã«ãããã¯ãã£ã1ã€ã®å ¬çã§æ§æãããŠããŸãïŒpâŠqïŒâŠrïŒ âŠïŒpâŠïŒïŒpâŠrïŒâŠpïŒïŒ== rïŒã å ¬çç³»ã®äžè²«æ§ã蚌æããããã«ãæ¹çšåŒè«çïŒçŸåšã¯FullSimplifyé¢æ°ã«çµã¿èŸŒãŸããŠããŸãïŒã«åºã¥ããå®çã®èªå蚌æã·ã¹ãã ã䜿çšããŸããã ãããŠãçæããã蚌æ ãæ¬ã«å«ããŸããã
343ã®ã¹ããããå«ãŸããŠãããæšæºã®ãã©ã³ããµã€ãºã§ã¯ãããã40ããŒãžã®å°å·ãå¿ èŠã§ãã ãããŠãç§ã«ã¯æãããã人ã«ãšã£ãŠã¯å®å šã«èªããªãã 誰ãã蚌æã81åã®è£é¡ã«åå²ãããšç解ã«åœ¹ç«ã€ãšèãããããããŸããã ããããã©ã®ããã«è©ŠããŠãããã®èªå蚌æã人ãç解ã§ãããã®ã«å€ããããšã¯ã§ããŸããã§ããã ãã®ãããªèšŒæ ãååšããããšã¯çŽ æŽãããããšã§ãããããã ãã§ã¯å£°æã蚌æãã以å€ã«ã¯äœãèšããŸããã
ç©èªãšããŠã®èšŒæ
ããã§ã®åé¡ã¯ã蚌æ ã®èŠçŽ ã«ãèªç¥ã®æŽå²ããå«ãŸããŠããªãããšã ãšæããŸãã 蚌æã®ããŒãã€ã³ããšããŠè£é¡ã®ã»ãããéžæãããšããŠãããããã¯èªç¥çãªã€ãªãããæãããæŽå²ã«ãã£ãŠçµã³ä»ããããŸããã ãããã¯ãã³ã³ãã³ããã€ãªããã®ãªãåãªãäºå®ã§ãã
ãã®ããã»ã¹ãæ¹åããã«ã¯ïŒ å€æ°ã®é¡äŒŒèšŒæãçæããå Žåãé¡äŒŒè£é¡ãããé©åã«åºå¥ã§ãããããããæ確ã§æå³ã®ãããã®ã«ãªããŸãã 確ãã«ã蚌æ ã®å šäœåããã°ãã確èªããã®ã«åœ¹ç«ã€èŠèŠåæ¹æ³ããããŸãã ããã«ããã¡ãããæ°åŠæç®ã§ç¥ãããŠãããã¹ãŠã®å®çã®åºç€ã管çããèªç±ã«äœ¿çšã§ããå Žåãçæãããè£é¡ããããã®å®çã«èªåçã«é¢é£ä»ããããšãã§ããŸãã
çŸæç¹ã§ã¯ããããã©ã®çšåºŠå¯èœã«ãªããã¯ãŸã æããã§ã¯ãããŸããã å®éã4è²ã®å®çãã±ãã©ãŒä»®èª¬ããŸãã¯æãåçŽãªæ®éçãªãã¥ãŒãªã³ã°ãã·ã³ãªã©ã®ã³ã³ãã¥ãŒã¿ãŒèšŒæã®æ¢åã®äŸã«åºã¥ããŠãèªåçã«çæãããè£é¡ã¯æåŠã®å®çãšã»ãšãã©çžé¢ããªããšããå°è±¡ãåããŸãã
ããããããã«ãããããããååãªåŽåã§ãWolfram | Alpha Proã®æ®µéçãªãœãªã¥ãŒã·ã§ã³ã·ã¹ãã ã§ããããšã人ã ãç解ãããšãã蚌æ ãçæã§ããããšã瀺ãå°ãªããšã1ã€ã®äŸãç¥ã£ãŠããŸãã 1æ¥æ°çŸäžåãåŠçãä»ã®ãŠãŒã¶ãŒã¯ç©åãªã©ã®èšç®ãè¡ããWolfram | Alphaã䜿çšããŠä»ã®èšç®ãè¡ãããã®ã·ã¹ãã ã«æ®µéçãªãœãªã¥ãŒã·ã§ã³ãæäŸããããäŸé ŒããŸãã
