- å°åœ±å¹Ÿäœãšåäžåº§æš
- ã«ã¡ã©ã¢ãã«
- ãšãããŒã©ãžãªã¡ããªïŒãšããã©ã«ãžãªã¡ããªïŒãåºæ¬ããã³å¿ é ãããªãã¯ã¹ïŒåºæ¬ãããªãã¯ã¹ãå¿ é ãããªãã¯ã¹ïŒ
- ã¹ãã¬ãªãã€ã³ãã®äžè§åœ¢åå²
- 深床ããããèŠå·®ããããããã³ãã®èšç®ã®èåŸã«ããèãæ¹
èšäºã®å 容ãç解ããã«ã¯ãåæ幟äœåŠãšç·åœ¢ä»£æ°ã®äžè¬çãªæŠå¿µãæã£ãŠããã ãã§ååã§ããè¡åããã¯ãã«ãã¹ã«ã©ãŒããã¯ãã«ç©ãäœã§ããããç¥ãããšã§ãã
1å°åœ±å¹Ÿäœãšå次座æš
å°åœ±å¹ŸäœåŠã¯ãç«äœèŠå¹ŸäœåŠã«ãããŠéèŠãªåœ¹å²ãæãããŸãã å°åœ±å¹ŸäœåŠã«ã¯ããã€ãã®ã¢ãããŒãããããŸãïŒå¹ŸäœåŠïŒãŠãŒã¯ãªãã幟äœåŠãå ¬çã®ãããªå¹ŸäœåŠãªããžã§ã¯ãã®æŠå¿µãå°å ¥ããããããå°åœ±ç©ºéã®ãã¹ãŠã®ããããã£ãå°ãåºãïŒãåæçïŒãŠãŒã¯ãªãã幟äœåŠãžã®åæçã¢ãããŒãã®ããã«åº§æšã§ãã¹ãŠãèæ ®ããïŒã代æ°çã§ãããããªãè°è«ã®ããã«ãå°åœ±å¹ŸäœåŠãžã®åæçã¢ãããŒãã®ç解ãäž»ã«å¿ èŠã§ããã以äžã«æ瀺ãããã®ã¯åœŒã§ãã
å°åœ±å¹³é¢ã®ãã€ã³ãã 2次å ã®å°åœ±ç©ºéïŒå°åœ±å¹³é¢ãšãåŒã°ããŸãïŒãèããŸãã éåžžã®ãŠãŒã¯ãªããå¹³é¢ã§ã¯ãç¹ã¯å°åœ±å¹³é¢äžã®åº§æšã®ãã¢ïŒ x ã y ïŒ Tã§èšè¿°ãããŸãããç¹ã¯3èŠçŽ ãã¯ãã«ïŒ x ã y ã w ïŒ Tã§èšè¿°ãããŸãã ããã«ããŒã以å€ã®æ°å€aã®å Žåããã¯ãã«ïŒ x ã y ã w ïŒ TãšïŒ ax ã ay ã aw ïŒ Tã¯åãç¹ã«å¯Ÿå¿ããŸãã ãŸãããŒããã¯ãã«ïŒ0,0,0ïŒ Tã¯ã©ã®ç¹ã«ã察å¿ãããèæ ®ã®å¯Ÿè±¡å€ãšãªããŸãã ãã®ãããªå¹³é¢ç¹ã®èšè¿°ã¯ãå次座æšãšåŒã°ããŸãã
å°åœ±å¹³é¢ã®ç¹ã¯ãéåžžã®ãŠãŒã¯ãªããå¹³é¢ã®ç¹ã«é¢é£ä»ããããšãã§ããŸãã w â 0ã®åº§æšãã¯ãã«ïŒ x ã y ã w ïŒ Tã«ã€ããŠããŠãŒã¯ãªããå¹³é¢ã®ç¹ã座æšïŒ x / w ã y / w ïŒ Tã«é¢é£ä»ããŸãã w = 0ã®å Žåãã€ãŸã 座æšãã¯ãã«ã®åœ¢åŒã¯ïŒ x ã y ã0 T ïŒã§ããããã®ç¹ã¯ç¡é倧ã«ãããšèšããŸãã ãããã£ãŠãå°åœ±å¹³é¢ã¯ãç¡éé ããã®ç¹ã§è£ããããŠãŒã¯ãªããå¹³é¢ãšèŠãªãããšãã§ããŸãã
