倧éã®æ å ±ãåŠçããããšä»¥å€ã®ã¿ã¹ã¯ã«é¢ããŠã¯ã人éã®è³ã¯ã³ã³ãã¥ãŒã¿ãŒãããåªããŠããŸãã éšå±ã«å€ãã®ç°ç©ããããç §æã匱ãå Žåã§ãã人ã¯é¡ãèªèããããšãã§ããŸãã éšãããéšå±ã«ãããšãã§ããèŠç¥ãã¬äººãç°¡åã«ç解ã§ããŸãã ããããé·å¹Žã®ç 究ã«ãããããããã³ã³ãã¥ãŒã¿ãŒã¯ãã®ãããªã¿ã¹ã¯ãé«ã¬ãã«ã§å®è¡ããã«ã¯ã»ã©é ãã§ãã
人éã®è³ã¯é©ãã»ã©ä¿¡é Œæ§ãé«ããã³ã³ãã¥ãŒã¿ãŒãšæ¯èŒããŠãããã€ãã®çŽ°èãæ»ãã ãããšãã£ãŠåäœãåæ¢ããããšã¯ãããŸããããã³ã³ãã¥ãŒã¿ãŒã¯éåžžãCPUã®æå·ã«èããããŸããã ãããã人éã®è³ã®æãé©ãã¹ãç¹åŸŽã¯ãåŠç¿ã§ããããšã§ãã èªè»¢è»ã®ä¹ãæ¹ãåŠã³ããå ŽåããœãããŠã§ã¢ãã¢ããããŒãã¯å¿ èŠãããŸããã
è³ã®èšç®ã¯ã軞玢ãã·ããã¹ãããã³æš¹ç¶çªèµ·ãããªãç¥çµã¯ã€ã€ãä»ããŠé»æ°ã€ã³ãã«ã¹ãéä¿¡ããããšã«ããæ å ±ãéä¿¡ããå¯æ¥ã«çžäºæ¥ç¶ããããã¥ãŒã©ã«ãããã¯ãŒã¯ãéããŠå®è¡ãããŸãã 1943幎ãMcCullochãšPittsã¯äººå·¥ãã¥ãŒãã³ãã¹ã€ãããšããŠã¢ãã«åããŸãããã¹ã€ããã¯ä»ã®ãã¥ãŒãã³ããæ å ±ãåãåããå ¥åã®åèšã«å¿ããŠã¢ã¯ãã£ãåãããããéã¢ã¯ãã£ãã®ãŸãŸã§ãã ANNããŒãã§ã¯ãçä¿¡ä¿¡å·ã«å¯Ÿå¿ããã·ããã¹ã®éã¿ãä¹ç®ãããåèšãããŸãã ãããã®ä¿æ°ã¯ãæ£ïŒè奮ïŒãšè² ïŒæå¶ïŒã®äž¡æ¹ã«ãªããŸãã 1960幎代ã«ã¯ããã®ãããªç¥çµã¢ãã«ã¯è³ã«äŒŒãç¹æ§ãæã£ãŠããããšã蚌æãããŸãããè€éãªãã¿ãŒã³èªèæäœãå®è¡ã§ãããã¥ãŒãã³éã®æ¥ç¶ã®äžéšãåæãããŠãæ©èœããããšãã§ããŸãã RosenblattããŒã»ããã³ã®ãã¢ã³ã¹ãã¬ãŒã·ã§ã³ã§ã¯ãç¹å®ã®åéã§ç¥ãããŠããäŸã䜿çšããŠããã®ãããªãã¥ãŒãã³ã®åçŽãªãããã¯ãŒã¯ããã¬ãŒãã³ã°ã§ããããšã瀺ããŸããã åŸã«ããã³ã¹ããŒãšããŒããŒã¬ããã¯ãåçŽãªæèšã¯éåžžã«çãã¯ã©ã¹ã®ç·åœ¢åé¢å¯èœãªåé¡ïŒäžèšåç §ïŒãã解決ã§ããªãããšã蚌æããŸããããã®åŸãANNã®åŠç¿æŽ»åã¯æžå°ããŸããã ããã«ãããããããäŸã䜿çšããŠè€éãªãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããã¿ã¹ã¯ãä¿é²ã§ããåŠç¿ãšã©ãŒã®åŸæ¹äŒæã®æ¹æ³ã¯ããããã®åé¡ã¯åé¢ã§ããªãå¯èœæ§ãããããšã瀺ããŸããã
