å®æçã«é¢å¿ãçŸãããæ¶ãããããããã°ã©ãã³ã°ã®ãããã¯ã®1ã€ã¯ããœãããŠã§ã¢ã³ãŒãã¡ããªãã¯ã®åé¡ã§ãã 倧èŠæš¡ãªãœãããŠã§ã¢ç°å¢ã§ã¯ãããŸããŸãªã¡ããªãã¯ã®ã«ãŠã³ãã¡ã«ããºã ãæã
çŸããŸãã ãããã¯ãžã®æ³¢ã®ãããªé¢å¿ã¯ãã®ããã«èŠããŸãããªããªãããããŸã§ã¡ããªãã¯ã¯äž»èŠãªãã®ãã€ãŸãããããã©ãããããæãã€ããŠããªãã£ãããã§ãã ã€ãŸããããçš®ã®ããŒã«ã䜿çšããŠããã€ãã®ã¡ããªãã¯ãããŸãèšç®ã§ãããšããŠãã次ã«äœããã¹ããã¯ãã°ãã°äžæ確ã§ãã ãã¡ãããã¡ããªã¯ã¹ã¯ãã³ãŒãå質管çïŒå€§èŠæš¡ã§è€éãªé¢æ°ã¯èšè¿°ããŸããïŒãããã³ããã°ã©ããŒã®ãçç£æ§ãïŒåŒçšç¬Šã§å²ãïŒãããã³ãããžã§ã¯ãã®é床ã®äž¡æ¹ã§ãã ãã®èšäºã¯ãæãæåãªãœãããŠã§ã¢ã³ãŒãã¡ããªãã¯ã®æŠèŠã§ãã
ã¯ããã«
ãã®èšäºã§ã¯ã7ã€ã®ã¯ã©ã¹ã®ã¡ããªãã¯ãš50ãè¶
ãã代衚è
ã®æŠèŠã説æããŠããŸãã
å¹
åºããœãããŠã§ã¢ã¡ããªãã¯ã衚瀺ãããŸãã åœç¶ãæ¢åã®ãã¹ãŠã®ææšãæäŸããããšã¯ãå§ãã§ããŸãããçµæã®ãããªã䜿çšãäžå¯èœãªããããŸãã¯æž¬å®ã®èªååãäžå¯èœãªããããŸãã¯ãããã®ææšã®å°éæ§ãçãããããããã®ã»ãšãã©ã¯å®éã«ã¯é©çšãããŸããããããªã䜿çšãããŠããææšããããŸãå€ãã®å Žåããããã®ã¬ãã¥ãŒã¯ä»¥äžã«ç€ºãããŸãã
äžè¬çãªå Žåãã¡ããªãã¯ã®äœ¿çšã«ããããããžã§ã¯ãããã³ãšã³ã¿ãŒãã©ã€ãºãããŒãžã£ãŒã¯ãéçºæžã¿ãŸãã¯éçºäžã®ãããžã§ã¯ãã®è€éãã調æ»ããäœæ¥éãéçºäžã®ããã°ã©ã ã®ã¹ã¿ã€ã«ãããã³ç¹å®ã®ãœãªã¥ãŒã·ã§ã³ãå®è£
ããããã«åéçºè
ãè²»ãããåŽåãè©äŸ¡ã§ããŸãã ãã ãããœãããŠã§ã¢ãéçºããéãããã°ã©ããŒã¯ããã°ã©ã ã®ã¡ãžã£ãŒãæå°åãŸãã¯æ倧åããããšãããšãããã°ã©ã ã®å¹çãäœäžãããããªãã¯ã«é Œãããšãã§ãããããã¡ããªãã¯ã¯ã¢ããã€ã¶ãªã®ç¹æ§ãšããŠã®ã¿æ©èœããå®å
šã«ã¬ã€ãããããšã¯ã§ããŸããã ããã«ãããšãã°ãããã°ã©ããŒãå°æ°ã®ã³ãŒãè¡ãæžããããå°æ°ã®æ§é çãªå€æŽãå ãããããå Žåãããã¯äœãããªãã£ãããšãæå³ããã®ã§ã¯ãªããããã°ã©ã ã®æ¬ é¥ãèŠã€ããã®ãéåžžã«å°é£ã§ããããšãæå³ããŸãã ãã ããæåŸã®åé¡ã¯ãè€éãã®ã¡ããªãã¯ã䜿çšããŠéšåçã«è§£æ±ºã§ããŸãã ããè€éãªããã°ã©ã ã§ã¯ããšã©ãŒãèŠã€ããã®ã¯ããå°é£ã§ãã
1.å®éçææš
ãŸããããã°ã©ã ã®ãœãŒã¹ã³ãŒãã®éçç¹æ§ãèæ
®ããå¿
èŠããããŸãïŒåçŽãã®èŠ³ç¹ããïŒã æãåºæ¬çãªã¡ããªãã¯ã¯ãã³ãŒãã®è¡æ°ïŒSLOCïŒã§ãã ãã®ã¡ããªãã¯ã¯å
ã
ããããžã§ã¯ãã®äººä»¶è²»ãè©äŸ¡ããããã«éçºãããŸããã ãã ããåãæ©èœãè€æ°ã®è¡ã«åå²ãããã1è¡ã§èšè¿°ãããã§ãããšããäºå®ã«ããã1è¡ã«è€æ°ã®ã³ãã³ããèšè¿°ã§ããèšèªã®åºçŸã§ã¯ãã¡ããªãã¯ã¯å®éã«ã¯é©çšã§ããªããªããŸããã ãããã£ãŠãè«ççããã³ç©ççãªã³ãŒãè¡ããããŸãã ã³ãŒãã®è«çè¡ã¯ãããã°ã©ã ã³ãã³ãã®æ°ã§ãã ãã®ããŒãžã§ã³ã®èª¬æã«ã¯ã䜿çšããããã°ã©ãã³ã°èšèªãšããã°ã©ãã³ã°ã¹ã¿ã€ã«[
2 ]ã«å€§ããäŸåãããšããæ¬ ç¹ããããŸãã
SLOCã«å ããŠãå®éçç¹æ§ã«ã¯æ¬¡ã®ãã®ãå«ãŸããŸãã
- 空çœè¡ã®æ°
- ã³ã¡ã³ãæ°
- ã³ã¡ã³ãã®å²åïŒã³ã¡ã³ããå«ãè¡ã®æ°ãšè¡ã®ç·æ°ãšã®æ¯çãããŒã»ã³ããŒãžã§è¡šç€ºïŒã
- é¢æ°ïŒã¯ã©ã¹ããã¡ã€ã«ïŒã®å¹³åè¡æ°ã