ç©åãèŠã€ããããšã¯ãé«å質ã®æ®µéçãªãœãªã¥ãŒã·ã§ã³ã瀺ããããã¯ããã«ç°¡åã§ããããšã«æ³šæããŠãã ããã åæã«ã人ã«ãšã£ãŠç解å¯èœã§èªç¶ãªãœãªã¥ãŒã·ã§ã³æé ãèŠã€ããã«ã¯ãããªãè€éãªã¢ã«ãŽãªãºã ãšãã¥ãŒãªã¹ãã£ãã¯ãå¿ èŠã§ãã ããããWolfram | Alphaã®æ®µéçãªè§£æ±ºçã®äŸã¯ãé©åãªåªåã«ããã人ããç©èªããšããŠèªãããšãã§ãã蚌æ ãçæããããããããããå¯èœãªéãåçŽãã€çãããããšããå¯èœã«ãªããšããåžæãäžããŸãïŒãç¥ã®æžããã®èšŒæ èªäœãããŒã«ã»ãšã«ãã¹ãèšãããã«ïŒã
ãã¡ããããã®ãããªèªåã¡ãœããã¯ãæçµçã«ãããšãã°èšŒæãªã©ã®ãªããžã§ã¯ãã®èŠçŽ ã®é«å質ãªãªã³ã¯ã«åœ¹ç«ã¡ãŸãããæ°åŠã®å æ¬çãªã¢ã€ãã¢ãåæ©ãå®çŸ©ããããã§ã¯ãªããå®éã«ã»ãŒæ¥ç¶ããããšããã§ããŸããã èšããŸã§ããªããçŽç²ãªæ°åŠã«é¢ããçŸä»£ã®èšäºããã®æ©èœãéåžžã«äžååã«å®è¡ããŠããŸããïŒ å³å¯ããšæ£ç¢ºãã確ä¿ããããããå€ãã®èšäºã¯éåžžã«æ£åŒã«æžãããŠããŸãã èè ã®æ·±ãã¢ã€ãã¢ãšåæ©ã¯ãããã«è¡šçŸãããŠããŸãã-ãã®çµæãæ°åŠã®ããã€ãã®éèŠãªã¢ã€ãã¢ã¯å£é ã§ã®ã¿äŒéãããŸãã
ééããªããçŽç²ãªæ°åŠã®ããã®äžæ©ã¯ããã®ãã¹ãŠã®å 容ãçµåããæ©äŒã«ãªãã§ãããã ãã®å ŽåãçŽç²æ°åŠã®æ£ç¢ºãªã·ã³ããªãã¯èšèªã¯ãçŸåšã©ãã«ãèšè¿°ãããŠããªããããã®éèŠãªãã€ã³ãã®ããã€ãã®æ瀺çãªè¡šèšæ³ã®åœ¢æãç°¡çŽ åããŸããäžã€ã®ããšã¯çããªãæããã§ãããã®ãããªèšèªã®ãããã§ãäŸãã°Wolframèšèªã®éåžžã®ã³ãŒãã®åœ¢ã§ããããããœãŒã¹ããå®çãèŠã€ãããããã©ãã§ã貌ãä»ããŠäœ¿çšããããšãã§ããŸãã
ããããèªååãçŽç²ãªæ°åŠã§æå³ããªããã©ãããšããåé¡ã«æ»ããŸããWolfram | Alphaã®ããã«èŠãããçŽç²ãªæ°åŠã®ã¢ã·ã¹ã¿ã³ãããããããšã¯ã人éã®æ°åŠè ã«ãšã£ãŠæçšã§ããããšã¯çµ¶å¯Ÿã«æããã§ãããŸããé«å質ã§æ£ç¢ºãªã·ã³ããªãã¯èšèª- æšæºçãªæ°åŠè¡šèšã®ç¶ãã§ããMathematica Pura èšèª-ã䜿çšãããšãæ°åŠã®ãã¹ãŠã®æŠå¿µãå®åŒåã確èªãããã³çµã¿åãããã®ã«éåžžã«äŸ¿å©ã§äŸ¿å©ã§ããããšãããããŸãã
èªåéå°
ãèªåèªèº«ã«æ²¡é ããèªåã§æ°åŠçèšç®ãå®è¡ãããã³ã³ãã¥ãŒã¿ãŒã¯ã©ãã§ããããïŒæããã«ãã³ã³ãã¥ãŒã¿ãŒã¯äžé£ã®å®çãå®åŒåãããã¥ãŒãªã¹ãã£ãã¯ãªæ¹æ³ã䜿çšããŠã人éã®æ°åŠè ã«ãšã£ãŠèå³æ·±ããšæããããã®ã匷調ããããšããã§ããŸããæ°åŠæç®ã®ã³ã¬ã¯ã·ã§ã³å šäœãææããŠããå Žåãåºç¯ãªãçµéšçã¡ã¿æ°åŠããæ§ç¯ããããšãã§ããŸããããã«åºã¥ããŠãç¹å®ã®ç¹æ§ãæã€å®çãéžã³åºããŸãã ãäºæ³å€ããŸãã¯ã匷åããšèŠãªãããšãã§ããŸããWolframTonesã® Webãµã€ãã«ããããã«ãããã¯ç¹ã«è€éã§ã¯ãããŸãããããã®ãµã€ãã§äººã ãéžæãããã®ãç 究ããããšã«ãã£ãŠåŸãããçŸçåºæºãã³ã³ãã¥ãŒã¿ãŒãé©çšããŸãã