NETtalkã¯äººå·¥ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠããã¹ããæ©æ¢°å å·¥ããæåã®åºãç¥ãããã¢ããªã±ãŒã·ã§ã³ã§ããã çç©åŠã§ã¯ãã¿ã³ãã¯è³ªã®äºæ¬¡æ§é ãäºæž¬ããããã«ããŸã£ããåãã¿ã€ãã®ãããã¯ãŒã¯ã䜿çšãããŸããã å®éãæé«ã®ç 究è ã®äžéšã¯ãŸã åãæ¹æ³ã䜿çšããŠããŸãã å¥ã®æ³¢ã¯ããããå§ãŸããANNã®ç 究ãžã®é¢å¿ãåèµ·ããæèæ©æ¢°ã®éæ³ã®èšç·Žã«ã€ããŠå€§éšãããŸããã æãéèŠãªåæçºèŠã®ããã€ãã¯ããœãŒã¹5ã«èšèŒãããŠããŸãã
ANNã¯ãã³ã³ãã¥ãŒã¿ãŒã§ãã¥ãŒãã³ãããã¯ãŒã¯ã®ã¢ãã«ãã·ãã¥ã¬ãŒãããããšã§äœæã§ããŸãã å®éã®ãã¥ãŒãã³ã®ããã»ã¹ãæš¡å£ããã¢ã«ãŽãªãºã ã䜿çšããŠããããã¯ãŒã¯ããåŠç¿ããããããšãã§ããŸããããã¯ãããŸããŸãªåé¡ã®è§£æ±ºã«åœ¹ç«ã¡ãŸãã ãã¥ãŒãã³ã¢ãã«ã¯ãããå€ãšããŠæ瀺ãããŸãïŒå³1aã«ç€ºãããŠããŸãïŒã ã¢ãã«ã¯ä»ã®å€ãã®å€éšãœãŒã¹ããããŒã¿ãåãåããåå ¥åã®å€ã決å®ãããããã®å€ãè¿œå ããŸãã åèšå ¥åããããå€ããã倧ããå Žåããããã¯ã®åºåã¯1ã«çãããããã§ãªãå Žåã¯ãŒãã«ãªããŸãã ãããã£ãŠãå ¥åã®åèšãå éãåèšããããå€ã«çããå Žåãåºåã¯0ãã1ã«å€ãããŸãã ãã®æ¡ä»¶ãæºããå ã®ç©ºéã®ç¹ã¯ãããããè¶ å¹³é¢ã決å®ããŸãã 2次å ã§ã¯ãè¶ å¹³é¢ã¯ç·ã§ããã3次å ã§ã¯ãè¶ å¹³é¢ã¯æ³ç·ïŒåçŽïŒå¹³é¢ã§ãã è¶ å¹³é¢ã®çåŽã®ãã€ã³ãã¯0ã«åé¡ãããå察åŽã®ãã€ã³ãã¯1ã«åé¡ãããŸããããã¯ã2ã€ã®ã¯ã©ã¹ãè¶ å¹³é¢ã«ãã£ãŠåé¢ãããŠããå Žåããããå€ã䜿çšããŠåé¡åé¡ã解決ã§ããããšãæå³ããŸãã ãããã®åé¡ã¯ç·åœ¢åé¢å¯èœãšåŒã°ããå³1bã«ç€ºãããŠããŸãã
å³1
人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ã ïŒaïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ã¢ãã«ãšMcCulloch and Pittsãããå€èŠçŽ ã®ã°ã©ãã£ã«ã«ãªè¡šçŸã ãããå€ãããã¯ã¯ã1ããNãŸã§ã®çªå·ãä»ããããä»ã®Nåã®ãããã¯ãŸãã¯å€éšãœãŒã¹ããå ¥åä¿¡å·ãåãåããŸããå ¥åiã¯xiãšåŒã°ããéã¿wiã«é¢é£ä»ããããŠããŸãã ãã¹ãŠã®å ¥åã®éã¿ã®åèšã枬å®ããããã®ããã€ã¹ãžã®äžè¬çãªå ¥åãwixi = w1x1 + w2x2 + ... +WNxΣi= 1 NNãå€ããããå€tãäžåãå Žåããããã¯ã®åºåã¯1ããã以å€ã®å Žåã¯-0ã wixiΣi= 1-tgïŒNïŒã§è¡šãããŸããgã¯ã¹ãããé¢æ°ã§ãåŒæ°ãè² ã®å Žåã¯0ãåŒæ°ãæ£ã®å Žåã¯1ã§ãïŒå®éã®å€ã¯é¢ä¿ãããŸãããããã§ã¯1ãéžæããŸãïŒã ããããäŒéé¢æ°gã¯ãèµ€ãç·ã§ç€ºãããŠããããã«é£ç¶çã§ãSååãã§ããããŸãã ïŒbïŒç·åœ¢åé¢å¯èœæ§ïŒåé¢å¯èœæ§ïŒã 3次å ã§ã¯ããããå€ã«ãã£ãŠãå¹³é¢ã§åé¢ã§ããã¢ãŒã¡ã³ããåé¡ã§ããŸãã åãã€ã³ãã¯ããããã¯ã®ãããå€ã§ã®å ¥åå€x1ãx2ãx3ãè¡šããŸãã ç·ã®ç¹ã¯ã¯ã©ã¹0ã®ããŒã¿ãã€ã³ãã«å¯Ÿå¿ããèµ€ã®ç¹ã¯1ã«å¯Ÿå¿ããŸããç·ãšèµ€ã®ååã¯ãæä»çè«çåã®è«çæ©èœã瀺ããŠããŸãã ç·ãšèµ€ã®ãããïŒãŸãã¯x1ãx2ãã¬ãŒã³ã®ã©ã€ã³ïŒãåé¢ãããã¬ãŒã³ãèŠã€ããããšã¯äžå¯èœã§ãïŒCïŒåæ¹åANNã 瀺ãããŠãããããã¯ãŒã¯ã¯ã7ã€ã®å ¥åãå æããé ãå±€ã«5ã€ã®ãŠããããããã1ã€ã®åºåããããŸãã ããã¯2å±€ãããã¯ãŒã¯ã§ãããªããªãã å ¥åã¬ã€ã€ãŒã¯å€æŽãè¡ãããèæ ®ãããŸããã ïŒdïŒåãã¬ãŒãã³ã°ã 8ã€ã®ãã€ã³ãã¯æŸç©ç·ã®ãã©ã¹ã§ç€ºãããŸãïŒãå®éšçããã€ãºãé€ãïŒã ãããã¯3ã€ã®ç°ãªãANNã®ãã¬ãŒãã³ã°ã«äœ¿çšãããŸãã ãããã¯ãŒã¯ã¯ãxå€ãå ¥åïŒåäžå ¥åïŒãšããŠèªèããyå€ãæãŸããçµæãšããŠåŠç¿ããŸãã äºæ³ã©ããã1ã€ã®é ããããã¯ïŒç·ïŒãæã€ãããã¯ãŒã¯ã¯ãé«ã¬ãã«ã®äœæ¥ã«å¯ŸåŠããŸããã 10åã®é ããèŠçŽ ïŒéïŒãæã€ãããã¯ãŒã¯ã¯ãé©ãã»ã©ããã³ã¢æ©èœããããããŸãã 20ã®é ãããèŠçŽ ïŒãã€ãªã¬ããïŒãæã€æåŸã®ãããã¯ãŒã¯ã¯æ å ±ãé©åã«åŠçãããããã¯ãŒã¯ã¯ååã«èšç·ŽãããŠããŸãããäžéšã®äžéãšãªã¢ã§ã¯é床ã«åµé çã§ãã
ãã¬ãŒãã³ã°