- é¢æ°ïŒã¯ã©ã¹ããã¡ã€ã«ïŒã®ãœãŒã¹ã³ãŒããå«ãå¹³åè¡æ°ã
- ã¢ãžã¥ãŒã«ã®å¹³åè¡æ°ã
å Žåã«ãã£ãŠã¯ãããã°ã©ã ã®ã¹ã¿ã€ã«ãè©äŸ¡ããããšã®éã§è¿œå ã®åºå¥ãè¡ãããŸãïŒFïŒã ããã°ã©ã ãnåã®çãããã©ã°ã¡ã³ãã«åå²ããåŒF
i = SIGNïŒNcomãI / N
i -0.1ïŒã«åŸã£ãŠåãã©ã°ã¡ã³ãã®ã¹ã³ã¢ãèšç®ããŸããããã§ãNcommã
iã¯içªç®ã®ãã©ã°ã¡ã³ãã®ã³ã¡ã³ãæ°ãN
iã¯
içªç®ã®ãã©ã°ã¡ã³ãã®ã³ãŒãè¡ã®ç·æ°ã§ãã ãã®åŸãããã°ã©ã å
šäœã®ç·åã¹ã³ã¢ã¯æ¬¡ã®ããã«æ±ºå®ãããŸãïŒF = AMOUNT F
i ã [
2 ]
ãŸããããã°ã©ã ã³ãŒãã®äžéšã®åäœã®èšç®ã«åºã¥ãã¡ããªãã¯ã®ã°ã«ãŒãã«ã¯ãHalsteadã¡ããªãã¯[
3 ]ãå«ãŸããŸãã ãããã®ã¡ããªãã¯ã¯ã次ã®ã¡ããªãã¯ã«åºã¥ããŠããŸãã
n1-æåãå«ãäžæã®ããã°ã©ã æŒç®åã®æ°
åºåãæåãããã·ãŒãžã£åãããã³æäœèšå·ïŒæŒç®åèŸæžïŒã
n2ã¯ãããã°ã©ã ïŒãªãã©ã³ãèŸæžïŒã®äžæã®ãªãã©ã³ãã®æ°ã§ãã
N1-ããã°ã©ã å
ã®æŒç®åã®ç·æ°ã
N2-ããã°ã©ã å
ã®ãªãã©ã³ãã®ç·æ°ã
n1ã¯ãäžæã®æŒç®åã®çè«çãªæ°ã§ãã
n2ã¯ãäžæã®ãªãã©ã³ãã®çè«çãªæ°ã§ãã
å°å
¥ãããè¡šèšæ³ãèãããšã以äžã決å®ã§ããŸãã
n = n1 + n2-ããã°ã©ã èŸæžã
N = N1 + N2-ããã°ã©ã ã®é·ãã
n '= n1' + n2 '-ããã°ã©ã ã®çè«äžã®èŸæžã
N '= n1 * log
2 ïŒn1ïŒ+ n2 * log
2 ïŒn2ïŒ-çè«çãªããã°ã©ã ã®é·ãïŒã¹ã¿ã€ã«çã«æ£ããããã°ã©ã ã®å ŽåãNããNã®åå·®ã¯10ïŒ
ãè¶
ããŸããïŒ
V = N * log
2 n-ããã°ã©ã ããªã¥ãŒã ã
V '= N' * log
2 n 'ã¯ãããã°ã©ã ã®çè«äžã®ããªã¥ãŒã ã§ããããã§ãn *ã¯ãããã°ã©ã ã®çè«äžã®èŸæžã§ãã
L = V '/ V-çæ³çãªããã°ã©ã ã®ããã°ã©ãã³ã°å質ã®ã¬ãã«L = 1
L '=ïŒ2 n2ïŒ/ïŒn1 * N2ïŒ-çè«çãªãã©ã¡ãŒã¿ãŒãèæ
®ããã«å®éã®ããã°ã©ã ã®ãã©ã¡ãŒã¿ãŒã®ã¿ã«åºã¥ãããã°ã©ãã³ã°å質ã®ã¬ãã«ã
E
C = V /ïŒL 'ïŒ2-ããã°ã©ã ã®ç解ã®è€éãã
D = 1 / L '-ã³ãŒãã£ã³ã°ããã°ã©ã ã®è€éãã
y '= V / D2-åŒèšèªã¬ãã«
I = V / D-ããã°ã©ã ã®æ
å ±ã³ã³ãã³ãããã®ç¹æ§ã«ãããããã°ã©ã äœæã®ç²Ÿç¥çã³ã¹ãã決å®ã§ããŸãã
E = N '* log
2 ïŒn / LïŒ-ããã°ã©ã éçºæã«å¿
èŠãªç¥çåªåã®è©äŸ¡ãããã°ã©ã äœææã«å¿
èŠãªåºæ¬æ±ºå®ã®æ°ãç¹åŸŽä»ãã
Halsteadã¡ããªãã¯ã¹ãé©çšããå Žåãç°ãªãè¡æ°ãšæŒç®åã§åãæ©èœãèšé²ããæ©èœã«é¢é£ããæ¬ ç¹ã¯éšåçã«è£åãããŸãã
å¥ã®ã¿ã€ãã®å®éçãœãããŠã§ã¢ã¡ããªãã¯ã¯ãJilbã¡ããªãã¯ã§ãã ãããã¯ãæ¡ä»¶ã¹ããŒãã¡ã³ããŸãã¯ã«ãŒãã¹ããŒãã¡ã³ãã«ããããã°ã©ã ã®é£œåã«åºã¥ããŠããœãããŠã§ã¢ã®è€éãã瀺ããŠããŸãã ãã®ã¡ããªãã¯ã¯ããã®åçŽãã«ãããããããããã°ã©ã ã®èšè¿°ãšç解ã®è€éããéåžžã«ããåæ ããŠãããæ¡ä»¶æŒç®åããã³åŸªç°æŒç®åã®æ倧ãã¹ãã¬ãã«ãªã©ã®ã€ã³ãžã±ãŒã¿ãŒãè¿œå ãããšããã®ã¡ããªãã¯ã®æå¹æ§ã倧å¹
ã«åäžããŸãã
2.ããã°ã©ã å¶åŸ¡ãããŒã®è€éãã®ã¡ããªãã¯
éçææšã§ã¯ãªããããã°ã©ã ã®å¶åŸ¡ã°ã©ãã®åæã«åºã¥ã次ã®å€§ããªã¯ã©ã¹ã®ã¡ããªãã¯ã¯ãããã°ã©ã å¶åŸ¡ãããŒã®è€éãã®ã¡ããªãã¯ãšåŒã°ããŸãã