ããããæ¬åœã®çåã¯ãã³ã³ãã¥ãŒã¿ãŒãæ°ããã¢ãããŒããšæ°ããæ§é ããããŠæåŸã«æ°ããæ°åŠçè«ãäœæã§ãããã©ãããšããããšã§ãããã¡ãããåæã«ãã£ãŠåŸãããããã€ãã®å®çã¯éåžžã«èå³æ·±ããã®ã§ããããããã®åä¿¡ã¯æ°ããç¥èã®ç²åŸã瀺ããŸãããã®å Žåããã¡ãããã³ã³ãã¥ãŒã¿ãŒãå€æ°ã®å®çïŒåé¡ã§ã¯ãªã-圌ã«ãã£ãŠç¢ºç«ãããããŸãã¯æç®ã§èŠã€ãã£ãïŒãååŸããããããçµã³ä»ããããã€ãã®æ°ããååãå®çŸ©ããæ¥ç¶ãçºèŠãå§ãããšãéåžžã«èå³æ·±ãã§ããããããããç§ãèããããã«ãæéã®çµéãšãšãã«ãã³ã³ãã¥ãŒã¿ãŒã¯æ°ãããã¶ã€ã³ãæ€åºã§ããã ãã§ãªãããããã«ååãä»ããŠèª¬æã§ããããã«ãªããšæåŸ ã§ããŸãããã¡ãããã³ã³ãã¥ãŒã¿ãäœããã¹ããã決å®ã§ããã®ã¯äººã ãã§ãããå€ãã®ç¹ã§åœŒãã®æŽ»åã¯ä¿¡ããŠããŸããçŽç²ãªæ°åŠã«æºãã人ã ã®ä»äºãšèŠåããã€ããªããªãã§ãããã
ãã®ãã¹ãŠã¯ããªãé ãæªæ¥ã«æ®ã£ãŠããŸãããä»ã§ã¯æ°åŠçãªäºå®ãæ€åºããåªããæ¹æ³ããããŸãããããã¯å®éã«ã¯å®éšçãªæ°åŠã«ãªãããçšåºŠã«ã¯äœ¿çšãããŠããŸããããã®æŠå¿µãç解ãã人ã¯å°ãç°ãªããŸããç§ã®èŠ³ç¹ããã¯ãããã¯æ°åŠã·ã¹ãã ã®å®éšãè¡ãããšã«ããæ°åŠã·ã¹ãã ã®ç 究ã§ããããšãã°ãã»ã«ãªãŒãããã³ã®ç¹å®ã®ã¯ã©ã¹ãéç·åœ¢å埮åæ¹çšåŒãæ°å€ã·ãŒã±ã³ã¹ãªã©ã«ã€ããŠåŠç¿ãããå Žåã¯ãèããããç¹æ®ãªã±ãŒã¹ã®ã»ãããæºåããŠèšç®ããçµæã芳å¯ããŸãã
ãã®ããã«ããªãã¯å€ãã®ãã®ãèŠã€ããããšãã§ããŸãããããŠããã¡ããããã®ãã¹ã¯ãçŽç²ãªæ°åŠã®åŸæ¥ã®æ¹æ³è«ã䜿çšããŠèª¿æ»ã§ãã芳枬ãšä»®èª¬ãå®åŒåããããã«éåžžã«æçã§ãããããããã®ãããªçµè·¯ã®çã®æ¹åæ§ãšåŸãããçµæã¯ãçŽç²ãªæ°åŠè ãæ°åŠã§éåžžç解ãããã®ã«é©åããŸãããããã¯ããåæ€ç©ãããã¹ãŠã®å¯èœãªã·ã¹ãã ã®äžçã®åçã®ç 究ã«äŒŒãŠãããå®çãšèšŒæã䜿çšããŠèª¿æ»ããã³èª¬æã§ããæ°åŠçæ§é ã®æ§ç¯ã§ã¯ãããŸãããããããç§ã®æ¬ã®ã¿ã€ãã«ïŒæ°ããç§åŠã®çš®é¡ïŒãåŒçšãã䟡å€ãããçç±ã§ã-ãã®ããã»ã¹ã¯ãæ¢åã®æ°åŠã®äžéšã«ãããªããã®ã§ã¯ãªããæ°ããçš®é¡ã®ç§åŠãšèŠãªãããã¹ãã§ãã