座æšãã¯ãã«ãæåŸã®æåã§é€ç®ããŠããïŒ x ã y ã w ïŒ T âïŒ x / w ã y / w ïŒ Tãç Žæ£ããããšã«ãããå次座æšïŒ x ã y ã w ïŒ Tããéåžžã®ãŠãŒã¯ãªãã座æšã«ç§»åã§ããŸã ãããŠããŠãŒã¯ãªãã座æšïŒ x ã y ïŒ Tããã座æšãã¯ãã«ã«1ãè¿œå ããããšã«ãããå次座æšã«é²ãããšãã§ããŸãïŒïŒ x ã y ïŒ T âïŒ x ã y ã1ïŒ T
å°åœ±å¹³é¢äžã®ç·ã å°åœ±å¹³é¢äžã®ç·ã¯ãç¹ã®ããã«ã3èŠçŽ ãã¯ãã«l =ïŒ a ã b ã c ïŒ Tã«ãã£ãŠèšè¿°ãããŸãã ç¹°ãè¿ããŸãããç·ãèšè¿°ãããã¯ãã«ã¯ãŒã以å€ã®ä¿æ°ãŸã§æ±ºå®ãããŸãã ãã®å Žåãç·ã®æ¹çšåŒã¯æ¬¡ã®åœ¢åŒã«ãªããŸãïŒ l T x = 0ã
a 2 + b 2 â 0ã®å Žåãéåžžã®çŽç·ax + by + c = 0ã®ã¢ããã°ããããŸãããããŠããã¯ãã«ïŒ0,0ã w ïŒã¯ç¡éã«ããçŽç·ã«å¯Ÿå¿ããŸãã
äžæ¬¡å å°åœ±ç©ºéã å°åœ±å¹³é¢ãšã®é¡æšã«ããã3次å å°åœ±ç©ºéã®ç¹ã¯ãå次座æšïŒ x ã y ã z ã w ïŒ Tã®4æåãã¯ãã«ã«ãã£ãŠæ±ºå®ãããŸãã ç¹°ãè¿ããŸããããŒã以å€ã®æ°å€aã®å Žåã座æšãã¯ãã«ïŒ x ã y ã z ã w ïŒ TãšïŒ ax ã ay ã az ã aw ïŒ Tã¯åãç¹ã«å¯Ÿå¿ããŸãã
å°åœ±å¹³é¢ã®å Žåãšåæ§ã«ã3次å ãŠãŒã¯ãªãã空éãš3次å å°åœ±ç©ºéã®ç¹ã®éã§å¯Ÿå¿ã確ç«ã§ããŸãã w â 0ã®å次座æšïŒ x ã y ã z ã w ïŒ Tã®ãã¯ãã«ã¯ã座æšïŒ x / w ã y / w ã z / w ïŒ Tã®ãŠãŒã¯ãªãã空éã®ç¹ã«å¯Ÿå¿ããŸãã ãããŠããã©ãŒã ïŒ x ã y ã z ã0ïŒ Tã®å次座æšã®ãã¯ãã«ãæã€ç¹ã«ã€ããŠã圌ãã¯ãããç¡éé ã«ãããšèšããŸãã
å°åœ±å€æã ãããªããã¬ãŒã³ããŒã·ã§ã³ã«å¿ èŠãšãªããã1ã€ã®ããšã¯ãå°åœ±å€æïŒãã¢ã°ã©ãã£ãå°åœ±å€æ-è±èªæåŠïŒã§ãã 幟äœåŠçãªèŠ³ç¹ããèŠããšãå°åœ±å€æã¯ãçŽç·ãçŽç·ã«å€æããå°åœ±å¹³é¢ïŒãŸãã¯ç©ºéïŒã®å¯éå€æã§ãã 座æšã§ã¯ãå°åœ±å€æã¯éçž®éæ£æ¹è¡åHãšããŠè¡šãããŸããã座æšãã¯ãã«xã¯æ¬¡ã®åŒã«åŸã£ãŠåº§æšãã¯ãã«x 'ã«ãªããŸãïŒ x ' = H x ã
2æ圱ã«ã¡ã©ã¢ãã«