ã¡ããªãã¯èªäœãçŽæ¥èª¬æããåã«ãç解ãæ·±ããããã«ãããã°ã©ã ã®å¶åŸ¡ã°ã©ããšãã®äœææ¹æ³ã«ã€ããŠèª¬æããŸãã
ããã€ãã®ããã°ã©ã ã玹ä»ããŸãããã ãã®ããã°ã©ã ã®å Žåã1ã€ã®å
¥åãš1ã€ã®åºåã®ã¿ãå«ãæåã°ã©ããæ§ç¯ãããŸãããã°ã©ãã®é ç¹ã¯ãé£ç¶èšç®ã®ã¿ããããåå²æŒç®åãšã«ãŒãæŒç®åããªãããããã¯ãããããã¯ãžã®é·ç§»ãšçžé¢ããããã°ã©ã ã³ãŒãã®ã»ã¯ã·ã§ã³ã«é¢é£ä»ããããŸããããã°ã©ã å®è¡ã®åå²ã ãã®ã°ã©ããæ§ç¯ããããã®æ¡ä»¶ã¯ãåé ç¹ãæåã®é ç¹ããå°éå¯èœã§ãããæåŸã®é ç¹ãä»ã®é ç¹ããå°éå¯èœã§ããããšã§ã[4]ã
çµæã®ã°ã©ãã®åæã«åºã¥ãæãäžè¬çãªæšå®
ã¯ãããã°ã©ã ã®
埪ç°çè€é床 ïŒåŸªç°çããã±ã€ãæ°ïŒ[4]ã§ãã VïŒGïŒ= e-n + 2pãšããŠå®çŸ©ãããŸããããã§ãeã¯åŒ§ã®æ°ãnã¯é ç¹ã®æ°ãpã¯é£çµæåã®æ°ã§ãã ã°ã©ãã®æ¥ç¶ã³ã³ããŒãã³ãã®æ°ã¯ãã°ã©ãã匷åã«æ¥ç¶ãããã°ã©ãã«å€æããããã«è¿œå ããå¿
èŠãããã¢ãŒã¯ã®æ°ãšèããããšãã§ããŸãã 匷ãæ¥ç¶ãããã°ã©ãã¯ã2ã€ã®é ç¹ãçžäºã«å°éå¯èœãªã°ã©ãã§ãã æ£ããããã°ã©ã ã®ã°ã©ããã€ãŸãããšã³ããªãã€ã³ããšããã³ã°ããšã³ããªãã€ã³ããšåºå£ãã€ã³ãããå°éã§ããªãã»ã¯ã·ã§ã³ããªãã°ã©ãã®å Žåãéåžžãããã°ã©ã ã®çµããã瀺ãé ç¹ãéããŠãšã³ããªãã€ã³ãã瀺ãé ç¹ãžã®åŒ§ãæãããšã«ããã匷åã«æ¥ç¶ãããã°ã©ããååŸãããŸããã®ããã°ã©ã ã«ã æ¬è³ªçã«ãVïŒGïŒã¯ã匷ãæ¥ç¶ãããã°ã©ãã®ç·åœ¢ç¬ç«èŒªéã®æ°ã決å®ããŸãã ãããã£ãŠãæ£ããèšè¿°ãããããã°ã©ã ã§ã¯p = 1ã§ããããã埪ç°çè€é床ã®èšç®åŒã¯æ¬¡ã®åœ¢åŒãåããŸãã
VïŒGïŒ= e-n + 2ã
æ®å¿µãªããšã«ããã®æšå®ã§ã¯ãå·¡åæ§æãšæ¡ä»¶ä»ãæ§æãåºå¥ã§ããŸããã ãã®ã¢ãããŒãã®å¥ã®é倧ãªæ¬ ç¹ã¯ãåãã°ã©ãã§è¡šãããããã°ã©ã ã®è€éãããŸã£ããç°ãªãè¿°èªãæã€å¯èœæ§ãããããšã§ãïŒè¿°èªã¯ãå°ãªããšã1ã€ã®å€æ°ãå«ãè«çåŒã§ãïŒã
ãã®æ¬ ç¹ãä¿®æ£ããããã«ãGããã€ã€ãŒãºã¯æ°ããæè¡ãéçºããŸããã æšå®å€ãšããŠã圌ã¯åºéãåãããšãææ¡ããŸããïŒãã®æšå®å€ã¯åºéãšãåŒã°ããŸãïŒ[VïŒGïŒãVïŒGïŒ+ h]ãããã§ãåçŽãªè¿°èªã®hã¯ãŒãã§ãnå±æè¿°èªã®h = n-1ã§ãã ãã®æ¹æ³ã«ãããè€éãã®ç°ãªãè¿°èªãåºå¥ã§ããŸãããå®éã«ã¯ã»ãšãã©äœ¿çšãããŸããã
McCabeã¡ãœããã®ãã1ã€ã®å€æŽã¯ããã³ã»ã³ã¡ãœããã§ãã ãã®å Žåã®ããã°ã©ã ã®è€éãã®å°ºåºŠã¯ããã¢ïŒåŸªç°çãªè€éããæŒç®åã®æ°ïŒãšããŠè¡šãããŸãã ãã®æ¹æ³ã®å©ç¹ã¯ãæ§é åãœãããŠã§ã¢ã«å¯Ÿããæ床ã§ãã
Chenã®ããããžãŒæž¬å®ã¯ãããã°ã©ã ã°ã©ãã«ãã£ãŠåœ¢æãããé åéã®å¢çç·ã®æ°ã«ãã£ãŠããã°ã©ã ã®è€éããè¡šããŸãã ãã®ã¢ãããŒãã¯ãå¶åŸ¡æ§é ã®é 次æ¥ç¶ã®ã¿ãèš±å¯ããæ§é åããã°ã©ã ã«ã®ã¿é©çšã§ããŸãã éæ§é åããã°ã©ã ã®å ŽåãChenã¡ãžã£ãŒã¯æ¡ä»¶ä»ãããã³ç¡æ¡ä»¶ã®é·ç§»ã«å€§ããäŸåããŸãã ãã®å Žåãã¡ãžã£ãŒã®äžéãšäžéãæå®ã§ããŸãã äžçªäžã¯m + 1ã§ããããã§ãmã¯è«çæŒç®åãçžäºã«ãã¹ããããŠããå Žåã®è«çæŒç®åã®æ°ã§ãã äžçªäžã¯2ã§ããããã°ã©ã ã®ã³ã³ãããŒã«ã°ã©ãã«æ¥ç¶ãããã³ã³ããŒãã³ãã1ã€ãããªãå ŽåãChenã¡ãžã£ãŒã¯McCabeãµã€ã¯ãããã£ãã¯ã¡ãžã£ãŒãšäžèŽããŸãã