åé¡åé¡ãåé¢å¯èœãªå Žåããããå€ããã€ã¹ãåé¡åé¡ãæ£ãã解決ã§ããããã«ãéã¿ãšãããå€ãèšå®ããæ¹æ³ãèŠã€ããå¿ èŠããããŸãã ããã¯ãæ¢ç¥ã®åé¡ããã®äŸãåžžã«è¿œå ããããšã§å®çŸã§ããŸãã ãã®ããã»ã¹ã¯ã人ãäœããåŠç¿ããããã»ã¹ã«äŒŒãŠãããããåŠç¿ãŸãã¯ãã¬ãŒãã³ã°ãšåŒã°ããŸãã ã³ã³ãã¥ãŒã¿ãŒæ¯æŽåŠç¿ã¢ããªã³ã°ã§ã¯ãåã¹ãããã®åŸã«åé¡ãããé«ãã¬ãã«ã§è¡ãããããã«ãéã¿ãšãããå€ã絶ããå€æŽããŸãã ãã¬ãŒãã³ã°ã¯ããŸããŸãªã¢ã«ãŽãªãºã ã«ãã£ãŠå®è£ ã§ããŸãããããã®ã¢ã«ãŽãªãºã ã®1ã€ã«ã€ããŠã¯åŸã§èª¬æããŸãã
èšç·Žäžãè¶ å¹³é¢ã¯ç©ºéå ã§æ£ããäœçœ®ãèŠã€ãããŸã§äžæ¹åã«ç§»åãã次ã«ä»ã®æ¹åã«ç§»åããŸããããã®åŸã¯å€§å¹ ã«å€åããŸããã ãã®ãããªããã»ã¹ã¯ãNeural JavaïŒ http://lcn.epfl.ch/tutorial/english/index.html ïŒã«ãã£ãŠååã«å®èšŒãããŠããŸãã ãAdlineãPerceptonãBackpropagationãïŒèµ€ãšéã®ç¹ã2ã€ã®ã¯ã©ã¹ãè¡šããŸãïŒã®ãªã³ã¯ããã©ãããplayããã¯ãªãã¯ããŸãã
人工ãã¥ãŒã©ã«ãããã¯ãŒã¯ãç°¡åã«é©çšã§ããã¿ã¹ã¯ã®äŸãèããŠã¿ãŸãããã 2çš®é¡ã®ããã®ãã¡ãç¹å®ã®æ²»çæ³ã«åå¿ããã®ã¯1çš®é¡ã®ã¿ã§ãã ããã2çš®é¡ã®çãäºãã«åºå¥ã§ããåçŽãªãã€ãªããŒã«ãŒã¯ãªããããè «çãµã³ãã«ã®éºäŒåçºçŸã枬å®ããŠãåè «çã®çš®é¡ã決å®ããããšã«ããŸãã 50åã®ã¯ã©ã¹0ïŒéåå¿æ§ïŒè «çãš50åã®ã¯ã©ã¹1ïŒåå¿æ§ïŒè «çã§20çš®é¡ã®éºäŒåã®å€ã枬å®ãããšããŸãã ãã®ããŒã¿ã«åºã¥ããŠãå ¥åãšããŠ20åã®éºäŒåå€ãåããçµæãšããŠ0ãŸãã¯1ãåºåãããããå€ããã€ã¹ããã¬ãŒãã³ã°ããŠããããã2ã€ã®ã¯ã©ã¹ã®1ã€ã決å®ããŸãã ããŒã¿ãç·åœ¢ã«åé¢å¯èœãªå Žåããããå€ãããã¯ã¯ãã¬ãŒãã³ã°ããŒã¿ãæ£ããåé¡ããŸãã
ãã ããå€ãã®åé¡åé¡ã¯ç·åœ¢åé¢å¯èœã§ã¯ãããŸããã ããå€ãã®è¶ å¹³é¢ãå°å ¥ãããã€ãŸãè€æ°ã®ãããå€ãããã¯ãå°å ¥ããããšã«ããããã®ãããªéç·åœ¢åé¡ã®ã¯ã©ã¹ãåé¢ã§ããŸãã éåžžãããã¯ããããå€èŠçŽ ã®è¿œå ã®ïŒé衚瀺ã®ïŒã¬ãã«ãè¿œå ããããšã«ãã£ãŠè¡ãããŸããåã¬ãã«ã¯ãå ¥åããŒã¿ãéšåçã«åé¡ããåºåããŒã¿ãæåŸã®ã¬ãã«ã«éä¿¡ããŸãã æçµã¬ãã«ã§ã¯ããã¹ãŠã®éšåçãªåé¡ãåéãããŠæçµã¬ãã«ãäœæãããŸãïŒå³1bïŒã