1997幎ãDeep Blueã¯ãã§ã¹ã§ã«ã¹ããããç ŽããŸããã
2011幎ãã¯ããœã³ã¯Jeopardyãã£ã³ããªã³ãç ŽããŸããã
ããªãã®ã¢ã«ãŽãªãºã ã¯2013幎ã«BobikãšFluffyãåºå¥ã§ããŸããïŒã
ãã®åçãšåºæã¯ãæšå¹Žç§ã«éå¬ãããKaggle Challengeããã®ãã®ã§ãã å°æ¥ãèãããšãæåŸã®è³ªåã¯ãã¯ãããšçããããšãã§ããŸã-æ°å人ã®ãªãŒããŒãã¿ã¹ã¯ã98.8ïŒ å®äºããŸãããããã¯é©ãã»ã©å°è±¡çã§ãã
ãããŠãŸã -ãã®ãããªè³ªåã®å£°æã¯ã©ãããæ¥ãã®ã§ããïŒ 4æ³ã®åäŸãé·ãéç°¡åã«è§£æ±ºã§ããåé¡ã¿ã¹ã¯ããããã°ã©ã ã«ãšã£ãŠéåžžã«å°é£ã§ãã£ãïŒãããŠãŸã æ®ã£ãŠããïŒã®ã¯ãªãã§ããïŒ ãã§ã¹ããããããäžçã®ãªããžã§ã¯ããèªèããã®ãé£ããã®ã¯ãªãã§ããïŒ ãã£ãŒãã©ãŒãã³ã°ãšã¯äœã§ããïŒãªãç«ã¯æãããäžå€ã®åœŒã«ã€ããŠã®åºçç©ã«ç»å ŽããŸããïŒ ããã«ã€ããŠè©±ããŸãããã
ãèªèããããšã¯ã©ãããæå³ã§ããïŒ
2ã€ã®ã«ããŽãªãšãã«ããŽãªã«å¯Ÿå¿ãã2ã€ã®å±±ã«é 眮ããå¿ èŠãããå€ãã®å€ãã®åçããããšããŸãã ã©ã®ãããªååã§ãããè¡ããŸããïŒ ãã®è³ªåã«å¯ŸããçŽ æŽãããçãã¯ã誰ã確ãã«ç¥ããªããšããããšã§ãããäžè¬çã«åãå ¥ããããŠããã¢ãããŒãã¯æ¬¡ã®ãšããã§ããã«ããŽãªã®1ã€ã§ã®ã¿èŠã€ãããèå³æ·±ããããŒã¿ãåçã§èª¿ã¹ãŸãã ãããã®ããŒã¿ã¯æ©èœãšåŒã°ããã¢ãããŒãèªäœã¯æ©èœæ€åºãšåŒã°ããŸã ã çç©åŠçè³ãäœããã®åœ¢ã§æ©èœãããšããäºå®ãæ¯æããããªã匷ãè°è«ããããŸã-æåã®ããšã¯ããã¡ãããç«ã®ïŒåã³ïŒèŠèŠç®è³ªã®çŽ°èã§ã®ãã¥ãŒãã«ãšãŽã£ãŒãŒã«ã®æåãªå®éšã§ãã
çšèªã«ã€ããŠ
æ©æ¢°åŠç¿ã«é¢ããåœå
ã®æç®ã§ã¯ãæ©èœã®ä»£ããã«ããµã€ã³ããæžããŠããŸãããç§ã®æèŠã§ã¯ãããã¯ãªããšãªããŒãããŠããŸãã ããã§ç§ã¯ãç¹åŸŽããšèšããŸãããã·ã¢èªã®ãã®mç¬ãç§ã«èš±ãããŸãããã«ã
ç»åã®ã©ã®éšåãåªããæ©èœãšããŠäœ¿çšã§ããããäºåã«ç¥ãããšã¯ã§ããŸããã ãããã®åœ¹å²ã¯ãã€ã¡ãŒãžã圢ç¶ããµã€ãºããŸãã¯è²ã®æçãªã©ãäœã§ãããŸããŸããã ãã£ãŒãã£ã¯ãç»åèªäœã«ãç°¡åã«ååšããããšã¯ã§ããŸãããããœãŒã¹ããŒã¿ããäœããã®æ¹æ³ã§ååŸããããã©ã¡ãŒã¿ãŒã§è¡šçŸã§ããŸã ãããšãã°ã å¢çãã£ã«ã¿ãŒã䜿çšããåŸãªã©ã§ãã ããŠãè€éããå¢ããããã€ãã®äŸãèŠãŠã¿ãŸãããã
å³æãšå·Šæãåºå¥ã§ããã°ãŒã°ã«ã«ãŒãäœããããã«å¿ããŠãã³ãã«ãåããããšããŸãã è¯ãç¹åŸŽãèŠã€ããããã®ã«ãŒã«ã¯ãã»ãšãã©æã§èããããšãã§ããŸããåçã®äžååãåãåããç¹å®ã®è²åãïŒã¢ã¹ãã¡ã«ãïŒã®ã»ã¯ã·ã§ã³ãéžæããå·ŠåŽã«ããçš®ã®å¯Ÿæ°æ²ç·ãé©çšããŸãã ãã¹ãŠã®ã¢ã¹ãã¡ã«ããæ²ç·ã®äžã«åãŸãå Žåã¯ãå³ã«æ²ããããã以å€ã®å Žåã¯å·Šã«æ²ãããŸãã æ²çã®ââç°ãªãæ²ããè§ã®å ŽåããããŠãã¡ããã也ç¥ç¶æ ãšæ¹¿æœ€ç¶æ ãå«ãã¢ã¹ãã¡ã«ãã®ç°ãªãè²åãã®ã»ããã®å Žåãããã€ãã®æ²ç·ãååŸã§ããŸãã 確ãã«ãæªèè£ ã®éè·¯ã§ã¯ããã®æ©èœã¯åœ¹ã«ç«ã¡ãŸããã
ææžãæ°åã®ããŒã¿ã»ããMNISTã®äŸ-ãã®åçã¯ãããããæ©æ¢°åŠç¿ã«å°ãªããšãå°ã粟éããŠãããã¹ãŠã®äººã«èŠãããŸãã åæ¡ã«ã¯ããã®æ¡ã®çš®é¡ã決å®ããç¹åŸŽçãªå¹ŸäœåŠçèŠçŽ ããããŸã-2ã€ã®äžéšã®ã«ãŒã«ããŠãããã®ãã£ãŒã«ãå šäœã®ã¹ã©ãã·ã¥ã8ã€ã®2ã€ã®çµååãªã©ã ãããã®éèŠãªèŠçŽ ã匷調ããäžé£ã®ãã£ã«ã¿ãŒãäœæãããããã®ãã£ã«ã¿ãŒã1ã€ãã€ç»åã«é©çšãããšãæè¯ã®çµæã瀺ãã人ã¯èª°ã§ãæ£ããçããåŸãããšãã§ããŸãã