ããã°ã©ã ã®å¶åŸ¡ã°ã©ãã®åæã®ãããã¯ãç¶ãããšãã¡ããªãã¯ã®å¥ã®ãµãã°ã«ãŒã-ããªãœã³ãããžã§ã«ã¡ããªãã¯ãåºå¥ã§ããŸãã
ãããã®æ段ã¯ããã¹ãã®ã¬ãã«ãšããã°ã©ã ã®é·ããèæ
®ã«å
¥ããŠããŸãã
åé ç¹ã«ã¯ãæç»ããæŒç®åã«å¿ããŠç¬èªã®è€éããå²ãåœãŠãããŸãã ãã®åæã®é ç¹ã®è€éãã¯ãHalsteadã¡ãžã£ãŒã®äœ¿çšãªã©ãããããæ¹æ³ã§èšç®ã§ããŸãã åè¿°èªé ç¹ã«ã€ããŠãããããçºãã匧ã®ç«¯ã§ããé ç¹ã«ãã£ãŠçæããããµãã°ã©ããšããã®ãããªåé ç¹ïŒãµãã°ã©ãã®äžéšå¢çïŒããå°éå¯èœãªé ç¹ãããã³è¿°èªé ç¹ããããã€ãã®äžéšå¢çãŸã§ã®ãã¹äžã«ããé ç¹ãéžæããŸãã ãã®ãµãã°ã©ãã¯ãè¿°èªé ç¹ã®åœ±é¿ç¯å²ãšåŒã°ããŸãã
è¿°èªé ç¹ã®è€éãã®æžå°ã¯ããã®åœ±é¿ç¯å²ã«å«ãŸããé ç¹ã®åæãŸãã¯æžå°ããè€éãã®åèšã«ãè¿°èªé ç¹èªäœã®äž»èŠãªè€éããå ãããã®ã§ãã
ããã°ã©ã ã®æ©èœç尺床ïŒSCOPEïŒã¯ãå¶åŸ¡ã°ã©ãã®ãã¹ãŠã®é ç¹ã®è€éãã®æžå°ã®åèšã§ãã
æ©èœçé¢ä¿ïŒSCORTïŒã¯ãå¶åŸ¡ã°ã©ãå
ã®é ç¹ã®æ°ãšãã®æ©èœã®è€éãã®æ¯ã§ãããæ«ç«¯ã®ãã®ã¯é ç¹ã®æ°ããé€å€ãããŸãã
SCORTã¯ãåã埪ç°æ°ãæã€ã°ã©ãã«å¯ŸããŠç°ãªãå€ãåãããšãã§ããŸãã
Pivovarskyã¡ããªãã¯ã¯ã埪ç°çè€é床ã®å°ºåºŠã®å¥ã®ä¿®æ£ã§ãã ããã«ãããã·ãŒã±ã³ã·ã£ã«å¶åŸ¡æ§é ãšãã¹ããããå¶åŸ¡æ§é ã®éã ãã§ãªããæ§é åããã°ã©ã ãšéæ§é åããã°ã©ã ã®éã®éãã远跡ã§ããŸãã NïŒGïŒ= v *ïŒGïŒ+ SUMMA Piã®é¢ä¿ã§è¡šãããŸããããã§ãv *ïŒGïŒã¯VïŒGïŒãšåãæ¹æ³ã§èšç®ãããä¿®æ£ãµã€ã¯ãããã£ãã¯è€é床ã§ããã1ã€ã®éãããããŸãã n-1æŒç®åãšããŠã§ã¯ãªãã1ã€ã®è«çæŒç®åã
Piã¯ãiçªç®ã®è¿°èªé ç¹ã®å
¥ãåã®æ·±ãã§ãã è¿°èªé ç¹ã®å
¥ãåã®æ·±ããèšç®ããããã«ãã圱é¿ç¯å²ãã®æ°ã䜿çšãããŸãã ãã¹ãã®æ·±ãã¯ãæ€èšäžã®é ç¹ã®çäœã«å®å
šã«å«ãŸãããããŸãã¯äº€å·®ããè¿°èªã®ãã¹ãŠã®ã圱é¿åãã®æ°ãšããŠç解ãããŸãã ãã¹ãã®æ·±ãã¯ãè¿°èªèªäœã§ã¯ãªããã圱é¿ç¯å²ãã®ãã¹ãã«ããå¢å ããŸãã Pivovarskyã¡ãžã£ãŒã¯ãé 次ããã°ã©ã ããçµã¿èŸŒã¿ããã°ã©ã ãžã®ç§»è¡ãããã³éæ§é åããã°ã©ã ãžã®ç§»è¡ãšãšãã«å¢å ããŸããããã¯ããã®ã°ã«ãŒãã®ä»ã®å€ãã®ã¡ãžã£ãŒã«å¯Ÿãã倧ããªå©ç¹ã§ãã
Woodward measure-å¶åŸ¡ã°ã©ãã®å匧ã®äº€ç¹ã®æ°ã ãã®ãããªç¶æ³ã¯ãé©åã«æ§é åãããããã°ã©ã ã§ã¯çºçããªãããããã®ã¡ããªãã¯ã¯äž»ã«ãæ§é åãããŠããªãèšèªïŒã¢ã»ã³ãã©ãŒãFortranïŒã§äœ¿çšãããŸãã 亀差ç¹ã¯ãã³ã³ãããŒã«ãé£ç¶æŒç®åã§ãã2ã€ã®é ç¹ãé¢ãããšãã«çºçããŸãã
å¢çå€æ³ã¯ãããã°ã©ã ã®å¶åŸ¡ã°ã©ãã®åæã«ãåºã¥ããŠããŸãã ãã®ã¡ãœãããå®çŸ©ããã«ã¯ãããã€ãã®è¿œå ã®æŠå¿µãå°å
¥ããå¿
èŠããããŸãã
Gããåäžã®åæé ç¹ãšæçµé ç¹ã®ã¿ãæã€ããã°ã©ã ã®å¶åŸ¡ã°ã©ããšããŸãã
ãã®ã°ã©ãã§ã¯ãã¢ãŒã¯ã®å
¥ã£ãŠããé ç¹ã®æ°ã¯é ç¹ã®è² ã®æ¬¡æ°ãšåŒã°ããé ç¹ããçºããããã¢ãŒã¯ã®æ°ã¯é ç¹ã®æ£ã®æ¬¡æ°ãšåŒã°ããŸãã 次ã«ãã°ã©ãã®é ç¹ã®ã»ããã2ã€ã®ã°ã«ãŒãã«åå²ã§ããŸããæ£ã®æ¬¡æ°<= 1ã§ããé ç¹ã æ£ã®æ¬¡æ°ãæã€é ç¹> = 2ã