ãã®ãããªãããã¯ãŒã¯ã¯ããã«ãã¬ãã«ããŒã»ããã³ãŸãã¯åæ¹åãããã¯ãŒã¯ãšåŒã°ããŸãã åæ¹åãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããã€ããªåºåïŒ0ããã³1ïŒã§ã¯ãªããäžå®ã®åºåãå¿ èŠãšããååž°ã¿ã¹ã¯ã«ã䜿çšã§ããŸãã ã¹ãããé¢æ°ãé£ç¶é¢æ°ã«çœ®ãæãããšãåºåãšããŠå®æ°ãåŸãããŸãã å€ãã®å Žåããã·ã°ã¢ã€ãã掻æ§åé¢æ°ã䜿çšãããå Žåãããã¯äžæçãªãããå€é¢æ°ã§ãïŒå³1aïŒã ãã·ã°ã¢ã€ããã¢ã¯ãã£ããŒã·ã§ã³é¢æ°ã¯åé¡åé¡ã«ã䜿çšã§ãã0.5æªæºã®åºåãã¯ã©ã¹0ãšããŠã0.5ãè¶ ããåºåãã¯ã©ã¹1ãšããŠè§£éããŸãããŸããçµæãã¯ã©ã¹1ã®ç¢ºçãšããŠè§£éããã®ãçã«ããªã£ãŠããŸãã
äžèšã®äŸã§ã¯ã次ã®ãªãã·ã§ã³ã䜿çšã§ããŸããã¯ã©ã¹1ã¯çºé³ãããéºäŒå1ãšããŠç¹åŸŽä»ããããç¡çåæ§ã®ã¯ã©ã¹ã¯0ããŸãã¯ãã®éã§ãã äž¡æ¹ã®éºäŒåãçºé³ãŸãã¯ç¡çåæ§ã®å Žåãã¯ã©ã¹0ïŒè «çïŒãå²ãåœãŠãããŸãã ããã¯æä»çè«çãorãã«å¯Ÿå¿ããéç·åœ¢ã«åé¢å¯èœãªé¢æ°ã®æšæºçãªäŸã§ãïŒå³1bïŒã ãã®å Žåãè «çã®åé¡ã«ã¯ããã«ãã¬ãã«ãããã¯ãŒã¯ã䜿çšããå¿ èŠããããŸããã
ã©ãŒãã³ã°ãšã©ãŒãã¹ãããã¯
äžèšã®åŠç¿ãšã©ãŒãã¹ãããã¯ã¢ã«ãŽãªãºã ã¯ãã¢ããã°åºåã®åæ¹åãã¥ãŒã©ã«ãããã¯ãŒã¯ã§æ©èœããŸãã ãã¬ãŒãã³ã°ã¯ãå°ããªä¹±æ°ã®ãããã¯ãŒã¯ã«ãã¹ãŠã®éããèšçœ®ããããšããå§ãŸããŸãã ããã§ãåå ¥åäŸã«ã€ããŠããããã¯ãŒã¯ã¯ã©ã³ãã ã«éå§ããåºåãæäŸããŸãã 2ã€ã®åºåã®å·®ã®2ä¹ãšã察å¿ããã¯ã©ã¹ãŸãã¯å€ã®æãŸããçµæã枬å®ããŸãã ãã¹ãŠã®ã±ãŒã¹ã¹ã¿ãã£ã®ããããã¹ãŠã®æ°å€ã®åèšã¯ãäžè¬çãªãããã¯ãŒã¯ãšã©ãŒãšåŒã°ããŸãã æ°å€ããŒãã®å Žåããããã¯ãŒã¯ã¯çæ³çã§ãããããã£ãŠããšã©ãŒãå°ããã»ã©ããããã¯ãŒã¯ã¯è¯å¥œã§ãã