ãããã®ãã£ã«ã¿ãŒã¯ãããšãã°æ¬¡ã®ããã«ãªããŸã
Joffrey Hinton ã®æ©æ¢°åŠç¿ã³ãŒã¹ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã®åç
ã¡ãªã¿ã«ãæ°åã®7ãš9ã«æ³šæããŠãã ãã-äžéšã«ã¯ãããŸããã äºå®ã7ãš9ã§åãã§ãããèªèã«åœ¹ç«ã€æ å ±ãå«ãŸããŠããªãããããããã®æ©èœãçæãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãã®èŠçŽ ãç¡èŠããŸããã éåžžããã®ãããªç¹åŸŽãã£ã«ã¿ãŒãååŸããã«ã¯ãéåžžã®åå±€ãã¥ãŒã©ã«ãããã¯ãŒã¯ãŸãã¯é¡äŒŒã®ãã®ã䜿çšããŸãã
Joffrey Hinton ã®æ©æ¢°åŠç¿ã³ãŒã¹ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã®åç
ã¡ãªã¿ã«ãæ°åã®7ãš9ã«æ³šæããŠãã ãã-äžéšã«ã¯ãããŸããã äºå®ã7ãš9ã§åãã§ãããèªèã«åœ¹ç«ã€æ å ±ãå«ãŸããŠããªãããããããã®æ©èœãçæãããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãã®èŠçŽ ãç¡èŠããŸããã éåžžããã®ãããªç¹åŸŽãã£ã«ã¿ãŒãååŸããã«ã¯ãéåžžã®åå±€ãã¥ãŒã©ã«ãããã¯ãŒã¯ãŸãã¯é¡äŒŒã®ãã®ã䜿çšããŸãã
ããããŸããããããã¯ã«è¿ãã ããã¯ã©ãïŒ
ãããã®2ã€ã®åçã«ã¯å€ãã®éãããããŸã-ç®ã倧ããåºãã£ãŠããŸãã æãããè²ããŸãã¯äŸãã°ãé¢çœãå¶ç¶ã®ã¬ãã«-å·Šã®åçã§ã¯ãå·ŠåŽãçœãè²ã§ãå³åŽãå³åŽã§ãã ããããç§ãã¡ã¯äœãéžæããå¿ èŠããããŸãããã€ãŸããç«ãç¬ã確å®ã«èå¥ãããã®ã§ãã ã€ãŸããããšãã°ã次ã®2ã€ã®ç»åã¯åãã«ããŽãªã«å±ããŠãããšèªèãããå¿ èŠããããŸãã
ããããé·ãéèŠãŠããããã®éã§äžè¬çãªãã®ãç解ããããšãããšãè³ã®åœ¢ãæãæµ®ãã³ãŸã-ãããã¯å€ããå°ãªããåãã§ãããå³ã«åŸããŠããŸãã ãããããããå¶ç¶ã§ã-ç«ãééã£ãæ¹åãåããŠãããé ãåŸããŠããããŸãã¯äžè¬çã«åŸãããæ®åœ±ãããŠããåçãç°¡åã«æ³åããããšãã§ããŸãïŒåãããŒã¿ã»ããããäŸãèŠã€ããããšãã§ããŸãïŒã æ®ãã¯ãã¹ãŠç°ãªããŸãã ã³ãŒãã®ã¹ã±ãŒã«ãè²ãé·ããç®ã姿å¢ãèæ¯...äžè¬çã«ãå ±éç¹ã¯ãããŸãã-ããã«ãããããããé ã®äžã®å°ããªããã€ã¹ã¯ãããã2ã€ã®åçãæé«ã®ç²ŸåºŠã§ééããªãåãã«ããŽãªãŒã«åž°ããããšãã§ããŸãã ã ç§ã¯ããªãã®ããšã¯ç¥ããŸããããæã«ã¯ãã®ãããªåŒ·åãªããã€ã¹ãç§ãã¡äžäººäžäººã®ããè¿ãã«ãããæã貞ãã ãã§ãåãã§ããŸããããããã©ã®ããã«æ©èœããã®ããŸã ç解ã§ããŸããã
5åéã®æ¥œèŠ³è«ïŒããã³çè«ïŒ
ããã£ã ããã§ããçŽ æŽãªè³ªåãããããšãããš-ç«ãšç¬ã¯èŠèŠçã«ã©ã®ããã«éããŸããïŒ ãªã¹ããç°¡åã«éå§ã§ããŸã-ãµã€ãºãæ¯ç®ãå£ã²ãã足ã®åœ¢ãæ®åœ±ã§ããç¹åŸŽçãªããŒãºã®ååš...ãŸãã¯ãããšãã°ãç«ã«ã¯çæ¯ããããŸãã ã åé¡ã¯ãããããã¹ãŠã®ç¹åŸŽããã¯ã»ã«ã®èšèªã§è¡šçŸãããŠããªãããšã§ãã ãããã®çæ¯ãäœã§ãããã©ãã«ããã¹ããããŸãã¯è¶³ãäœã§ãããã©ãããæé·ãããã圌ã«ä»¥åã«èª¬æãããŸã§ãããããã¢ã«ãŽãªãºã ã«å ¥ããããšã¯ã§ããŸããã ããã«ãäžè¬çã«ãç§ãã¡ã¯ç«ãæã£ãŠããããšãç解ããããã«ããããã¹ãŠã®èªèã¢ã«ãŽãªãºã ãå®è¡ããŸã-ãå£ã²ãããã足ãããå°Ÿãã®æŠå¿µãé©çšã§ããçãç©-ãããŠãã以åã«ã¯åçã§å£çŽããœãã¡ãçµããç«ãå§ãŸãå Žæãååã«èªä¿¡ãæã£ãŠèšãããšãã§ããŸãã åã¯éããŠããŸãã