æåã®ã°ã«ãŒãã®é ç¹ã¯åä¿¡é ç¹ãšåŒã°ãã2çªç®ã®ã°ã«ãŒãã®é ç¹ã¯éžæé ç¹ãšåŒã°ããŸãã
ã°ã©ãGã®ãã¹ãŠã®é ç¹ã®é£æ床ã®æžå°ãåèšãããããã°ã©ã ã®çµ¶å¯Ÿå¢çè€é床ã圢æãããŸãã ãã®åŸãããã°ã©ã ã®çžå¯Ÿçãªå¢çã®è€éãã決å®ãããŸãã
S0 = 1-ïŒv-1ïŒ/ Saã
ããã§ãS0ã¯ããã°ã©ã ã®çžå¯Ÿå¢çè€é床ãSaã¯ããã°ã©ã ã®çµ¶å¯Ÿå¢çè€é床ãvã¯ããã°ã©ã ã°ã©ãã®é ç¹ã®ç·æ°ã§ãã
å¶åŸ¡ã°ã©ãã®å¯èœãªãã¹ã®æ°ã§è¡šãããã·ã¥ãã€ããŠã£ã³ãã¡ããªãã¯ããããŸãã
3.ããŒã¿ç®¡çãããŒã®è€éãã®ã¡ããªãã¯
次ã®ã¡ããªãã¯ã®ã¯ã©ã¹ã¯ãããŒã¿ç®¡çãããŒã®è€éãã®ã¡ããªãã¯ã§ãã
Chepinã®ã¡ããªãã¯ïŒãã®æ¹æ³ã®æ¬è³ªã¯ãI / Oãªã¹ãããã®å€æ°ã®äœ¿çšã®æ§è³ªãåæããããšã«ãããåäžã®ãœãããŠã§ã¢ã¢ãžã¥ãŒã«ã®æ
å ±åŒ·åºŠãè©äŸ¡ããããšã§ãã
I / Oãªã¹ããæ§æããå€æ°ã®ã»ããå
šäœã¯ã4ã€ã®æ©èœã°ã«ãŒãã«åããããŸãã
1. P-èšç®ã®ããã®å
¥åå€æ°ããã³åºåãä¿èšŒããããã
2. M-ããã°ã©ã å
ã§å€æŽãŸãã¯äœæãããå€æ°ã
3. C-ãœãããŠã§ã¢ã¢ãžã¥ãŒã«ã®åäœã®å¶åŸ¡ã«é¢ä¿ããå€æ°ïŒå¶åŸ¡å€æ°ïŒã
4. T-ããã°ã©ã ã§äœ¿çšãããŠããªãå€æ°ïŒãã¹ããªã¢ã¹ãïŒã
åå€æ°ã¯è€æ°ã®æ©èœãåæã«å®è¡ã§ããããã察å¿ããåæ©èœã°ã«ãŒãã§ãããèæ
®ããå¿
èŠããããŸãã
Chepinã®ã¡ããªãã¯ïŒ
Q = a1 * P + a2 * M + a3 * C + a4 * Tã
ããã§ãa1ãa2ãa3ãa4ã¯éã¿ã§ãã
éã¿ã¯ãåæ©èœã°ã«ãŒãã®ããã°ã©ã ã®è€éãã«å¯ŸããããŸããŸãªåœ±é¿ãåæ ããããã«äœ¿çšãããŸãã ã¡ããªãã¯ã®äœæè
ã«ãããšãæ©èœã°ã«ãŒãCã¯ããã°ã©ã ã®å¶åŸ¡ãããŒã«åœ±é¿ãäžãããããæ倧ã®éã¿3ãæã£ãŠããŸãã æ®ãã®ã°ã«ãŒãã®éã¿ã¯ãa1 = 1ãa2 = 2ãa4 = 0.5ã®ããã«é
åãããŸãã ã°ã«ãŒãTã®éã¿ä¿æ°ã¯0ã§ã¯ãããŸãããããã¯ããã¹ããªã¢ã¹ãå€æ°ã«ãã£ãŠããã°ã©ã ããŒã¿ã¹ããªãŒã ã®è€éããå¢ãããšã¯ãããŸããããæã«ã¯ç解ãå°é£ã«ãªãããã§ãã éã¿ãäžããããå ŽåïŒ
Q = P + 2M + 3C + 0.5T
Spenã®ã¡ããªãã¯ã¯ãåããã°ã©ã ã»ã¯ã·ã§ã³å
ã®ããŒã¿ã¢ã¯ã»ã¹ã®ããŒã«ã©ã€ãºã«åºã¥ããŠããŸãã Spenã¯ãããã°ã©ã ããã¹ãã®æåãšæåŸã®è¡šç€ºã®éã«ãã®èå¥åãå«ãã¹ããŒãã¡ã³ãã®æ°ã§ãã ãããã£ãŠãnååºçŸããèå¥åã¯ãn-1ã«çããspnãæã¡ãŸãã 倧ããªã¹ãªãŒãã§ã¯ããã¹ããšãããã°ãè€éã«ãªããŸãã
ããŒã¿ã¹ããªãŒã ã®è€éããèæ
®ããå¥ã®ã¡ããªãã¯ã¯ãããã°ã©ã ã®è€éããã°ããŒãã«å€æ°ã®åŒã³åºãã«é¢é£ä»ããã¡ããªãã¯ã§ãã
ã¢ãžã¥ãŒã«ãšã°ããŒãã«å€æ°ã®ãã¢ã¯ïŒpãrïŒã§ç€ºãããŸããããã§ãpã¯ã°ããŒãã«å€æ°rã«ã¢ã¯ã»ã¹ã§ããã¢ãžã¥ãŒã«ã§ãã å€æ°rã®å®éã®åŒã³åºããããã°ã©ã ã«ååšãããã©ããã«å¿ããŠããã¢ãžã¥ãŒã«-ã°ããŒãã«å€æ°ããšãã2çš®é¡ã®ãã¢ã圢æãããŸããå®éãšå¯èœã§ãã rãpã§ã¢ããŒã«ããå¯èœæ§ã¯ãrã®ååšé åã«pãå«ãŸããããšã瀺ããŠããŸãã
ãã®ç¹æ§ã¯Aupã«ãã£ãŠç€ºãããUpã¢ãžã¥ãŒã«ãå®éã«ã°ããŒãã«å€æ°ã«ã¢ã¯ã»ã¹ããåæ°ãšãPupçªå·-ã¢ã¯ã»ã¹ã§ããåæ°ã瀺ããŸãã
å®éã®åŒã³åºãã®æ°ãšå¯èœãªæ°ã®æ¯çã決å®ãããŸã
Rup = Aup / Pupã
ãã®åŒã¯ãä»»æã®ã°ããŒãã«å€æ°ãåç