çŸä»£ã®CCDã«ã¡ã©ã¯ãæ圱ã«ã¡ã©ããã³ããŒã«ã«ã¡ã©ãšåŒã°ãã次ã®ã¢ãã«ã䜿çšããŠãã説æãããŠããŸãã å°åœ±ã«ã¡ã©ã¯ãã«ã¡ã©ã®äžå¿ã 䞻軞 -ã«ã¡ã©ã®äžå¿ããéå§ããŠã«ã¡ã©ãèŠãŠããå Žæã«åããããããŒã ãç»åå¹³é¢-ç¹ãæ圱ãããå¹³é¢ãããã³ãã®å¹³é¢äžã®åº§æšç³»ã«ãã£ãŠå®çŸ©ãããŸãã ãã®ãããªã¢ãã«ã§ã¯ã空éXã®ä»»æã®ç¹ããã«ã¡ã©Cã®äžå¿ãéå§ç¹Xã«æ¥ç¶ããã»ã°ã¡ã³ãCXäžã®ç¹xã§ç»åå¹³é¢ã«æ圱ãããŸãïŒå³1ãåç §ïŒã
å³1ïŒ ã«ã¡ã©ã¢ãã«ã Cã¯ã«ã¡ã©ã®äžå¿ã Cpã¯ã«ã¡ã©ã®äž»è»žã§ãã 3次å 空éã®ç¹X㯠ãç»åå¹³é¢äžã®ç¹xã«æ圱ãããŸãã
æ圱åŒã«ã¯ãå次座æšã§ã®ç°¡åãªæ°åŠè¡šèšããããŸãã
ããã§ã Xã¯ç©ºéå ã®ç¹ã®å次座æšã xã¯å¹³é¢å ã®ç¹ã®å次座æšã Pã¯3Ã4ã«ã¡ã©è¡åã§ãã
x = P X
è¡åPã¯æ¬¡ã®ããã«è¡šãããŸããP = KR [ I | -c ] = K [ R | t ]ãããã§Kã¯3Ã3ã«ã¡ã©ã®å éšãã©ã¡ãŒã¿ãŒã®äžäžè§è¡åã§ãïŒç¹å®ã®ãã¥ãŒã以äžã«ç€ºããŸãïŒã Rã¯ã°ããŒãã«åº§æšç³»ã«å¯Ÿããã«ã¡ã©ã®å転ã決å®ãã3Ã3çŽäº€è¡åã Iã¯åäžã®3Ã3è¡åããã¯ãã«c-ã«ã¡ã©ã®äžå¿ã®åº§æšãããã³t = -R c
ã«ã¡ã©è¡åã¯ãå®æ°x = P Xã䜿çšããŠæ圱ç¹ã®çµæãå€æŽããªãäžå®ã®éãŒãä¿æ°ãŸã§æ±ºå®ãããããšã«æ³šæããŠãã ããã ãã ãããã®å®æ°ä¿æ°ã¯éåžžãã«ã¡ã©ãããªãã¯ã¹ãäžèšã®åœ¢åŒã«ãªãããã«éžæãããŸãã
æãåçŽãªå Žåãã«ã¡ã©ã®äžå¿ãåç¹ã«ãããšããã«ã¡ã©ã®äž»è»žã¯Cz軞ãšäžèŽããã«ã¡ã©å¹³é¢äžã®åº§æšè»žã¯åãã¹ã±ãŒã«ïŒæ£æ¹åœ¢ãã¯ã»ã«ã«çžåœïŒãæã¡ãç»åã®äžå¿ã¯ãŒã座æšãæã¡ãã«ã¡ã©è¡åã¯P = K [ ç§ | 0 ]ãããã§
å®éã®CCDã«ã¡ã©ã§ã¯ããã¯ã»ã«ã¯éåžžæ£æ¹åœ¢ã®ãã®ãšãããã«ç°ãªããç»åã®äžå¿ã¯ãŒã以å€ã®åº§æšãæã¡ãŸãã ãã®å Žåãå éšãã©ã¡ãŒã¿ãŒã®ãããªãã¯ã¹ã¯æ¬¡ã®åœ¢åŒãåããŸãã
ä¿æ°f ãαxãαy-ã¯ãã«ã¡ã©ã®çŠç¹è·é¢ãšåŒã°ããŸãïŒãããããå ±éããã³x軞ãšy軞ã«æ²¿ã£ãŠïŒã
ããã«ãå åŠç³»ã®äžå®å šãªæ§è³ªã«ãããã«ã¡ã©ããååŸããç»åã«ã¯æªã¿æªã¿ãå«ãŸããŠããŸãã ãããã®æªã¿ã«ã¯ãéç·åœ¢ã®æ°åŠçãªèšé²ããããŸãã