ãã ããããããã¯ãŸã çµè«ãå°ãåºãããšãã§ããŸãã åã®äŸã§æ©èœãå®åŒåãããšãããªããžã§ã¯ãã®å¯èœãªå€åæ§ããå§ããŸããã éè·¯ã®æ²ããè§ã¯å·ŠãŸãã¯å³ã«ããã§ããŸãã-ä»ã®ãªãã·ã§ã³ã¯ãããŸããïŒãã¡ããããŸã£ããé²ãããšãé€ããŸãããäœãããå¿ èŠã¯ãããŸããïŒãããã«ãé路建èšã®åºæºã«ãããæ²ããè§ãéåžžã«æ»ããã§ãçŽè§ã§ã¯ãªãããšãä¿èšŒãããŸãã ãããã£ãŠãããŸããŸãªå転æ²çãè·¯é¢ã®ç¹å®ã®ã·ã§ãŒãã®ã»ãããå¯èœã«ããããã«æ©èœãèšèšãããããå¯èœãªå¯å€æ§ãçµäºããå Žæã§ãã 次ã®äŸïŒæ°åã1ãã¯ç°ãªãææžãã§æžãããšãã§ãããã¹ãŠã®ãªãã·ã§ã³ã¯äºãã«ç°ãªããŸãããå¿ ç¶çã«ãŸã£ãããªåçŽïŒãŸãã¯åŸæïŒç·ãå«ãå¿ èŠããããŸããããããªããšã1ã§ãªããªããŸãã ãã£ãŒãã£ãã£ã«ã¿ãŒãæºåãããšããå¯å€æ§ã®ããã«åé¡åã¹ããŒã¹ãæ®ããŸã-ã¹ãã€ã©ãŒã®äžã®ç»åãããäžåºŠèŠããšããŠãããã®ãã£ã«ã¿ãŒã®ã¢ã¯ãã£ããªéšåã¯å€ªãã¹ããªããã§ãããç°ãªãåŸæãšæå¹ãªéè§ã§ç·ãæãããšãã§ããŸãäžéšã«ãããŸãã
ç«ã®å Žåããªããžã§ã¯ãã®ãæäœã®ããã®ã¹ããŒã¹ãã¯èšãç¥ããªãã»ã©å·šå€§ã«ãªããŸãã åçã«ã¯ãããŸããŸãªåçš®ã®ç«ãããå¯èœæ§ããããŸããããªããèããããšãã§ããããããèæ¯ã«å¯ŸããŠã圌ãã¯ããã€ãã®ãªããžã§ã¯ãã«ãã£ãŠéšåçã«ãããã¯ãããå¯èœæ§ãããããã¡ããã圌ãã¯10äžã®ç°ãªãããŒãºãåãããšãã§ããŸã-ãããŠãç§ãã¡ã¯æŸéã«ã€ããŠãŸã ããã«ã€ããŠèšåããŠããŸããïŒç»åå ã®ãªããžã§ã¯ãã暪ã«ç§»åããïŒãå転ãšã¹ã±ãŒãªã³ã°ã¯ããã¹ãŠã®åé¡åã®æ°žé ã®é çã§ãã ããããã¹ãŠã®å€æŽãèæ ®ã«å ¥ããããšãã§ãããåã®ãã£ã«ã¿ãŒãšåæ§ã®ãã©ãããã£ã«ã¿ãŒãäœæããããšã¯äžå¯èœãªäœæ¥ã®ããã«æãããŸã.1æã®ç»åã§äœåãã®ç°ãªã圢ç¶ã粟ç¥çã«çµã¿åãããããšãããã¹ãŠã«ç©æ¥µçã«å¿çãã圢ç¶ã®ãªããã£ã«ã¿ãŒã¹ããããååŸããŸãã ãããã£ãŠãå¿ èŠãªæ©èœã¯ãäœããã®è€éãªæ§é ã«ããå¿ èŠããããŸãã ã©ã¡ãããŸã æ確ã§ã¯ãããŸããããããããã¹ãŠã®å¯èœãªå€æŽãèæ ®ã«å ¥ããããšãã§ããã¯ãã§ãã
ãã®ããããŸã§ã®ãšããç解ã§ããªããã¯éåžžã«é·ãæéç¶ããŸãã-æ©æ¢°åŠç¿ã®æŽå²ã®ã»ãšãã©ã ããããçªç¶ãããæç¹ã§ã人ã ã¯åšå²ã®äžçã«ã€ããŠã®1ã€ã®é åçãªã¢ã€ãã¢ãå®çŸããŸããã 次ã®ããã«èãããŸãïŒ
ãã¹ãŠã®ãã®ã¯ãä»ã®ãããå°ãããããåºæ¬çãªãã®ã§æ§æãããŠããŸãã
ããã¹ãŠããšèšããšããæåéãç§ãã¡ãåŠã¹ãããšã¯äœã§ãæå³ããŸãã ãŸã第äžã«ãèŠèŠã«é¢ãããã®æçš¿ã¯ãåçã«ç€ºãããŠããããã«ããã¡ããç§ãã¡ã®åšãã®äžçã®å¯Ÿè±¡ã§ããããã§ãã ç®ã«èŠãããªããžã§ã¯ãã¯ãã¹ãŠãå®å®ããèŠçŽ ã®æ§æãšããŠè¡šãããšãã§ãããããã¯é çªã«å¹ŸäœåŠç圢ç¶ã§æ§æããããããã¯ç¹å®ã®é åºã§é 眮ãããç·ãšè§åºŠã®çµã¿åããã§ãã ãã®ãããªãã®ïŒ
ïŒäœããã®çç±ã§ç§ã¯æçãªæ å ±ãèŠã€ããããªãã£ãã®ã§ãããã¯ã¢ã³ããªã¥ãŒã»ãŠã³ã®ãã£ãŒãã©ãŒãã³ã°ã«ã€ããŠã®ã¹ããŒã ïŒã³ãŒã¹ã©ã®åµèšè ïŒããåãåãããŸãã