§ããä»»æã®ã¢ãžã¥ãŒã«ã®ããããã®ç¢ºçã瀺ããŠããŸãã æããã«ããã®ç¢ºçãé«ãã»ã©ãå€æ°ã®ãäžæ£ãªãå€æŽã®ç¢ºçãé«ããªããããã°ã©ã ã®å€æŽã«é¢é£ããäœæ¥ãèããè€éã«ãªãå¯èœæ§ããããŸãã
æ
å ±ãããŒã®æŠå¿µã«åºã¥ããŠãKafurã¡ãžã£ãŒãäœæãããŸããã ãã®å°ºåºŠã䜿çšããããã«ãããŒã«ã«ããã³ã°ããŒãã«ãããŒã®æŠå¿µãå°å
¥ãããŠããŸãã次ã®å ŽåãAããBãžã®æ
å ±ã®ããŒã«ã«ãããŒãååšããŸãã
1.ã¢ãžã¥ãŒã«Aã¯ã¢ãžã¥ãŒã«BãåŒã³åºããŸãïŒçŽæ¥ããŒã«ã«ã¹ããªãŒã ïŒ
2.ã¢ãžã¥ãŒã«Bã¯ã¢ãžã¥ãŒã«AãåŒã³åºããAã¯Bã§äœ¿çšãããå€ãBã«è¿ããŸãïŒéæ¥ããŒã«ã«ã¹ããªãŒã ïŒ
3.ã¢ãžã¥ãŒã«Cã¯ã¢ãžã¥ãŒã«AãBãåŒã³åºããã¢ãžã¥ãŒã«Aã®çµæãBã«æž¡ããŸãã
次ã«ãã°ããŒãã«æ
å ±ãããŒã®æŠå¿µã瀺ããŸããã¢ãžã¥ãŒã«AãDã«æ
å ±ãé
眮ããã¢ãžã¥ãŒã«BãDããã®æ
å ±ã䜿çšããå Žåãã°ããŒãã«ããŒã¿æ§é Dãä»ããAããBãžã®ã°ããŒãã«æ
å ±ãããŒãååšããŸãã
ãããã®æŠå¿µã«åºã¥ããŠãå€Iãå°å
¥ãããŸã-æé ã®æ
å ±ã®è€éãïŒ
I =é·ã*ïŒfan_in * fan_outïŒ2
ããã«ïŒ
length-æé ã®ããã¹ãã®è€éãïŒHalsteadãMcCabeãLOCãªã©ã®ã¡ããªãã¯ãªã©ãããªã¥ãŒã ã¡ããªãã¯ã®ããããã§æž¬å®ïŒ
fan_in-ããã·ãŒãžã£å
ã®ããŒã«ã«ã¹ã¬ããã®æ°ãšãããã·ãŒãžã£ãæ
å ±ãååŸããããŒã¿æ§é ã®æ°
fan_out-ããã·ãŒãžã£ããçºä¿¡ãããããŒã«ã«ã¹ã¬ããã®æ°ãšãããã·ãŒãžã£ã«ãã£ãŠæŽæ°ãããããŒã¿æ§é ã®æ°
ã¢ãžã¥ãŒã«ã®æ
å ±ã®è€éãã¯ããã®æé ã®æ
å ±ã®è€éãã®åèšãšããŠå®çŸ©ã§ããŸãã
次ã®ã¹ãããã¯ãããŒã¿æ§é ã«é¢ããŠã¢ãžã¥ãŒã«ã®æ
å ±ã®è€éããèæ
®ããããšã§ãã ããŒã¿æ§é ã«é¢ããã¢ãžã¥ãŒã«ã®è€éãã®æ
å ±æž¬å®ïŒ
J = W * R + W * RW + RW * R + RW *ïŒRW-1ïŒ
Wã¯ãããŒã¿æ§é ã®ã¿ãæŽæ°ããããã·ãŒãžã£ã®æ°ã§ãã
R-ããŒã¿æ§é ããæ
å ±ã®ã¿ãèªã¿åããŸãã
RW-ããŒã¿æ§é å
ã®æ
å ±ã®èªã¿åããšæŽæ°ã
ãã®ã°ã«ãŒãã®ãã1ã€ã®ææšã¯ããªããšãææšã§ãã ãã®æ¬è³ªã¯ãããã°ã©ã ãç·åœ¢ã®ã°ãã°ãã®ã»ã¯ã·ã§ã³-ããã°ã©ã ã®å¶åŸ¡ã°ã©ãã圢æããæŒç®åã®ç·ã«åå²ãããããšã§ãã
ã¡ããªãã¯ã®äœæè
ã¯ã次ã®ä»®å®ã«åºã¥ããŠããŸããããã°ã©ããŒã¯ãå
ç·éã®å®çŸ©ããããå
ç·å
ã®å€æ°ã®äœ¿çšã®é¢ä¿ããå
ç·éãããç°¡åã«èŠã€ããããšãã§ããŸãã åã¬ã€ã®ãªã«ã¬ã³ã¹ã®æ°ã¯ãåã¬ã€ã®ãªã«ã¬ã³ã¹ã䜿çšããå€æ°ã®ç·æ°ãããéèŠã§ãã
RïŒiïŒãå
ç·iã®ååŸã«äœçœ®ããå€æ°ã®å®çŸ©ãªã«ã¬ã³ã¹ã®ã»ããã瀺ãããã«ããŸãïŒå€æ°ã®å®çŸ©ãªã«ã¬ã³ã¹ã¯ãå€æ°ãããŒã«ã«ã§å®çŸ©ãªã«ã¬ã³ã¹ãæã£ãŠããå ŽåããŸãã¯ä»¥åã®ã¬ã€ã«å®çŸ©ãªã«ã¬ã³ã¹ãããå Žåãå
ç·ã®ååŸã«ãããŸãïŒéäžã§ããŒã«ã«ãªå®çŸ©ã¯ãããŸããïŒã VïŒiïŒã«ãããå
ç·iã«æ¢ã«ååšããå€æ°ã®ã»ããã瀺ããŸãã 次ã«ãiçªç®ã®å
ç·ã®è€éãã®å°ºåºŠã¯æ¬¡ã®ããã«å®çŸ©ãããŸãã
DFïŒiïŒ= AMOUNTïŒDEFïŒv
j ïŒïŒãj = i ... || VïŒiïŒ||
ããã§ãDEFïŒv
j ïŒã¯ãéåRïŒiïŒããã®å€æ°v
jã®ãªã«ã¬ã³ã¹ã®å®çŸ©æ°ãããã³|| VïŒiïŒ|| ã»ããVïŒiïŒã®ã«ãŒãã£ããªãã£ãŒã§ãã
4.å¶åŸ¡ãããŒãšããã°ã©ã ããŒã¿ã®è€éãã®ã¡ããªãã¯