ããã§ã k 1 ã k 2 ã p 1 ã p 2 ã k 3ã¯æªã¿ä¿æ°ã§ãããå åŠç³»ã®ãã©ã¡ãŒã¿ã§ãã r 2 = x ' 2 + y ' 2 ; ïŒ x 'ã y 'ïŒ-æ£æ¹åœ¢ãã¯ã»ã«ã§æªã¿ã®ãªãç»åã®äžå¿ã«çžå¯Ÿçãªç¹ã®æ圱ã®åº§æš; ïŒ x â³ã y â³ïŒ-æ£æ¹åœ¢ãã¯ã»ã«ã®ç»åã®äžå¿ã«å¯Ÿããç¹ã®æªãã 座æšã
æªã¿ã¯ãªããžã§ã¯ããŸã§ã®è·é¢ã«äŸåããããªããžã§ã¯ãã®ãã¯ã»ã«ãæ圱ããããã€ã³ãã®åº§æšã®ã¿ã«äŸåããŸãã ãããã£ãŠãæªã¿ãè£æ£ããããã«ãã«ã¡ã©ããååŸããå ã®ç»åã¯éåžžå€æãããŸãã ãã®å€æã¯ãçŠç¹è·é¢ãäžå®ïŒæ°åŠçã«ã¯ãå éšãã©ã¡ãŒã¿ãŒã®åããããªãã¯ã¹ïŒã§ããã°ãã«ã¡ã©ããåä¿¡ãããã¹ãŠã®ç»åã§åãã«ãªããŸãã
ã«ã¡ã©ã®å éšãã©ã¡ãŒã¿ãŒãæ¢ç¥ã§ãããæªã¿ä¿æ°ãã«ã¡ã©ãèŒæ£ãããŠãããšèšãç¶æ³ã§ã
3çµã®ã«ã¡ã©
å°ãªããšã2å°ã®ã«ã¡ã©ãããå Žåã«ã芳枬ãã€ã³ãã®3次å 座æšã決å®ããããšã«ã€ããŠè©±ãããšãã§ããŸããäžå¯Ÿã®ã«ã¡ã©ã®è¡åããã£ãªãã¬ãŒã·ã§ã³ã ãã座æšç³»ã§è¡åPãšP 'ã«ãã£ãŠå®çŸ©ããã2ã€ã®ã«ã¡ã©ããããšããŸãã ãã®å Žåã圌ãã¯ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ã®ãã¢ããããšèšããŸãã ã«ã¡ã©ã®äžå¿ãäžèŽããªãå Žåããã®ã«ã¡ã©ã®ãã¢ã䜿çšããŠã芳枬ãã€ã³ãã®3次å 座æšã決å®ã§ããŸãã
å€ãã®å Žåã座æšç³»ã¯ã«ã¡ã©è¡åãP = K [ I | 0]ã P '= K ' [ R '| t ']ã ããã¯ãæåã®ã«ã¡ã©ã®äžå¿ãšäžèŽããåç¹ãéžæãã Z軞ããã®å 軞ã«æ²¿ã£ãŠåãããšããã€ã§ãå®è¡ã§ããŸãã
ã«ã¡ã©ã®ãã£ãªãã¬ãŒã·ã§ã³ã¯éåžžå®è¡ãããŸãããã£ãªãã¬ãŒã·ã§ã³ãã³ãã¬ãŒããè€æ°åæ®åœ±ããããã空éå ã§ã®çžå¯Ÿçãªäœçœ®ãããã£ãŠããç»åå ã®ããŒãã€ã³ããç°¡åã«ç¹å®ã§ããŸãã 次ã«ãå°åœ±ã®åº§æšãã«ã¡ã©ãããªãã¯ã¹ãããã³ç©ºéå ã®ãã³ãã¬ãŒãã®ãã€ã³ãã®äœçœ®ããªã³ã¯ããŠãæ¹çšåŒã®ã·ã¹ãã ãã³ã³ãã€ã«ããã解決ãããŸãïŒãããïŒã