ãšããã§ãçŽ æŽãªåå°ã®æ çµã¿ã§ã¯ãç§ãã¡ã®é³å£°ãšèªç¶èšèªïŒäººå·¥ç¥èœã®åé¡ãšé·ãéèããããŠããïŒã¯ãæåãåèªã«ãåèªã«ãã¬ãŒãºã«ããããŠããããé çªã«æã«çµåãããæ§é çéå±€ã§ãããšèšããŸãããã¹ã-ãããŠãæ°ããåèªã«äŒããšããããã«å«ãŸãããã¹ãŠã®æåãååŠç¿ããå¿ èŠã¯ãªããç¹å¥ãªæèšãšãã¬ãŒãã³ã°ãå¿ èŠãšãããã®ãšããŠããªãã¿ã®ãªãããã¹ãããŸã£ããèªèããŸããã æŽå²ã«ç®ãåãããšã次ã®ãããªèããè¡šæããããŸããŸãªã¢ãããŒããèŠã€ããããšãã§ããŸãã
1. 1959幎ã®å®éšã§ãã§ã«èšåããããŒãã«ãšãŽã£ãŒãŒã«ã¯ãç»é¢äžã®ç¹å®ã®èšå·ã«åå¿ããè³ã®èŠèŠç®è³ªã®çŽ°èãçºèŠããŸãããããã«ã圌ãã¯ä»ã®çŽ°èã®ååšãçºèŠããŸãããæåã®ã¬ãã«ã®ã»ã«ããã®ä¿¡å·ã ããã«åºã¥ããŠã圌ãã¯åæ§ã®æ€åºåšã»ã«ã®éå±€å šäœã®ååšã瀺åããŸããã
å®éšã®ãããªããã®çŸããæç²
...ããã§ã圌ããã»ãšãã©å¶ç¶ã«ãã¥ãŒãã³ãåå¿ãããå¿
èŠãªç¹åŸŽãçºèŠããããšã瀺ãããŠããŸã-ã¬ã©ã¹ã®çžãã«ã¡ã©ã«èœã¡ãããã«éåžžã®ãµã³ãã«ããå°ãé ãã«ç§»åããããšã«ãã£ãŠã ææãªäººã«ã¯ãåç©ã®mç¬ã«æ³šæããŠãã ããã
2.æ©æ¢°åŠç¿ã®å°é家ã®2ååã®1ã®é åã®ã©ããã§ã ãã£ãŒãã©ãŒãã³ã°ãšããçšèªã¯ã1ã€ã®ãã¥ãŒãã³å±€ã§ã¯ãªãå€æ°ã®ãã¥ãŒãã³ãããã¯ãŒã¯ãåç §ããŠãããããããã€ãã®ã¬ãã«ã®æ©èœãåŠç¿ã§ããŸãã ãã®ãããªã¢ãŒããã¯ãã£ã«ã¯ãå³å¯ã«æ£åœåãããå©ç¹ããããŸãããããã¯ãŒã¯ã®ã¬ãã«ãé«ãã»ã©ãããè€éãªæ©èœãè¡šçŸã§ããŸãã ãã®ãããªãããã¯ãŒã¯ããã¬ãŒãã³ã°ããæ¹æ³ã«ã¯ããã«åé¡ããããŸã-以åã«åºã䜿çšãããŠããéäŒæã¢ã«ãŽãªãºã ã¯ãå€æ°ã®ã¬ã€ã€ãŒã§ã¯ããŸãæ©èœããŸããã ãããã®ç®çã®ããã®ããã€ãã®ç°ãªãã¢ãã«ããããŸã-èªåãšã³ã³ãŒããŒãéå®ããããã«ããã³ãã·ã³ãªã©ã
3.ãžã§ãã»ããŒãã³ã¹ã¯ã2004幎ã®ãç¥æ§ã«ã€ããŠãã®æ¬ã§ãéå±€çã¢ãããŒããæšé²ããæªæ¥ã¯åœŒã«ãããšæžããŠããŸãã 圌ã¯ãã§ã«ããŒã«ã®éå§ã«å°ãé ããŠããŸããããç§ã¯ãããèšåããããåŸãŸãã-ãã®ã¢ã€ãã¢ã¯å®å šã«æ¥åžžçãªãã®ãšåçŽãªèšèªã«ç±æ¥ããæ©æ¢°åŠç¿ããååã«é ã人ã§ãããäžè¬çã«ããããã¹ãŠã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ãæªããšèšããŸããã¢ã€ãã¢ã æ¬ãèªãã§ãããã¯éåžžã«åºæ¿çã§ãã
ã³ãŒãã«ã€ããŠå°ã
ãããã£ãŠã仮説ããããŸãã 1024x768ã®ãã¢ãã¯ã»ã«ãåŠç¿ã¢ã«ãŽãªãºã ã«è©°ã蟌ãã§ãã¡ã¢ãªäžè¶³ãšèªèã«éèŠãªãã¯ã»ã«ãç解ã§ããªãããã«ãã£ãããšãã§ãŒã¯ãèŠãã®ã§ã¯ãªããããŸããŸãªã¬ãã«ã§æ§æãããç»åããéå±€æ§é ãæœåºããŸãã æåã®ã¬ãã«ã§ã¯ãåçã®æãåºæ¬çã§æ§é çã«åçŽãªèŠçŽ ã®ããã€ããèŠãã€ããã§ã-ãã®å»ºç©ã®ã¬ã³ã¬ïŒå¢çãã¹ãããŒã¯ãã»ã°ã¡ã³ãã ããé«ã-æåã®ã¬ãã«ã®ãã£ãŒãã£ïŒè§åºŠãªã©ïŒã®å®å®ããçµã¿åãããããã«é«ã-åã®ãã®ããé 眮ããããã£ãŒãã£ïŒå¹ŸäœåŠç圢ç¶ãªã©ïŒã å®éã«ã¯ãåé¡ã¯-å¥ã®åçã®ãã®ãããªæ§é ãã©ãã§ååŸãããã§ãã
ã³ãŒããæœè±¡çãªè³ªåãšããŠå°ã話ããŸãããã
ã³ã³ãã¥ãŒã¿ãŒã§çŸå®äžçã®ãªããžã§ã¯ããè¡šçŸããå Žåãããã€ãã®ã«ãŒã«ã»ããã䜿çšããŠããã®ãªããžã§ã¯ãã1ã€ãã€ããžã¿ã«åœ¢åŒã«å€æããŸãã ããšãã°ãæåã¯ãã€ããããã³ã°ïŒASCIIïŒã«å ¥ããããç»åã¯å€ãã®å°ããªãã¯ã»ã«ã«åå²ããããããããæãããšè²ã®æ å ±ãäŒããäžé£ã®æ°åã§è¡šãããŸãã è²ãè¡šçŸããããã®ã¢ãã«ã¯å€æ°ãããŸãããäžè¬çã«ã¯ããã¬ãŒãã³ã°ã«äœ¿çšãããã®ã¯éèŠã§ã¯ãããŸããããç°¡åã«ããããã«ã1ãã¯ã»ã«ã0ãã1ãŸã§ã®æ°åã§è¡šçŸããããã®æãããé»ããçœãŸã§è¡šçŸããçœé»ã®äžçãæ³åããŸã