ã¡ããªãã¯ã®4çªç®ã®ã¯ã©ã¹ã¯ãå®éçã¡ããªãã¯ã®ã¯ã©ã¹ãããã°ã©ã ã®å¶åŸ¡ãããŒã®è€éãã®ã¡ããªãã¯ã®ã¯ã©ã¹ãããã³å¶åŸ¡ããŒã¿ã®ãããŒã®è€éãã®ã¡ããªãã¯ã®ã¯ã©ã¹ã®äž¡æ¹ã«è¿ãã¡ããªãã¯ã§ãïŒå³å¯ã«ã¯ããã®ã¡ããªãã¯ã®ã¯ã©ã¹ãšããã°ã©ã ã®å¶åŸ¡ãããŒã®è€éãã®ã¡ããªãã¯ã®ã¯ã©ã¹ã¯åãã¯ã©ã¹ã§ã-ããããžã¡ããªãã¯ã§ãããããæ確ã«ããããã«ããã®ã³ã³ããã¹ãã§ããããåé¢ããããšã¯çã«ããªã£ãŠããŸãïŒã ãã®ã¯ã©ã¹ã®ã¡ããªãã¯ã¯ãå®éèšç®ãšå¶åŸ¡æ§é ã®åæã®äž¡æ¹ã«åºã¥ããŠãããã°ã©ã æ§é ã®è€éãã確ç«ããŸãã
ãããã®æž¬å®åºæºã®æåã¯ãM-Measure [5]ã®ãã¹ãã§ãã ãã¹ã尺床Mã¯ã次ã®æ¡ä»¶ãæºããè€éãã®å°ºåºŠã§ãã
ã¡ãžã£ãŒã¯ããã¹ãã®æ·±ããšãšãã«å¢å ããããã°ã©ã ã®é·ããèæ
®ããŸãã éåžžã®æè³ã«åºã¥ã枬å®ã¯ããã¹ã枬å®ãšå¯æ¥ã«é¢é£ããŠããŸãã ãã®ããã°ã©ã ã®è€éãã®å°ºåºŠã®èãæ¹ã¯ãããã°ã©ã ã®å¶åŸ¡ã°ã©ããèšè¿°ããå¿
èŠæå°éã®æ¬åŒ§ã§æ£èŠè¡šçŸã®æåïŒãªãã©ã³ããæŒç®åãæ¬åŒ§ïŒã®ç·æ°ãèšç®ããããšã§ãã ãã®ã°ã«ãŒãã®ãã¹ãŠã®æž¬å®å€ã¯ãå¶åŸ¡æ§é ã®ãã¹ããšããã°ã©ã ã®é·ãã«åœ±é¿ãåããŸãã ãã ããèšç®ã®è€éãã®ã¬ãã«ã¯å¢å ããŸãã
ãŸãããœãããŠã§ã¢ã®å質ã®å°ºåºŠã¯ãããã°ã©ã ã¢ãžã¥ãŒã«ã®æ¥ç¶æ§ã§ã[6]ã ã¢ãžã¥ãŒã«ãå¯çµåããŠããå Žåãããã°ã©ã ã®å€æŽãé£ãããªããç解ãã«ãããªããŸãã ãã®æž¬å®å€ã¯æ°å€ã§è¡šçŸãããŠããŸããã æ¥ç¶ãããã¢ãžã¥ãŒã«ã®çš®é¡ïŒ
ããŒã¿æ¥ç¶-ã¢ãžã¥ãŒã«ããã©ã¡ãŒã¿ãŒã®è»¢éãéããŠçžäºäœçšããåãã©ã¡ãŒã¿ãŒãåºæ¬æ
å ±ãªããžã§ã¯ãã§ããå Žåã ãããæã奜ãŸããã¿ã€ãã®åéã§ãã
ããŒã¿æ§é ã®æ¥ç¶æ§-1ã€ã®ã¢ãžã¥ãŒã«ãããŒã¿äº€æã®ããã«å¥ã®è€åæ
å ±ãªããžã§ã¯ãïŒæ§é ïŒãéä¿¡ããå Žåã
æ¥ç¶ã®å¶åŸ¡-æ
å ±ãªããžã§ã¯ããå¥ã®ãªããžã§ã¯ãã«éä¿¡ããå Žå-å
éšããžãã¯ãå¶åŸ¡ããããã«èšèšããããã©ã°ã
ã¢ãžã¥ãŒã«ã¯ãã°ããŒãã«ããŒã¿ã®åããšãªã¢ãåç
§ããå Žåãå
±éãšãªã¢ã§æ¥ç¶ãããŸãã 第äžã«ãã°ããŒãã«ãšãªã¢ã䜿çšããã¢ãžã¥ãŒã«ã§ãšã©ãŒãä»ã®ã¢ãžã¥ãŒã«ã§äºæããã«çºçããå¯èœæ§ããããããå
±éãšãªã¢ã§ã®æ¥ç¶ïŒåéïŒã¯æãŸãããããŸããã 第äºã«ãããã°ã©ããŒãç¹å®ã®ã¢ãžã¥ãŒã«ã§ã©ã®ããŒã¿ã䜿çšãããŠããããå€æããã®ãé£ããããããã®ãããªããã°ã©ã ã¯ç解ããã®ãå°é£ã§ãã
ã³ã³ãã³ãã®çµå-ã¢ãžã¥ãŒã«ã®äžæ¹ãä»æ¹ã®å
éšã§åç
§ãããŠããå Žåã ããã¯ãã¢ãžã¥ãŒã«æ§ã®åçãã€ãŸã ã¢ãžã¥ãŒã«ããã©ãã¯ããã¯ã¹ãšããŠæ瀺ããŸãã
å€éšæ¥ç¶-2ã€ã®ã¢ãžã¥ãŒã«ã¯ãéä¿¡ãããã³ã«ãªã©ã®å€éšããŒã¿ã䜿çšããŸãã
ã¡ãã»ãŒãžã®å©ããåããæ¥ç¶ã¯ãæãèªç±ãªæ¥ç¶åœ¢åŒã§ããã¢ãžã¥ãŒã«ã¯äºãã«çŽæ¥æ¥ç¶ãããŠãããããã©ã¡ãŒã¿ãŒãæããªãã¡ãã»ãŒãžãéããŠå ±åãããŸãã
æ¥ç¶æ§ã®æ¬ åŠ-ã¢ãžã¥ãŒã«ã¯çžäºäœçšããŸããã
ãµãã¯ã©ã¹ã®é¢é£æ§ã¯ã芪ã¯ã©ã¹ãšåå«ã¯ã©ã¹ã®é¢ä¿ã§ãããåå«ã¯èŠªã«é¢é£ä»ãããã芪ã¯åå«ã«é¢é£ä»ããããŠããŸããã
æéé¢é£-2ã€ã®ã¢ã¯ã·ã§ã³ã1ã€ã®ã¢ãžã¥ãŒã«ã«ã°ã«ãŒãåãããã®ã¯ãç¶æ³ãèæ
®ããŠãåæã«çºçããããã§ãã
ã¢ãžã¥ãŒã«ã®å®å®æ§ã«é¢ããå¥ã®å°ºåºŠã¯ã³ããã§ã尺床[7]ã§ããããã¯ãå®å®æ§ããã§ãã¯ãããã¢ãžã¥ãŒã«ä»¥å€ã®ã¢ãžã¥ãŒã«ã§è¡ãå¿