å®éšæ°åŠãšãç§åŠã®æ°åœ¢æ ãã«ã€ããŠèšãã°ãé©ãã¹ãããšã¯ãçŽç²ãªæ°åŠããŸã£ããæ©èœãããšããããšã§ãã誰ããæ°åŠã·ã¹ãã ã«ã€ããŠå®å šã«arbitraryæçãªè³ªåããå§ãããšããããã®å€ããçµããããã§ãã解決ã§ããªããŸãŸã«ãªããŸãã
ããã¯ã誰ãããã¹ãŠã®å¯èœãªããã°ã©ã ã®èšç®ãããå®å®ã«ããå Žåã«ç¹ã«æããã§ãããããã¯å žåçãªæ°åŠçã·ã¹ãã ãè¡šãããã°ã©ã ã«ãåœãŠã¯ãŸããŸããããã§ã¯ããªãæ®éã®çŽç²æ°åŠã®åéã®ã»ãšãã©ã®åé¡ããŸã äžæº¶ã§ã¯ãªãã®ã§ããããïŒçãã¯ãçŽç²ãªæ°åŠã¯æé»ã®ãã¡ã«åŠç¿å¯Ÿè±¡ãéžæããããšãããšããããšã§ãããã«ãããäžæº¶æ§ã®åé¡ãåé¿ããŸããããæå³ã§ã¯ãããã¯æŽå²ã®çµæã§ããããã«æãããŸãïŒçŽç²æ°åŠã¯ãéçºã«æåããŠåŸããããã®ã«åŸããæçµçã«äžæº¶æ§ã®åé¡ãåé¿ãå§ããçŸä»£ã®çŽç²æ°åŠã®å šäœã圢æããæ°çŸäžã®å®çãçã¿åºããŸããã
ãã®ãããããã€ãã®åé¡ãšæ¹åæ§ãç¹å®ããŸãããããããèšç®ãããç¥èãçŽç²ãªæ°åŠã«å°å ¥ãããšããç¹ã§ãç§ãã¡ã¯å®éã©ãã«ããã®ã§ããããïŒ
ã¢ã€ãã¢ã«åœãå¹ã蟌ã
é¢é£ããç 究ã«ã¯é·ãæŽå²ããããŸããããã¯äœäžçŽãåã®ãã¢ãããã¯ã€ãããããã©ãã»ã«ã®ä»äºã§ããããã«ãã«ãã®åé¡ã§ããã»ããçè«ãšã«ããŽãªãŒçè«ã®éçºã 1960幎代ããããã¯èšŒæ æ§é ãè¡šãæåã®ã³ã³ãã¥ãŒã¿ãŒã·ã¹ãã ïŒAutomathãªã©ïŒã§ããããã®åŸã1970幎代ã«å§ãŸã£ãMizarã®ãããªã·ã¹ãã ã§ã¯ã蚌æ ã®ã³ã³ãã¥ãŒã¿ãŒåºç€ãæäŸããè©Šã¿ãè¡ãããŸããããããã¯çŸåšãCoqãHOLãªã©ã®ãµããŒãã·ã¹ãã ãæé·ãããŠããŸãã
ããããã¹ãŠã®éçºã«ã¯1ã€ã®éèŠãªç¹åŸŽããããŸããããã¯ãæ°åŠã®ãäœã¬ãã«èšèªãã®å®çŸ©ãšããŠèãããããã®ã§ããçŸåšååšããã»ãšãã©ã®ã³ã³ãã¥ãŒã¿ãŒèšèªãšåæ§ã«ããããã«ã¯éãããæ°ã®åºæ¬æ§é ãå«ãŸããŠãããç¹å®ã®ãŠãŒã¶ãŒãŸãã¯æ¢è£œã®ã©ã€ãã©ãªãŒã䜿çšããŠãã»ãšãã©ãã¹ãŠã®å¿ èŠãªæ°ãããªããžã§ã¯ããå€éšã®ã©ããããããŒãããããšãæšå¥šããŠããŸãã
ããããWolframèšèªã®æ°ããèãæ¹ã¯ãå¯èœãªéã倧éã®é¢é£ç¥èãèšèªèªäœã«æ éã«åã蟌ãŸããŠããç¥èããŒã¹ã®èšèªãæã€ããšã§ãããããŠãæ±çšã³ã³ãã¥ãŒãã£ã³ã°ã«é¢ããŠã¯ãæãå¹ççã§åºãé©çšå¯èœãªæ¹æ³ã§èšç®ãçŽç²ãªæ°åŠã«å°å ¥ããããã«ãç¥èããŒã¹ã®èšèªã®ã¢ã€ãã¢ãéåžžã«éèŠã«ãªããšæãããŸãã