ãã®ãã¥ãŒã®äœãåé¡ã«ãªã£ãŠããŸããïŒ ããã®åãã¯ã»ã«ã¯ç¬ç«ããŠãããæçµç»åã«é¢ããæ å ±ã®ããäžéšã®ã¿ãéä¿¡ããŸãã ããã¯ãäžæ¹ã§ãç»åãã©ããã«ä¿åãããããããã¯ãŒã¯çµç±ã§è»¢éãããããå¿ èŠããããšãã«ãã¹ããŒã¹ãåããŸããã®ã§ãå¿«é©ã§æçã§ããäžæ¹ã§ãèªèã«ã¯äžäŸ¿ã§ãã ãã®äŸã§ã¯ãç»åã®äžéšã«æãã®ã¹ãããŒã¯ïŒå°ãæ²ãã£ãïŒããããŸããããããæšæž¬ããã®ã¯é£ããã§ãããããã¯é¡åçããã®éŒ»ã®èŒªéã®è©³çŽ°ã§ãã ãããã£ãŠããã®å Žåããã®ã¹ãããŒã¯ãæ§æãããã¯ã»ã«ã¯ç§ãã¡ã«ãšã£ãŠéèŠã§ãããé»ãšçœã®å¢çã¯éèŠã§ã-ãããŠãæ£æ¹åœ¢ã®äžéšã«ããã©ã€ãã°ã¬ãŒã®è²åãã§ã»ãšãã©ç¥èŠã§ããªãå ã®éã³ã¯å®å šã«éèŠã§ã¯ãªããããã«ã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ãè²»ããããšãã§ããŸããã ãã ãããã®ãã¥ãŒã§ã¯ããã¹ãŠã®ãã¯ã»ã«ãäžåºŠã«åŠçããå¿ èŠããããŸããåãã¯ã»ã«ã¯ä»ã®ãã¯ã»ã«ãããåªããŠããŸãã
ããã§å¥ã®ã³ãŒããæ³åããŠã¿ãŸãããã ãã®æ£æ¹åœ¢ãä»ã®åãæ£æ¹åœ¢ã®ç·åœ¢åã«å解ããããããã«ä¿æ°ãæããŸãã éæ床ã®ç°ãªãæãã¬ã©ã¹ã®ãã¬ãŒããã©ã®ããã«åããåãã¬ãŒãã«ããŸããŸãªã¹ãããŒã¯ïŒåçŽãæ°Žå¹³ãç°ãªãïŒãæç»ããããæ³åã§ããŸãã ãããã®ãã¬ãŒããéããŠé 眮ããéæ床ã調æŽããŠåçã«äŒŒããã®ãäœæããŸããå®ç§ã§ã¯ãããŸããããèªèã«ã¯ååã§ãã
ç§ãã¡ã®æ°ããã³ãŒãã¯æ©èœçãªèŠçŽ ã§æ§æãããŠããŸã-ããããããå ã®æ£æ¹åœ¢ã«å¥ã®æå³ã®ããã³ã³ããŒãã³ãã®ååšã«ã€ããŠäœããèšãããã«ãªããŸããã åçŽã¹ãããŒã¯ã®ã³ã³ããŒãã³ãã®ä¿æ°ã¯0.01ã§ãããŸãããµã³ãã«ã«ã¯ãåçŽæ§ããã»ãšãã©ãªãããšãããããŸãïŒãã ãããæãã¹ãããŒã¯ãããããããããŸã-æåã®ä¿æ°ãåç §ïŒã ãã®æ°ããã³ãŒãã®ã³ã³ããŒãã³ãã§ãããã£ã¯ã·ã§ããªãåå¥ã«éžæããå ŽåããŒã以å€ã®ä¿æ°ã¯ã»ãšãã©ãªããšäºæ³ã§ããŸãããã®ãããªã³ãŒãã¯sparseãšåŒã°ããŸã ã
ãã®ãããªè¡šçŸã®æçšãªããããã£ã¯ã ãã€ãºé€å»ãªãŒããšã³ã³ãŒããŒãšåŒã°ããã¢ããªã±ãŒã·ã§ã³ã®äŸã§èŠãããšãã§ããŸãã ç»åãååŸããããšãã°10x10ã®å°ããªæ£æ¹åœ¢ã«åå²ããåããŒã¹ã«å¯Ÿå¿ããã³ãŒããéžæãããšããã®ç»åãã©ã³ãã ãªãã€ãºãšæªã¿ããå°è±¡çãªå¹çã§æ¶å»ãããã€ãºã®å€ãç»åãã³ãŒãã«å€æããŠå ã«æ»ãããšãã§ããŸãïŒããšãã°ãããšãã°ã ãã¡ããã芧ãã ãã ïŒã ããã¯ãã³ãŒããã©ã³ãã ãã€ãºã®åœ±é¿ãåããªãããšã瀺ãããªããžã§ã¯ããèªèããããã«å¿ èŠãªç»åã®éšåãä¿åããŸããããã«ããã埩å åŸã®ãã€ãºããå°ãªãããªã£ããšèããããŸãã
ãã®ã¢ãããŒãã®å察ã¯ãæ°ããã³ãŒããéãããšã§ããã³ã³ããŒãã³ãã®æ°ã«ãã£ãŠã¯ã以åã®10x10ãã¯ã»ã«ã®æ£æ¹åœ¢ãéããªãå¯èœæ§ããããŸãã ã¹ã±ãŒã«ãè©äŸ¡ããã«ã¯ã人éã®è³ã®èŠèŠç®è³ªãçŽ100,000åã®ãã¥ãŒãã³ã䜿çšããŠ14x14ãã¯ã»ã«ïŒå¯žæ³196ïŒããšã³ã³ãŒãããŠãããšãã蚌æ ããããŸãã
ãããŠãéå±€ã®æåã®ã¬ãã«ãçªç¶ååŸããŸãããããã¯ããã®ã³ãŒãã®èªåœèŠçŽ ã®ã¿ã§æ§æãããŠããŸããããã¯ãä»ã芧ã®ããã«ãã¹ãããŒã¯ãšå¢çç·ã§ãã ãã®èŸæžãã©ããããæã£ãŠããããšã¯æ®ã£ãŠããŸãã