Matlabãã£ãªãã¬ãŒã·ã§ã³ããŒã«ããã¯ã¹ãªã©ããã£ãªãã¬ãŒã·ã§ã³ã¢ã«ãŽãªãºã ã®äžè¬çã«å©çšå¯èœãªå®è£ ããããŸãã OpenCVã©ã€ãã©ãªã«ã¯ãã«ã¡ã©ã®ãã£ãªãã¬ãŒã·ã§ã³ãšç»åå ã®ãã£ãªãã¬ãŒã·ã§ã³ãã³ãã¬ãŒãã®æ€çŽ¢ã®ããã®ã¢ã«ãŽãªãºã ãå«ãŸããŠããŸãã
ãšãããŒã©ãžãªã¡ããªã ç¹ã®3次å 座æšãèšç®ããå®éã®æ¹æ³ã®èª¬æã«é²ãåã«ãäž¡æ¹ã®ã«ã¡ã©ããã®ç»åäžã®3次å 空éã®ç¹ã®æ圱ã®äœçœ®ã«é¢é£ããããã€ãã®éèŠãªå¹ŸäœåŠçç¹æ§ã«ã€ããŠèª¬æããŸãã
å³2ã«ç€ºãããã«ã2ã€ã®ã«ã¡ã©ããããšããŸããCã¯æåã®ã«ã¡ã©ã®äžå¿ã C 'ã¯2çªç®ã®ã«ã¡ã©ã®äžå¿ã§ãã 空éç¹X㯠ãå·Šã«ã¡ã©ã®ç»åå¹³é¢ã®xãšãå³ã«ã¡ã©ã®ç»åå¹³é¢ã®x 'ã«æ圱ãããŸãã å·Šã«ã¡ã©ã®ç»åã®ç¹xã®ãããã¿ã€ãã¯ãå ç·xXã§ãã ãã®ããŒã ã¯ããšãããŒã©ç·ãšåŒã°ããçŽç·l 'ã§ç¬¬2ãã£ã³ãã®å¹³é¢ã«æ圱ãããŸãã 2çªç®ã®ã«ã¡ã©ã®ç»åå¹³é¢äžã®ç¹Xã®ç»åã¯ãå¿ ç¶çã«ãšãããŒã©ç·l 'äžã«ãããŸãã
å³2ïŒãšãããŒã©ãžãªã¡ããª
ãããã£ãŠãå·Šã«ã¡ã©ã®ç»åã®åç¹xã¯ãå³ã«ã¡ã©ã®ç»åã®ãšãããŒã©ç·l 'ã«å¯Ÿå¿ããŸãã ãã®å Žåãå³ã®ã«ã¡ã©ã®ç»åã®xã®ãã¢ã¯ã察å¿ãããšãããŒã©ç·äžã«ã®ã¿ååšã§ããŸãã åæ§ã«ãå³ã®ç»åã®åç¹x 'ã¯ãå·Šã®ãšãããŒã©ç·lã«å¯Ÿå¿ããŸãã
ãšãããŒã©ãžãªã¡ããªã¯ãã¹ãã¬ãªãã¢ãæ€çŽ¢ãããã€ã³ãã®ãã¢ãã¹ãã¬ãªãã¢ïŒã€ãŸãã空éå ã®ãããã€ã³ãã®æ圱ïŒã«ãªãåŸãããšã確èªããããã«äœ¿çšãããŸãã
ãšãããŒã©ãžãªã¡ããªã®åº§æšè¡šèšã¯éåžžã«åçŽã§ãã ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ã®ãã¢ãããã xã1ã€ã®ã«ã¡ã©ã®ç»åã®ç¹ã®åäžåº§æšãšãã x 'ã2çªç®ã®ã«ã¡ã©ã®ç»åã«ããŸãã 次ã®å Žåã«ã®ã¿ããã€ã³ãã®ãã¢x ã x 'ãã¹ãã¬ãªãã¢ã§ãããããª3Ã3è¡åFãååšããŸãã
è¡åFã¯åºæ¬è¡åãšåŒã°ããŸãã ãã®ã©ã³ã¯ã¯2ã§ããŒã以å€ã®ä¿æ°ãŸã§æ±ºå®ããããœãŒã¹ã«ã¡ã©Pããã³P 'ã®è¡åã®ã¿ã«äŸåããŸãã
x ' T F x = 0
ã«ã¡ã©é åã®åœ¢åŒãP = K [ I | 0]ã®å Žåã P '= K ' [ R | t ]åºæ¬è¡åã¯æ¬¡ã®åŒã§èšç®ã§ããŸãã