ã§ã¯ãMathematica Pura ã®äœæã«ã¯äœãå«ããå¿ èŠããããŸãããããã¯ãçŸä»£ã®æ§é ãšçŽç²ãªæ°åŠã®ãªããžã§ã¯ããå«ãWolframèšèªã®æ¡åŒµæ©èœã§ããæäœã¬ãã«ã§ã¯ãWolframèšèªã¯ä»»æã®æååŒãæäœããŸããããã¯çµ¶å¯Ÿã«äœã§ãæ§ããŸããããã ããèšèªã§ã¯ããã®ãããªåŒãå€ãã®ç¹å®ã®ç®çã«äœ¿çšããŸããããšãã°ãèšå·xã¯ä»£æ°å€æ°ã瀺ãããã«äœ¿çšã§ããŸãããã®ããšã念é ã«çœ®ããŠãWolframèšèªã«ã¯èšå·åŒãåŠçããããã®å€ãã®æ©èœããããŸã-æ°åŠåŒãŸãã¯ä»£æ°åŒãšããŠè§£éãããŸã-ãããŠãããã«å¯ŸããŠæ§ã ãªæ°åŠæŒç®ãå®è¡ããŸããMathematicaã§
å®è£ ãããæ°åŠè£ 眮ãããŠWolframèšèªã§ã¯ãä»æ¥ã§ã¯ãå®çšçãªãèšç®æ°åŠã«éç¹ã眮ãããŠããŸããçŸæç¹ã§ã¯ã19äžçŽä»¥åã«ååšããŠããã»ãšãã©ãã¹ãŠã®æ°åŠãç¶²çŸ ããŠããŸããããããããçŸä»£çãªæ°åŠã¯ã©ãã§ããããïŒæŽå²çã«ãæ°åŠèªäœã¯çŽ100幎åã«å€å®¹ãçµéšããŸãããèžè¡ã®ããŸããŸãªåéãæããã¢ãŒã«ããŒããŒã¹ã¿ã€ã«ã®ããã«ããã®ç¬èªã®åŸåã¯æ°åŠã«çŸããŸãããå€çãšã¯ãŸã£ããé¢ä¿ãªããå®å šã«æ£åŒã«ç»å Žããæ§é ãèæ ®ãããŸããã
ãã®ãããªæ°åŠãã«ããã®ç 究ããå§ãŸãããã®åŸã20äžçŽã«çŽç²æ°åŠã®äž»æµã«ãªããŸãããå¿ ç¶çã«ããã®ãããªæ°åŠã®å€§éšåã¯æœè±¡çãªæ§é ã®äœæã«è²»ããããããã¯ãã®åŸç 究ãããŸããæãåçŽãªã±ãŒã¹ã§ã¯ããããã®æ§é ã¯äœããã®ã¿ã€ãéå±€ã䜿çšããŠè¡šãããšãã§ããããã§ãããããããããã®åã¯å®å šã«èšè¿°ãããå¿ èŠããããããã«å šä»£æ°ãŸãã¯åèšç®ã圢æãããŸã-Wolframèšèªã®ããã«ãåã®èšè¿°ã ãã§ãªããä»»æã®é éšãæã€äžè¬çãªã·ã³ããªãã¯åŒã䜿çšã§ããŸãã
ãã®æçš¿ã§åè¿°ããããã«ãçŸä»£ã®çŽç²ãªæ°åŠãè¡šçŸããããã«å¿ èŠãªæ§é ãå®è£ ããããã«ãããããçš®é¡ã®æ°ããçµã¿èŸŒã¿é¢æ°ãšæšæºåãããããŒã¿ãªããžã§ã¯ãã䜿çšããäºå®ã§ãããã¡ãããååãªæ©äŒãããã䟿å©ã§ç解ããããçŽç²ãªæ°åŠã§äœæ¥ã§ããã·ã¹ãã ãäœæããã«ã¯ãé·å¹Žã®æ³šææ·±ãéçºãå¿ èŠã«ãªããŸããããããäžè¬ã«ãäŸãã°ãªãŒãã³é¢ã®ã¢ãžã¥ãŒã«ã«ãã埮åå¯èœæ§ã®æŠå¿µãŸãã¯ä»ã®äœããšäœæ¥ããããšãå¯èœã«ããã·ã³ããªãã¯ãªæ§é ãäœæããã®ã«æ ¹æ¬çãªå°é£ã¯ãããŸããããããã¯ãã¹ãŠãããšãã°ã3次å ã©ã¹ã¿ãŒã€ã¡ãŒãžã®è¡šçŸããªã¢ãŒãã³ã³ãã¥ãŒãã£ã³ã°ã®å®è£ ãå€éšã®ãã¥ã¬ãŒããããæ§é åããŒã¿ããŒã¹ãžã®ã¢ã¯ã»ã¹ãªã©ã®èšèªéçºã®åé¡ã§ãã