ç·èª€å·®ãæå°éã«æããéã¿ãéžæãããšãæé©ãªæ¹æ³ã§åé¡ã解決ãããã¥ãŒã©ã«ãããã¯ãŒã¯ãåŸãããŸãã ããã¯ã2ã€ã®ãã©ã¡ãŒã¿ãŒãéžæãããè¡ãç¹åŸŽä»ããç·åœ¢ååž°ãšåãã§ãããã®ãããè¡ãšæ å ±ãã€ã³ãéã®å¹³æ¹å·®ã®åèšã¯æå°ã«ãªããŸãã ãã®ãããªåé¡ã¯ç·åœ¢ååž°ã§è§£æçã«è§£ãããšãã§ããŸãããé衚瀺èŠçŽ ãæã€åæ¹åãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ã¯è§£æ±ºçããããŸããã ãã¹ãããã¯ã¢ã«ãŽãªãºã ã§ã¯ããšã©ãŒãéã¿ãããã³ãããå€ã¯æ°ãããµã³ãã«ãæäŸããããã³ã«å€åããããããšã©ãŒã®å¯èœæ§ã¯åŸã ã«å°ãããªããŸãã ãšã©ãŒãå€ãããªããŸãŸã«ãªããŸã§ããã®ããã»ã¹ã¯äœçŸåãç¹°ãè¿ãããŸãã ãã®ããã»ã¹ã®èŠèŠçè¡šçŸã¯ãäžèšã®Neural Javaãµã€ãã§ãªã³ã¯ãMulti-layer PerceptronãïŒãã¥ãŒãã³{0ã1}ã®åºåïŒãã¯ãªãã¯ããŠèŠã€ããããšãã§ããŸãã
ãšã©ãŒãã¹ãããã¯ã¢ã«ãŽãªãºã ã§ã¯ãæ°å€æé©åææ³ã¯åŸé éäžã¢ã«ãŽãªãºã ãšåŒã°ããç¹ã«æ°åŠçèšç®ãç°¡çŽ åããŸãã ãã®ã¢ã«ãŽãªãºã ã¯ã解ãã®ã«åœ¹ç«ã€æ¹çšåŒã®åœ¢åŒã®ããã«ãã®ååãåŸãŸããã ãšã©ãŒãã£ãŒãããã¯äŒéã䜿çšããéã«èª¿æŽããå¿ èŠãããããã€ãã®ãã¬ãŒãã³ã°ãã©ã¡ãŒã¿ãŒïŒããããåŠç¿çãšéåéæ¯ïŒããããŸãã èæ ®ã«å€ããä»ã®åé¡ããããŸãã ããšãã°ãåŸé éäžã¢ã«ãŽãªãºã ã§ã¯ã誀差ã®ã°ããŒãã«æå°å€ã®æ€åºãä¿èšŒãããªããããåŠç¿çµæã¯éã¿ã®åæå€ã«äŸåããŸãã ãã ãã1ã€ã®åé¡ãä»ã®ãã¹ãŠã®åé¡ãèŠãé ããŸããããã¯åãã¬ãŒãã³ã°ã®åé¡ã§ãã
åãã¬ãŒãã³ã°ã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã«äœ¿çšå¯èœãªãã©ã¡ãŒã¿ãŒã®æ°ããæœåºã§ãããã©ã¡ãŒã¿ãŒãå€ãããå Žåãã€ãŸããè€æ°ã®ãã€ã³ããèªç±ãã©ã¡ãŒã¿ãŒãå€ãããé¢æ°ã«å¯Ÿå¿ããå Žåã«çºçããŸãïŒå³1dïŒã ãããã®ãã¹ãŠã®æ¹æ³ãåé¡ãšååž°ã®äž¡æ¹ã«é©ããŠãããšããäºå®ã«ããããããããã¥ãŒã©ã«ãããã¯ãŒã¯ã¯éåžžãåãã©ã¡ãŒã¿ãŒåã®åŸåããããŸãã ããšãã°ããã®åé¡ã解決ããããã®10åã®é衚瀺èŠçŽ ãæã€ãããã¯ãŒã¯ã«ã¯ã221åã®ãã©ã¡ãŒã¿ãŒããããŸãã20åã®é衚瀺ã®éã¿ãšãããå€ãããã³åºåã§ã®10åã®éã¿ãšãããå€ã§ãã ããã¯ã100ã®äŸããæœåºã§ãããã©ã¡ãŒã¿ãŒãå€ãããŸãã ãã¬ãŒãã³ã°ããŒã¿ã«é©ããŠãããããã¯ãŒã¯ã§ã¯ããã¬ãŒãã³ã°ä»¥å€ã®åºåãäžè¬åããããšã¯ã§ããŸããã