5åéã®ç·Žç¿
SciPyïŒPythonïŒã®æ©æ¢°åŠç¿çšã©ã€ãã©ãªã§ããscikit-learnããã±ãŒãžã䜿çšããŸãã å ·äœçã«ã¯ãMiniBatchDictionaryLearningã®ã¯ã©ã¹ïŒãµãã©ã€ãºïŒã§ãã ããããã-ã¢ã«ãŽãªãºã ã¯äžåºŠã«ããŒã¿ã»ããå šäœã§ã¯ãªãã亀äºã«å°ããã©ã³ãã ã«éžæãããããŒã¿ãã±ããã§å®è¡ãããããã§ãã ããã»ã¹ã¯ç°¡åã§ã10è¡ã®ã³ãŒããå¿ èŠã§ãã
from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn import preprocessing from scipy.misc import lena lena = lena() / 256.0 # data = extract_patches_2d(lena, (10, 10), max_patches=1000) # 10x10 - data = preprocessing.scale(data.reshape(data.shape[0], -1)) # rescaling - , 1 learning = MiniBatchDictionaryLearning(n_components=49) features = learning.fit(data).components_
ãã£ãŒãã£ã«ãããã®ãæç»ãããšã次ã®ãããªãã®ãåŸãããŸãã
pylabãä»ããåºå
import pylab as pl for i, feature in enumerate(features): pl.subplot(7, 7, i + 1) pl.imshow(feature.reshape(10, 10), cmap=pl.cm.gray_r, interpolation='nearest') pl.xticks(()) pl.yticks(()) pl.show()
ããã§ãã°ããåæ¢ããæåãããããè¡ã£ãçç±ãæãåºããŠãã ããã æããããªããžã§ã¯ããæ§æãããããªãç¬ç«ããããã«ãã£ã³ã°ã¬ã³ã¬ãã®ã»ãããååŸãããã£ãã®ã§ãã ãããå®çŸããããã«ãå€æ°ã®å°ããªæ£æ¹åœ¢ã®æçãåãåããã¢ã«ãŽãªãºã ãä»ããŠããããé§åããããããã¹ãŠã®æ£æ¹åœ¢ã®æçãããã®ãããªã³ã³ããŒãã³ãã®æ§æã®åœ¢ã§èªèã§ããååãªç¢ºå®æ§ã§è¡šçŸã§ããããšãçºèŠããŸããã 10x10ãã¯ã»ã«ã®ã¬ãã«ã§ã¯ïŒãã¡ãããç»åã®è§£å床ã«äŸåããŸããïŒãšããžãšå¢çã«ããééããªããããçµæãšããŠããããååŸããŸãã
ãã®ãšã³ã³ãŒããããè¡šçŸãæ€åºåšãšããŠäœ¿çšã§ããŸãã ã©ã³ãã ã«éžæãããç»åããšããžã§ãããããŒããŒã§ããããç解ããããã«ãscikitã«æ¬¡ã®ããã«åçã®ã³ãŒããååŸããããäŸé ŒããŸãã
patch = lena[0:10, 0:10] code = learning.transform(patch)
ã³ãŒãã®ã³ã³ããŒãã³ãã®ãããããä»ã®ã³ã³ããŒãã³ãã«æ¯ã¹ãŠååã«å€§ããä¿æ°ãæã£ãŠããå Žåãããã¯å¯Ÿå¿ããåçŽãæ°Žå¹³ãŸãã¯ä»ã®ã¹ãããŒã¯ã®ååšã瀺ããŠããããšãããããŸãã ãã¹ãŠã®ã³ã³ããŒãã³ããã»ãŒåãã§ããå Žåãããã¯åçã®ãã®å Žæã«åçŽãªèæ¯ãŸãã¯ãã€ãºãããããšãæå³ããŸãã
ããããç§ãã¡ã¯å ã«é²ã¿ããã§ãã ããã«ã¯ãããã«ããã€ãã®å€æãå¿ èŠã«ãªããŸãã
ãããã£ãŠããµã€ãº10x10ã®ä»»æã®ãã©ã°ã¡ã³ãã¯ã49åã®æ°åã®ã·ãŒã±ã³ã¹ã§è¡šçŸã§ããŸããåæ°åã¯ãäžã®å³ã®å¯Ÿå¿ããã³ã³ããŒãã³ãã®éæ床ä¿æ°ãæå³ããŸãã 次ã«ããããã®49åã®æ°åã7x7ã®æ£æ¹è¡åã®åœ¢åŒã§èšè¿°ããäœãèµ·ãã£ãããæããŸãã
ãããŠã次ã®ããšãããããŸããïŒæ確ã«ããããã«2ã€ã®äŸã瀺ããŸãïŒã
å·ŠåŽã¯å ã®ç»åã®æçã§ãã å³åŽã¯ãšã³ã³ãŒããããè¡šçŸã§ããåãã¯ã»ã«ã¯ãã³ãŒãå ã®å¯Ÿå¿ããã³ã³ããŒãã³ãã®ååšã¬ãã«ã§ãïŒæããã»ã©åŒ·ãïŒã æåã®ãã©ã°ã¡ã³ãïŒäžïŒã«ã¯æ確ãªã¹ãããŒã¯ããªãããã®ã³ãŒãã¯æ·¡ãç°è²ã®æ·¡ã匷床ã®è¡ã®ãã¹ãŠã®æ··åç©ã®ããã«èŠãã2çªç®ã®ã³ã³ããŒãã³ãã«ã¯æ確ã«ååšããæ®ãã¯ãã¹ãŠãŒãã§ãã