ããã§ããã¹ãŠã®æ°åŠæç®ããã®å®çã®ç£ç£ã«ã€ããŠäœãèšããã§ããããïŒWolfram | Alphaããã³Wolfram Languageã䜿çšããŠãããšãã°Wolfram Functions SiteãWolfram Connected Device Projectã䜿çšãããšãããŸããŸãªãªããžã§ã¯ãã«é¢ããæ§é åããŒã¿ã®å·šå€§ãªããŒã¿ããŒã¹ãäœæããææ°ã®ç¶æ ã«ä¿ã€ããã»ã¹ã§ãã§ã«è±å¯ãªçµéšããããŸãããã®çš®ã®ããŒã¿ãèšç®å¯èœã«ããŸãã
äŸeCF-ç¶ç¶çãªéšåãããžã§ã¯ã
ããããæ°çå®çã®çµç¹ãšé åºãäœã§ããããæ確ã«ããããã«ãéå»2幎éãAlfred Sloan Foundationãæ¯æŽããWolfram Foundationã«åºã¥ããã€ããããããžã§ã¯ããå®æœããŸããã ãã®ãããžã§ã¯ãã§ã¯ãéåžžã«å ·äœçã§ååã«éçºãããæ°åŠã®åéãããªãã¡é£ç¶åæ°ã®ç 究ãéžæããŸããã éåæ°ã¯å€ä»£ããç¶ç¶çã«ç 究ãããŠããŸãããã1780幎ãã1910幎ã®éã«äººæ°ã®ããŒã¯ã«éããŸããã åèšã§ããããã¯çŽ7,000åã®æžç±ãšèšäºã«èšèŒãããŠãããåèšããªã¥ãŒã ã¯çŽ150,000ããŒãžã§ãã
çŽ2,000ã®ããã¥ã¡ã³ããéžæãããããããå®çããã®ä»ã®æ°åŠçæ å ±ãæœåºããŸããã äœæ¥ã®çµæã¯ãçŽ600ã®å®çã1,500ã®åºæ¬åŒã10,000ã®åŸ®ååŒã§ããã æ°åŒã¯èšç®ããã圢åŒã§çŽæ¥æ瀺ããããããWolfram Functions Webãµã€ãã§300,000ãè¶ ããæ°åŒã«ç°¡åã«æ·»ä»ã§ãããããããWofram | Alphaã§å®è£ ãããŸããã ããããæåã¯å®çãæåã®åºçç©ã®å Žæãå®çã®èè ãªã©ã®ç¹å®ã®ããããã£ãæã€ãªããžã§ã¯ããšããŠåçŽã«èããŸãããããã«ããã®æ®µéã§ããWolfram | Alphaã«ããã€ãã®æ³šç®ãã¹ãæ©èœãæ¿å ¥ããããšãã§ããŸããã
ããããå®çã®å 容ãèšç®å¯èœãªåœ¢åŒã«å€æããããšè©Šã¿ãŸããã ããã«ã¯ãLebesgueMeasureïŒã«ããŒã°æž¬å®ïŒãConvergenceSetïŒåæã®ã»ããïŒãLyapunovExponentïŒãªã¢ãããææ°ïŒãªã©ã®æ°ããèšèšã®å°å ¥ãå¿ èŠã§ããã ããããå®çã®æ£ç¢ºãªèšå·è¡šçŸãäœæããäžã§æ ¹æ¬çãªåé¡ã¯ãããŸããã§ããã ãããã®ã¢ã€ãã¢ã®ãããã§ãWolfram | Alphaã§åæ§ã®èšç®ãå®è¡ããããšãå¯èœã«ãªããŸããã
ç¶ç¶çãªåæ°ã«é¢ãããããžã§ã¯ãã®èå³æ·±ãæ©èœïŒèŠããã«ãeCFãïŒã¯ãæ å ±ãæŽçããããã»ã¹ãå®éã«æ°åŠã®æ°ããçºèŠã«ã€ãªãã£ãæ¹æ³ã§ããã ããžã£ãŒã¹ãšã©ãããžã£ã³ã®ç¶ç¶çãªæçã«é¢ãã50以äžã®èšäºã®ç 究ãå®äºãããšãèæ ®ã«å ¥ããªãå Žåãããããšãæããã«ãªããŸããã ãããã£ãŠãèšç®çµæã¯ãã©ãããžã£ã³ãæ®ãããã®ç 究åéã®ã®ã£ãããåããŸãã ã