ãããã¯ãŒã¯ã®åãã¬ãŒãã³ã°ãå¶éããæ¹æ³ã¯å€æ°ãããŸãïŒå°èŠæš¡ãªãããã¯ãŒã¯ã®äœæãé€ãïŒããæãäžè¬çãªæ¹æ³ã«ã¯ãè€æ°ã®ãããã¯ãŒã¯ã§ã®å¹³ååããã€ãžã¢ã³çµ±èšæ³ã®æ£èŠåããã³äœ¿çšãå«ãŸããŸãã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããã«ã¯ããããã¯ãŒã¯ã®ãã¬ãŒãã³ã°äžã«äœ¿çšãããªãã£ãç¬ç«ããããŒã¿ã§ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¹ãããå¿ èŠããããŸãã éåžžãã¯ãã¹ãã§ãã¯ãå®è¡ãããããŒã¿ã»ããã¯ãããšãã°åããµã€ãºã®è€æ°ã®ã»ããã«åå²ãããŸãã 次ã«ããããã¯ãŒã¯ã¯9ã»ããã§ãã¬ãŒãã³ã°ããã10æ¥ã§ãã¹ããããŸãããã®æäœã¯10åç¹°ãè¿ããããã¹ãŠã®ã»ããããã¹ãã«äœ¿çšãããŸãã ããã«ããããããã¯ãŒã¯ã®äžè¬åèœåãã€ãŸããããã¯ãŒã¯ããã¬ãŒãã³ã°ãããŠããªãå ¥åãåé¡ããèœåã®è©äŸ¡ãåŸãããŸãã éåžžã«éèŠãªå®¢èŠ³çãªè©äŸ¡ãåŸãããã«ãåå¥ã®ã»ããã«åæ§ã®äŸãå«ããã¹ãã§ã¯ãããŸããã
æ¡åŒµæ©èœãšã¢ããªã±ãŒã·ã§ã³
1ã€ã®ãããã¯ãåããåçŽãªããŒã»ãããã³ãšè€æ°ã®ããã€ã¹ãåããå€å±€ãããã¯ãŒã¯ã®äž¡æ¹ãç°¡åã«äžè¬åããŠãåºåå€ãè¿œå ããã ãã§3ã€ä»¥äžã®ãã©ã¡ãŒã¿ãŒãäºæž¬ã§ããŸãã åé¡åé¡ã¯ããã€ããªåºåã®ã»ããã§ãšã³ã³ãŒãã§ããŸãã äžèšã®äŸã§ã¯ãããšãã°ã3ã€ã®ç°ãªãæ²»çæ³ããããšæ³åã§ããŸãããã®è «çã«å¯ŸããŠãã©ã®æ²»çæ³ãå¹æçããç¥ãããã§ãã ãã®åé¡ã¯ãåãã¿ã€ãã®é ããŠãããã«æ¥ç¶ãããŠãã3ã€ã®åºåèŠçŽ ã䜿çšããããšã§è§£æ±ºã§ããŸãã
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãç§åŠãå»åŠãæè¡ã®ããŸããŸãªåéã§å€ãã®èå³æ·±ãåé¡ã«äœ¿çšãããå Žåã«ãã£ãŠã¯ãã€ãã¯ãœãªã¥ãŒã·ã§ã³ãæäŸããŸãã ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãåçŽãªæ¹æ³ã§ããè¯ãçµæãåŸãããã¿ã¹ã¯ã«èª€ã£ãŠäœ¿çšãããããšããããããã«ãã£ãŠäžéšã®ç§åŠè ã®éã§ANNã®è©å€ãæªããªããŸããã