ããã§ããã¯ãã«eã®è¡šèš[ e ] Xã¯æ¬¡ã®ããã«èšç®ãããŸãã
åºæ¬è¡åã䜿çšããŠããšãããŒã©ç·ã®æ¹çšåŒãèšç®ãããŸãã ç¹xã®å ŽåããšãããŒã©ç·ãå®çŸ©ãããã¯ãã«ã®åœ¢åŒã¯l '= F xã«ãªãããšãããŒã©ç·èªäœã®æ¹çšåŒã¯l ' T x '= 0ã«ãªããŸããåæ§ã«ç¹x 'ã®å ŽåããšãããŒã©ç·ãå®çŸ©ãããã¯ãã«ã®åœ¢åŒã¯l = F T x 'ã
åºæ¬çãªãããªãã¯ã¹ã«å ããŠã E = K ' T F Kãšããå¿ é ãããªãã¯ã¹ããããŸãã å éšãã©ã¡ãŒã¿ã®è¡åãåäžã§ããå Žåãåºæ¬è¡åã¯åºæ¬è¡åãšäžèŽããŸãã ãšãã»ã³ã·ã£ã«ãããªãã¯ã¹ã䜿çšãããšãæåã®ã«ã¡ã©ã«å¯Ÿãã2çªç®ã®ã«ã¡ã©ã®äœçœ®ãšå転ã埩å ã§ãããããã«ã¡ã©ã®åããå€æããå¿ èŠãããã¿ã¹ã¯ã§äœ¿çšãããŸãã
ãã€ã³ãã®äžè§åœ¢åå²ïŒäžè§åœ¢åå²ïŒã 次ã«ãæ圱ã®åº§æšãããã€ã³ãã®3次å 座æšã決å®ããæ¹æ³ã«é²ã¿ãŸãããã ãã®ããã»ã¹ã¯ãæç®ã§ã¯äžè§æž¬éãšåŒã°ããŸãã
ãããªãã¯ã¹P 1ããã³P 2ãåãã2ã€ã®ãã£ãªãã¬ãŒã·ã§ã³ãããã«ã¡ã©ããããšããŸãã x 1ãšx 2ã¯ã空éXã®ç¹ã®å次æ圱座æšã§ãã ãã®åŸã次ã®æ¹çšåŒç³»ãäœæã§ããŸãã
å®éã«ã¯ããã®ã·ã¹ãã ã解決ããããã«æ¬¡ã®ã¢ãããŒããé©çšãããŸãã æåã®æ¹çšåŒã«x 1ã2çªç®ã«x 2ããã¯ãã«ä¹ç®ããç·åœ¢åŸå±æ¹çšåŒãåãé€ããã·ã¹ãã ãA X = 0ã®åœ¢åŒã«ããŸããããã§ã Aã¯4Ã4ã®ãµã€ãºãæã¡ãŸãããã®æåŸã®ã³ã³ããŒãã³ãã¯1ã«çããã3ã€ã®æªç¥æ°ãæã€3ã€ã®æ¹çšåŒã®çµæã®ã·ã¹ãã ã解ããŸãã å¥ã®æ¹æ³ã¯ãã·ã¹ãã A X = 0ã®ãŒã以å€ã®è§£ãååŸããããšã§ããããšãã°ãè¡åAã®æå°ã®ç¹ç°æ°ã«å¯Ÿå¿ããç¹ç°ãã¯ãã«ãšããŠèšç®ãããŸãã
4深床ãããã®æ§ç¯
深床ãããã¯ãè²ã§ã¯ãªããã¯ã»ã«ããšã«ã«ã¡ã©ãŸã§ã®è·é¢ãä¿åãããç»åã§ãã 深床ãããã¯ãç¹å¥ãªæ·±åºŠã«ã¡ã©ã䜿çšããŠååŸã§ããŸãïŒããšãã°ãKinectã»ã³ãµãŒã¯ãã®ãããªã«ã¡ã©ã®äžçš®ã§ãïŒããŸããã¹ãã¬ãªç»åãã¢ã䜿çšããŠæ§ç¯ããããšãã§ããŸããã¹ãã¬ãªãã¢ã䜿çšããŠæ·±åºŠããããäœæããèåŸã«ããèãæ¹ã¯éåžžã«ç°¡åã§ãã 1ã€ã®ç»åã®åãã€ã³ãã«å¯ŸããŠãå¥ã®ç»åã®ãã€ã³ãã®ãã¢ãæ€çŽ¢ããŸãã ãŸãã察å¿ããç¹ã®ãã¢ã«ãããäžè§æž¬éãå®è¡ãã3次å 空éã§ã®éåã®åº§æšã決å®ã§ããŸãã ãããã¿ã€ãã®3次å 座æšãããã£ãŠããå Žåã深床ã¯ã«ã¡ã©ã®å¹³é¢ãŸã§ã®è·é¢ãšããŠèšç®ãããŸãã