ç¥èã®ãã¥ã¬ãŒã·ã§ã³ãšãŒãããã®ç¥èã®äœæã®éã«ã¯åžžã«ãã¬ãŒããªãããããŸãã ãã®ãããäŸãã°ãããã¯Wolfram Functions Webãµã€ãã®å Žåã§ããããã£ã¬ã¯ããªãä»ã®æç®ã§èŠã€ãã£ãé¢æ°éã®é¢ä¿ã®äžæ žãåžžã«èŠã€ãã£ãŠããŸãã ãããåæã«ãæ°ããé¢ä¿ãçæããŠèšç®ããæ¹ããæ€çŽ¢ã§æç®ã調ã¹ããããã¯ããã«å¹ççã§ããããšãããããŸããã
ããããç®çãæ£ç¢ºã«çµç¹ãšç¥èã®é åºä»ãã§ããå Žåããã¹ãŠã®æ°åŠæç®ã®åæã«ã¯äœãå¿ èŠã§ããïŒ ãã®ãããžã§ã¯ãã®éãåå®çãèšç®å¯èœãªåœ¢åŒã«å€æããã«ã¯ãæ°åŠè ãçŽ3æéäœæ¥ããå¿ èŠããããŸããã ãããããã®äœæ¥ã¯ãã¹ãŠæåã§è¡ããã倧èŠæš¡ãªãããžã§ã¯ãã§ã¯ãç¹ã«Wolfram | Alphaã®èªç¶èšèªèªèã·ã¹ãã ã®æ¡åŒµã«ãããã»ãšãã©ã®äœæ¥ãèªåçã«è¡ããããšç¢ºä¿¡ããŠããŸãã
ãã¡ãããäœæ¥ã®éçšã§ãããããçš®é¡ã®å®éçãªåé¡ãçºçããŸãã æ°ããèšäºã¯äž»ã«TeXã§æžãããŠããããããã¹ãŠã®æ°åŠè¡šèšã§å®çãšããããåºå¥ããããšã¯ããã»ã©é£ãããããŸããã ããããå€ãèšäºã¯ã¹ãã£ã³ããå¿ èŠããããããã«ã¯ãŸã éçºãããŠããªãæ°åŠèšå·ãšæ°åŒã®å åŠèªèã·ã¹ãã ãå¿ èŠã§ãã
ãŸããèšäºã§å®åŒåãããå®çãæ¬åœã«æ£ãããã©ããã«é¢ããŠãç¹å®ã®å°é£ããããŸãã ãããŠã100幎åã«å®çãæå¹ã§ãããšèªèãããŠãããšããŠãããã®å®çãä»ã§ãæå¹ã§ãããã©ããã¯ããããŸããã ããšãã°ãé£ç¶åæ°ã®åéã§ã¯ã1950幎代以åã«å®åŒåãããå€ãã®å®çããããŸãããäžåºŠèšŒæããããã®ã®ãè€éãªå€æ°ã®å€äŸ¡é¢æ°ã®åå²ç¹ãšã«ããã©ã€ã³ãèæ ®ããŠããªãã£ããããæè¿ã¯çãšã¯èŠãªãããŸããã
ãã®å Žåãçµå±ãå€ãã®åªç§ãªæ°åŠè ãçµç¹ãšæ³šæããã»ã¹ãå°ããå®çãèšç®å¯èœãªåœ¢åŒã«å€æããããã«å¿ èŠã§ãã ããããããæå³ã§ã¯ãæ°åŠè ã®ãã®ãããªåå¡ã¯æ®éã®ãã®ã§ã¯ãããŸããã æ°åŠãžã£ãŒãã«Zentralblattã1931幎ããŸãã¯Mathematical Reviewsãžã£ãŒãã«ã®çºè¡éå§æã«1941幎ã«èšç«ããããšãããã®ãããªç§åŠè ã®é£åãå¿ èŠã§ããã ïŒããããããäž¡æ¹ã®ãžã£ãŒãã«ã®åµå§è å Œç·šéé·ã¯ãªãããŒã»ãã€ã²ããŠã¢ãŒã§ããã圌ã¯80幎代åæã«é«çç 究æã§ç§ããå»äžãå°ãé²ãã ãšãããããããã¢ã®æ°åŠçãªäœåã解èªããããšããããŠããªããšæã£ãŠããŸãããã®æçš¿ã®èª¿æ»ãè¡ããŸã§ïŒã