ããã§èª¬æãããŠããªãä»ã®ã¿ã€ãã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ããããŸãã ããšãã°ããã«ããã³ãã·ã³ãéå¶åŸ¡ãããã¯ãŒã¯ãKohonenãããã¯ãŒã¯ã ANNã«å¯æ¥ã«é¢é£ãããã¯ã¿ãŒãã·ã³ã®ãµããŒãã ãã詳现ãªç¥ãåãã«ã€ããŠã¯ãChris Bishopã®æ¬ãç§ã®å ±èè ã®å€ãæ¬ãDudã®æ¬ãªã©ããå§ãããŸãANNãäœæããããã«äœ¿çšã§ããå€ãã®ããã°ã©ã ã¯ãç¬èªã®ããŒã¿ã§ãã¬ãŒãã³ã°ãããŠããŸãã ãããã«ã¯ãMicrosoft ExcellãMatlabãããã³RïŒ http://www.r-project.org/ ïŒã®æ¡åŒµæ©èœãšãã©ã°ã€ã³ãããã³ã³ãŒãã©ã€ãã©ãªãšå€§èŠæš¡ãªåçšããã±ãŒãžãå«ãŸããŸãã FANNã©ã€ãã©ãªïŒ http://leenissen.dk/fann/ ïŒãããã¯ãæ·±å»ãªã¢ããªã±ãŒã·ã§ã³ã«äœ¿çšãããŸãã Cã®ãªãŒãã³ãœãŒã¹ã³ãŒãã§æºããããŠããŸãããããšãã°PerlãPythonããã°ã©ã ããåŒã³åºãããšãã§ããŸãã
ããã«èªã
1.ãã³ã¹ããŒãMLïŒããŒããŒãSAããŒã»ãããã³ïŒMIT Pressãã±ã³ããªããžã1969ïŒã
2.ã«ã¡ã«ããŒããDEããã³ãã³ãGEïŒãŠã£ãªã¢ã ãºãRJ Nature 323ã533-536ïŒ1986ïŒã
3. SejnowskiãTJïŒRosenbergãCR Complex Systems 1ã145-168ïŒ1987ïŒã
4. QianãN.ïŒSejnowskiãTJJ Molã ãã€ãª 202ã865â884ïŒ1988ïŒã
5.ã¢ã³ããŒãœã³ãJAïŒããŒãŒã³ãã§ã«ããEãïŒç·šïŒã ãã¥ãŒãã³ã³ãã¥ãŒãã£ã³ã°ïŒç 究ã®åºç€ïŒMIT Pressãã±ã³ããªããžã1988幎ïŒã
6. BishopãCM Neural Networks for Pattern RecognitionïŒOxford University Pressããªãã¯ã¹ãã©ãŒãã1995ïŒã
7.ããŒãã«ãWS Natã ãã€ãªãã¯ãããžãŒã 24ã1565-1567ïŒ2006ïŒã
8.ãã·ã§ãããCMãã¿ãŒã³èªèããã³æ©æ¢°åŠç¿ïŒSpringerããã¥ãŒãšãŒã¯ã2006幎ïŒã
9. HertzãJAãKroghãAããããã³PalmerãRãç¥çµèšç®çè«å ¥éïŒAddison-WesleyãRedwood Cityã1991ïŒã
10. DudaãROãHartãPEïŒStorkãDGãã¿ãŒã³åé¡ïŒWiley Interscienceããã¥ãŒãšãŒã¯ã2000幎ïŒã
èšäºã®ç¿»èš³ïŒAnders Krogh NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 2 FEBRUARY 2008ïŒ