察ã«ãªã£ãç¹ã¯ããšãããŒã©ç·äžã§æ¢ãå¿ èŠããããŸãã ãããã£ãŠãæ€çŽ¢ãç°¡çŽ åããããã«ããã¹ãŠã®ãšãããŒã©ç·ãç»åã®åŽé¢ã«å¹³è¡ã«ãªãããã«ïŒéåžžã¯æ°Žå¹³ã«ïŒç»åãäœçœ®åãããããŸãã ããã«ã座æšïŒ x 0 ã y 0 ïŒãæã€ç¹ã«å¯ŸããŠã察å¿ãããšãããŒã©ç·ãæ¹çšåŒx = x 0ã§äžããããããã«ç»åãæŽåãããŸã ã次ã«ãåç¹ã«ã€ããŠã察å¿ãããã¢ç¹ã2çªç®ã®ç»åãšåãç·ã§æ€çŽ¢ããå¿ èŠããããŸãã«ã¡ã©ã ãã®ç»å調æŽããã»ã¹ã¯ãä¿®æ£ãšåŒã°ããŸãã éåžžãä¿®æ£ã¯ç»åã®åã€ã¡ãŒãžã³ã°ã«ãã£ãŠå®è¡ãããæªã¿ãåãé€ãããšãšçµã¿åããããŸãã ä¿®æ£ãããç»åã®äŸãå³3ã«ç€ºããŸããç»åã¯ã深床ãããhttp://vision.middlebury.edu/stereoãæ§ç¯ããããã®ããŸããŸãªæ¹æ³ãæ¯èŒããç»åã®ããŒã¿ããŒã¹ããååŸãããŸãã
ç»åãä¿®æ£ããåŸã察å¿ãããã€ã³ãã®ãã¢ãæ€çŽ¢ããŸãã æãç°¡åãªæ¹æ³ã¯å³4ã«ç€ºãããŠããã以äžããæ§æãããŠããŸãã 座æšïŒ x 0 ã y 0 ïŒãæã€å·Šç»åã®åãã¯ã»ã«ã«ã€ããŠãå³ç»åã§ãã¯ã»ã«æ€çŽ¢ãå®è¡ãããŸãã å³ã®ç»åã®ãã¯ã»ã«ã¯åº§æšïŒ x 0 - d ã y 0 ïŒãæã€å¿ èŠããããšæ³å®ãããŸããããã§ã dã¯èŠå·®ãšåŒã°ããå€ã§ãã 察å¿ãããã¯ã»ã«ã®æ€çŽ¢ã¯ãå¿çé¢æ°ã®æ倧å€ãèšç®ããããšã§å®è¡ãããŸããå¿çé¢æ°ã¯ãããšãã°ããã¯ã»ã«è¿åã®çžé¢ã§ãã ãã®çµæãèŠå·®ããããäœæãããŸãããã®äŸãå³ã«ç€ºããŸãã 3ã
å³3ïŒä¿®æ£ãããç»åãšå¯Ÿå¿ããèŠå·®ãããã®äŸ
å®éã®æ·±åºŠå€ã¯ããã¯ã»ã«å€äœã®å€§ããã«åæ¯äŸããŸãã å³4ã®å·Šååã®è¡šèšã䜿çšãããšãèŠå·®ãšæ·±åºŠã®é¢ä¿ã¯æ¬¡ã®ããã«è¡šçŸã§ããŸãã
å³4ïŒæ·±åºŠãããã®èšç®ã
æ·±ããšå€äœã®éã®é¢ä¿ã«ããããã®æ¹æ³ã«åºã¥ããŠæ©èœããã¹ãã¬ãªããžã§ã³ã·ã¹ãã ã®è§£å床ã¯ãè¿è·é¢ã§ã¯ããè¯ããé è·é¢ã§ã¯ããæªããªããŸãã