次ã«ãéå±€ã®2çªç®ã®ã¬ãã«ããã¬ãŒãã³ã°ããããã«ãå ã®ç»åãã倧ããªãã©ã°ã¡ã³ããåãåºãïŒããã€ãã®å°ããªãã®ãããšãã°30x30ïŒãããã«åãŸãããã«ããå°ããªãã©ã°ã¡ã³ãã«åãåãããšã³ã³ãŒããããããŒãžã§ã³ã§ãããããæ瀺ããŸãã 次ã«ãäžç·ã«ãããã³ã°ãããã®ãããªããŒã¿ã«åºã¥ããŠå¥ã®DictionaryLearningããã¬ãŒãã³ã°ããŸãã ããžãã¯ã¯åçŽã§ã-æåã®ã¢ã€ãã¢ãæ£ãããã°ãé£æ¥ãããšããžãšå¢çç·ãå®å®ããç¹°ãè¿ãã®çµã¿åããã«ãŸãšããå¿ èŠããããŸãã
äŸã®çµæãšããŠå€æããããšã¯ãäžèŠããŠæå³ã®ãããã®ã«èŠããŸããããäžèŠããã ãã§ãã ããã§ã¯ãããšãã°ã人éã®é¡ã§èšç·Žãããéå±€ã®ç¬¬2ã¬ãã«ã§äœãèµ·ãããã
äœãšãåçãå€ããã
ãã ããããã§ã¯ããã©ã°ã¡ã³ããµã€ãºãããã«éžæããŸã-10x10ã§ã¯ãªã25x25ã ãã®ã¢ãããŒãã®äžå¿«ãªæ©èœã®1ã€ã¯ããæå°ã»ãã³ãã£ãã¯ãŠããããã®ãµã€ãºãã«ã¹ã¿ãã€ãºããå¿ èŠãããããšã§ãã
ãã ããããã§ã¯ããã©ã°ã¡ã³ããµã€ãºãããã«éžæããŸã-10x10ã§ã¯ãªã25x25ã ãã®ã¢ãããŒãã®äžå¿«ãªæ©èœã®1ã€ã¯ããæå°ã»ãã³ãã£ãã¯ãŠããããã®ãµã€ãºãã«ã¹ã¿ãã€ãºããå¿ èŠãããããšã§ãã
2çªç®ã®ã¬ãã«ã¯æåã®ã¬ãã«ã®ã³ãŒãã§ãã¬ãŒãã³ã°ããããããçµæã®ãèŸæžããæãããã«ããã€ãã®å°é£ãçºçãããã®ã³ã³ããŒãã³ãã¯äžã®å³ã®ãããã厩ããããã«èŠããŸãã ãããè¡ãã«ã¯ãå¥ã®ã¹ããããèžãå¿ èŠããããŸã-ãããã®ã³ã³ããŒãã³ããåã³åå²ããæåã®ã¬ãã«ã䜿çšããŠããã³ãŒããããŸãããããã§ã¯ãã®ããã»ã¹ã詳现ã«æ€èšããŸããã
ãããŠããŸã£ããåãååã«åŸã£ãŠãå¿ èŠã«ãªããŸã§ã¬ãã«ãäžãããŸãã ããã§ãããšãã°ã3çªç®ã§ãã ãããŠãããã§ç§ãã¡ã¯ãã§ã«é¢çœããã®ãèŠãŠããŸãïŒ
ããã®åé¢ã¯ã160x160ãµã€ãºã®æ©èœã§ãã æãäžè¬çãªå Žæã¯ããã€ããããŸã-æ£é¢ãå·Šå³ã«åå転ãããŸããŸãªèã®è²ã åæã«ãåæ©èœã«ã¯ããã«2ã€ã®ã¬ã€ã€ãŒããããæåã«ãã¹ãã€ã¡ãŒãžã®æå¹æ§ããã°ãã確èªã§ããããã«ãã2çªç®ã«è¿œå ã®èªç±åºŠãäžããŸã-茪éãšå¢çç·ã¯çæ³çãªç·ããå€ããããšããããŸããããããŸã§ã®ãšãã圌ãã®ã¬ãã«ã®ç¹åŸŽã圌ãã¯åœŒãã®ååšã2éã«ç¥ãããæ©äŒããããŸãã
æªããªãã
ãããŠãäœ-ãã¹ãŠãç§ãã¡ã¯åã¡ãŸãããïŒ
æããã«ããã§ã¯ãããŸããã å®éãç«ãšç¬ã«é¢ããç®çã®ããŒã¿ã»ããã«ãããã®ãã¹ãŠã®ã»ãããæç»ããã®ãšåãã¹ã¯ãªãããå®è¡ãããšãç»åã¯éåžžã«æ鬱ã«ãªããŸã-ã¬ãã«ããšã«ããããã«æ¹Ÿæ²ããå¢çç·ãæãã»ãŒåãæ©èœãè¿ããŸãã
ããããŸãããããã¯ééããªãæåŸã§ã
1å¹ã®ç¬ã®é¡ãåããããšãå€æããŸããããããã¯çŽç²ãªãã£ã³ã¹ã§ã-ãµã³ãã«ã§åæ§ã®ã·ã«ãšããããããšãã°2åèŠã€ãã£ãããã§ãã ã¹ã¯ãªãããå床å®è¡ãããšã衚瀺ãããªãå ŽåããããŸãã
1å¹ã®ç¬ã®é¡ãåããããšãå€æããŸããããããã¯çŽç²ãªãã£ã³ã¹ã§ã-ãµã³ãã«ã§åæ§ã®ã·ã«ãšããããããšãã°2åèŠã€ãã£ãããã§ãã ã¹ã¯ãªãããå床å®è¡ãããšã衚瀺ãããªãå ŽåããããŸãã