ã·ã¹ãã ã§çŽç²ãªæ°åŠãèšè¿°ããããã®ã·ã¹ãã ãäœæãããšããããšã«ãªããšãèå³æ·±ãäŸããããŸããTheoremaã¯1995幎ã«Bruno Buchbergerã«ãã£ãŠçºè¡šãããæè¿ããŒãžã§ã³2ã«æŽæ°ãããŸãããTheoremaã¯Wolframèšèªã§èšè¿°ããã次ã®ãããªç°å¢ãæäŸããŸãæ°åŠçãªå®åŒåãšèšŒæã衚瀺ããå®çã®èªå蚌æãªã©ã®ããã®å®å šãªèšç®ã¢ã«ãŽãªãºã ãå®è£ ããŸãã
ééããªãããã®ã·ã¹ãã ã¯æçµçã«äœæããããã®ã®èŠçŽ ã«ãªããŸãã ããããäžè¬ã«ããããžã§ã¯ãã¯å¿ ç¶çã«éåžžã«å€§èŠæš¡ã«ãªãããšãå€æããŸããããã¯ãããããäžçåã®ã倧ããªæ°åŠãïŒã倧ããªæ°åŠãïŒã®äŸã§ãã ãã®ãããžã§ã¯ããå®æãããããšã¯å¯èœã§ããïŒ éèŠãªèŠçŽ ã¯ãèšèªãéçºããå¿ èŠãªã€ã³ãã©ã¹ãã©ã¯ãã£ãæ§ç¯ããæè¡çãªèœåãæã«å ¥ããããšã§ãã ããããããã«å ããŠããã®ç§åŠã®ãã¹ãŠã®å¯èœãªã»ã¯ã·ã§ã³ããã®åã ã®æ°åŠè ã®åå ãããã§ããããã«ããããžã§ã¯ãã¯äžçã®æ°åŠã³ãã¥ããã£ã«åŒ·ãé¢å¿ãå¿ èŠãšããŸãã ããã«ãçŸå®ã«ã¯ãããã¯æããã«åæ¥çãªåºç€ã«çœ®ãããšãã§ãããããžã§ã¯ãã§ã¯ãªãããããããžã§ã¯ãã®éçºã«å¿ èŠãªçŽ1åãã«ãéå¶å©çãªãœãŒã¹ããåéããå¿ èŠããããŸãã
ããããããã¯ãçŽç²ãªæ°åŠã®éµãšãªãããšãçŽæããçå£ãã€éèŠãªãããžã§ã¯ãã§ãã äž»èŠãªçºèŠããªããããšããåå°åã«ã¯ç¬èªã®ãé»éæ代ãããããŸãã ãããŠãã»ãšãã©ã®å Žåããã®ãããªãé»éæ代ãã®å§ãŸãã¯ãæ°ããæ¹æ³è«ã®äœæãŸãã¯æ°ãããã¯ãããžãŒã®åºçŸã§ããã ãããŠãããã¯ãçŽç²ãªæ°åŠã®åéã§èµ·ãããšç¢ºä¿¡ããŠããŸãã æ°åŠçç¥èã®æŽçãšæŽçã«åªåãåãããããã䜿çšãããããã«åºã¥ããŠèšç®ããã圢åŒã®ç¥èãäœæããã·ã¹ãã ãæ§ç¯ããããšãã§ããã°ãçŽç²ãªæ°åŠã®åºå€§ãªéºç£ãä¿åãåºããã ãã§ãªãããã®æ¥éãªæé·ã«åŒŸã¿ãã€ããããšãã§ããŸãç§åŠã®ã»ã¯ã·ã§ã³ã
ãã®ãããªå€§èŠæš¡ãªãããžã§ã¯ãã«ã¯ãä¿¡é Œã§ããã¬ã€ãã³ã¹ãå¿ èŠã§ãã ãããŠãç§ã¯åžžã«äœæ¥ã®äžéšãè¡ãããã®å®è£ ã«å¿ èŠãªåºæ¬æè¡ãåãå ¥ããæºåãã§ããŠããŸãã çŸåšããããžã§ã¯ãã®ãããªãçºå±ã®ããã«ãå šäžçã®æ°åŠã³ãã¥ããã£ã®é¢å¿ãå¿ èŠã§ãã 20äžçŽã®20幎ããæ°å幎ã®çŽç²æ°åŠã®æŽå²ã®äžã§æ¬åœã«éèŠãªææã«ããæ©äŒããããŸãã ãã£ãŠã¿ãŸãããïŒ