åŸæ¥ã®ãã£ãŒããã©ã¯ãŒããã¥ãŒã©ã«ãããã¯ãŒã¯ãæ¹å€ããã®ãšåãçç±ã§ãç§ãã¡ã®ã¢ãããŒãã¯èŠåŽããŠããŸãã åŠç¿ããã»ã¹ã«ãããèŸæžåŠç¿ã¯ãããã€ãã®å ±éã®å Žæãç»åã®éžæããããã©ã°ã¡ã³ãã®æ§é ã³ã³ããŒãã³ããæ¢ããŸãã é¡ã®å Žåããã¹ãŠãã»ãŒé¡äŒŒããŠããããããã¹ãŠãããŸããããŸãã-äžå®ã®æ°ã®éžè±ã䌎ã现é·ãæ¥å圢ïŒããã³éå±€ã®ããã€ãã®ã¬ãã«ã¯ããã®ç¹ã§ããå€ãã®èªç±ãäžããŸãïŒã ç«ã®å ŽåãããŒã¿ã»ããå šäœã§2ã€ã®é¡äŒŒããã·ã«ãšãããèŠã€ããããšã¯é£ãããããæ©èœããªããªããŸããã ã¢ã«ãŽãªãºã ã¯ããã¹ãã»ããå ã®ç»åéã§å ±éç¹ãæ€åºããŸãã-ã¹ãããŒã¯ãšå¢çç·ããŸã åŠçããŠããæåã®ã¬ãã«ãé€ããŸãã 倱æã åã³è¡ãæ¢ãŸãã
æªæ¥ãžã®ã¢ã€ãã¢
å®éãèããŠã¿ããšãå€æ°ã®ç°ãªãã¢ã¶ã©ã·ã®ãµã³ãã«ã¯ãããŸããŸãªåçš®ã姿å¢ããµã€ãºãè²ãã«ããŒãããšããç¹ã§åªããŠããŸãããç§ãã¡ã®ç¥æ§ããèšç·Žããã®ã«ã¯ããŸãæåããªããããããŸããã æçµçã«ããªããžã§ã¯ãã®å¯èœæ§ã®ãããã¹ãŠã®ããªãšãŒã·ã§ã³ããã°ãã調ã¹ãã®ã§ã¯ãªãããªããžã§ã¯ãã®ç¹°ãè¿ããšèŠ³å¯ãç¹°ãè¿ãæ¹æ³ã«ãã£ãŠå€ããåŠã³ãŸãã ãã¢ãã®åŒŸãæ¹ãåŠã¶ããã«ã¯ã絶ããé³éã匟ãå¿ èŠããããŸãããããŠããã®ããã«åã®å€å žçãªäœåãèŽãã ãã§ååã§ããã°ãããšæããŸãã ãããã£ãŠãã¢ã€ãã¢ã¯ããµã³ãã«ã®å€æ§æ§ããéããåãã·ãŒã³å ã®ãããšãã°ç°ãªãäœçœ®ã«ãã1ã€ã®ãªããžã§ã¯ãã«éäžããåæ°ã§ãã
2çªç®ã®ã¢ã€ãã¢ã¯æåããç¶ããŠãããJeff Hawkinsãèšåãããã®ãå«ããå€ãã®äººã ããæ¢ã«çºèšãããŠããŸãã æåŸã«ã1ã€ã®ãªããžã§ã¯ãã§æéå ã«èŠ³å¯ããããŸããŸãªåœ¢ãšå§¿å¢ã確èªããŸã-ãããŠãæåã«ãå°ããã€æ°ããç«ã衚瀺ããããã«ãåãç«ã衚瀺ãããšä¿¡ããŠãé çªã«å°çããåçãã°ã«ãŒãåã§ããŸãããŒãºã ã€ãŸããå°ãªããšãããã¬ãŒãã³ã°ã»ãããæ ¹æ¬çã«å€æŽãããkitty wakes upããšãããªã¯ãšã¹ãã§èŠã€ãã£ãYouTubeãããªãçšæããå¿ èŠããããŸãã ããããããã«ã€ããŠã¯æ¬¡ã®ã·ãªãŒãºã§è©³ãã説æããŸãã
ã³ãŒããèŠãŠãã ãã
... githubã§ã§ããŸãã python train.py myimage.jpgãå®è¡ããŸãïŒåçã§ãã©ã«ããŒãæå®ããããšãã§ããŸãïŒãããã«è¿œå ã®èšå®-ã¬ãã«ã®æ°ããã©ã°ã¡ã³ãã®ãµã€ãºãªã©ã scipyãscikit-learnãmatplotlibãå¿ èŠã§ãã
圹ç«ã€ãªã³ã¯ãšããã£ãŒãã©ãŒãã³ã°ã«é¢ãããã®ä»ã®æ å ±
- ãã£ãŒãã©ãŒãã³ã°ã®å ¥éæžã¯ãèæ¯ãç°¡åãªçŽ¹ä»ãããçŸããåçãå«ãæçãªæçš¿ã§ãã
- UFLDLãã¥ãŒããªã¢ã« -æ¢ã«è¿°ã¹ãã¹ã¿ã³ãã©ãŒã倧åŠã®Andrew Ngã«ãããã¥ãŒããªã¢ã« -æãæ±ãããã«ã å°å ¥ãããã»ã¹æ°åŠããã£ãŒããã©ã¯ãŒããããã¯ãŒã¯ãšã®é¡äŒŒãMatlab / Octaveã§ã®äŸãšæŒç¿ãªã©ãæåéãããã®ä»çµã¿ãç¥ãããã®ãã¹ãŠããããŸãã
- ç¡æã®ãªã³ã©ã€ã³ããã¯Neural Networks and Deep Learningã¯ãæ®å¿µãªãããŸã çµãã£ãŠããŸããã ããªãäžè¬çãªåœ¢åŒã§ãããŒã»ãããã³ããã¥ãŒãã³ã®ã¢ãã«ãªã©ããå§ãŸãåºæ¬ã説æããŸãã
- ãžã§ããªãŒãã³ãã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ã®æ°äžä»£ã«ã€ããŠèªã
- ããŒãã³ã¹ãšã®æåŸã®è©±ã§ã¯ã圌ã¯åœŒã®æ¬ãšã»ãŒåãã§ãããããå ·äœçã«è¿°ã¹ãŠããŸãã ã€ã³ããªãžã§ã³ãã¢ã«ãŽãªãºã ã§ã§ããããšã人éã®è³ã®æ¢ç¥ã®ç¹æ§ãããã«ã€ããŠæããŠãããããšããã¥ãŒã©ã«ãããã¯ãŒã¯ã«æºè¶³ã§ããªãçç±ãã¹ããŒã¹ã³ãŒãã£ã³ã°ã®äœ¿çšã«ã€ããŠã¯ã©ãã§ããããã