èŠãããå€æŽã®æ°ãšããŠå®çŸ©ã§ãããããã®å€æŽã¯ãã§ãã¯ãããã¢ãžã¥ãŒã«ã«é¢ä¿ããŸãã
ãã®ã¯ã©ã¹ã®æ¬¡ã®ã¡ããªãã¯ã¯ãMcClureã¡ããªãã¯ã§ãã ãã®ã¡ããªãã¯ãèšç®ãã3ã€ã®æ®µéãåºå¥ãããŸãã
1.åå¶åŸ¡å€æ°iã«ã€ããŠããã®è€é床é¢æ°CïŒiïŒã®å€ã¯ãåŒCïŒiïŒ=ïŒDïŒiïŒ* JïŒiïŒïŒ/ nã«ãã£ãŠèšç®ãããŸãã
ããã§ãDïŒiïŒã¯å€æ°iã®ç¯å²ã枬å®ããæ°éã§ãã JïŒiïŒã¯ãå€æ°iãä»ããã¢ãžã¥ãŒã«ã®çžäºäœçšã®è€éãã®å°ºåºŠã§ããnã¯ãããŒãã£ã·ã§ã³ã¹ããŒã å
ã®åã
ã®ã¢ãžã¥ãŒã«ã®æ°ã§ãã
2.ããŒãã£ã·ã§ã³ã¹ãã£ã¢ã«å«ãŸãããã¹ãŠã®ã¢ãžã¥ãŒã«ã®è€é床é¢æ°MïŒPïŒã®å€ã¯ãåŒMïŒPïŒ= fp * XïŒPïŒ+ gp * YïŒPïŒã«ãã£ãŠæ±ºå®ãããŸãã
ããã§ãfpããã³gpã¯ãããããã¢ãžã¥ãŒã«Pã®çŽåããã³çŽåŸã®ã¢ãžã¥ãŒã«æ°ã§ããXïŒPïŒã¯ã¢ãžã¥ãŒã«Pã«ã¢ã¯ã»ã¹ããè€éãã§ãã
YïŒPïŒ-ä»ã®ã¢ãžã¥ãŒã«ã®ã¢ãžã¥ãŒã«Pããã®ã³ãŒã«å¶åŸ¡ã®è€éãã
3.ããã°ã©ã ãã¢ãžã¥ãŒã«ã«åå²ããéå±€ã¹ããŒã ã®ç·è€é床MPã¯ã次ã®åŒã§äžããããŸãã
P-ããã°ã©ã ã¢ãžã¥ãŒã«ã®ãã¹ãŠã®å¯èœãªå€ã«å¯ŸããŠãMP = AMOUNTïŒMïŒPïŒïŒã
ãã®ã¡ããªãã¯ã¯ãæ©èœä»æ§ãšç®¡çæ§é ãå®çŸ©ããéå±€ã¢ãžã¥ãŒã«ã§æ§æããããé©åã«æ§é åãããããã°ã©ã ã察象ãšããŠããŸãã ãŸããåã¢ãžã¥ãŒã«ã«ã¯1ã€ã®å
¥å£ç¹ãš1ã€ã®åºå£ç¹ããããã¢ãžã¥ãŒã«ã¯1ã€ã®æ©èœãå®è¡ããã¢ãžã¥ãŒã«ã®åŒã³åºãã¯éå±€å¶åŸ¡ã·ã¹ãã ã«åŸã£ãŠå®è¡ãããããã°ã©ã ã¢ãžã¥ãŒã«ã®ã»ããã®åŒã³åºãæ¯çãèšå®ãããããšãç解ãããŠããŸãã
ãŸããæ
å ±æŠå¿µã«åºã¥ããã¡ããªãã¯-ãã«ãªã³ã¬ãŒã¡ãžã£ãŒ[8]ããããŸãã è€éãã®æž¬åºŠã¯M = SUMMAf
i * log
2 p
iãšããŠèšç®ãããŸããããã§ãf
iã¯içªç®ã®æåã®åºçŸé »åºŠãpiã¯ãã®åºçŸç¢ºçã§ãã
ãã®ã¡ããªãã¯ã®çæã¯ãå€æ°ã®äžæã®æåãå«ããå°æ°ã®ããã°ã©ã ããå°æ°ã®äžæã®æåãå«ããå€æ°ã®ããã°ã©ã ãšåãè€éããæã€ããšã§ãã
5.ãªããžã§ã¯ãæåã¡ããªãã¯
ãªããžã§ã¯ãæåããã°ã©ãã³ã°èšèªã®éçºã«é¢é£ããŠããªããžã§ã¯ãæåã¡ããªãã¯ãšãåŒã°ããæ°ããã¯ã©ã¹ã®ã¡ããªãã¯ãç»å ŽããŸããã ãã®ã°ã«ãŒãã§æãäžè¬çã«äœ¿çšãããã®ã¯ãMartinã¡ããªãã¯ã»ãããšChidamberããã³Kemereraã¡ããªãã¯ã»ããã§ãã æåã«ãæåã®ãµãã°ã«ãŒããæ€èšããŸãã
Martinã¡ããªãã¯ã®æ€èšãéå§ããåã«ãã¯ã©ã¹ã®ã«ããŽãªã®æŠå¿µãå°å
¥ããå¿
èŠããããŸã[
9 ]ã å®éã«ã¯ãã¯ã©ã¹ãä»ã®ã¯ã©ã¹ããåé¢ããŠåå©çšããããšã¯ãã£ãã«ãããŸããã ã»ãšãã©ãã¹ãŠã®ã¯ã©ã¹ã«ã¯ãé£æºããŠåäœããã¯ã©ã¹ã®ã°ã«ãŒãããããããããç°¡åã«åé¢ããããšã¯ã§ããŸããã ãã®ãããªã¯ã©ã¹ãåå©çšããã«ã¯ãã¯ã©ã¹ã®ã°ã«ãŒãå
šäœãåå©çšããå¿
èŠããããŸãã ãã®ãããªã¯ã©ã¹ã®ã°ã«ãŒãã¯åŒ·ãçµã³ã€ããŠãããã¯ã©ã¹ã®ã«ããŽãªãšåŒã°ããŸãã ã¯ã©ã¹ã«ããŽãªãååšããå Žåã次ã®æ¡ä»¶ãååšããŸãã
ã¯ã©ã¹ã«ããŽãªå
ã®ã¯ã©ã¹ã¯ããã¹ãŠäžç·ã«å€æŽããããšããè©Šã¿ããééãããŸãã ã€ãŸãã1ã€ã®ã¯ã©ã¹ãå€æŽããå¿
èŠãããå Žåããã®ã«ããŽãªã®ãã¹ãŠã®ã¯ã©ã¹ãå€æŽãããå¯èœæ§ãé«ããªããŸãã ã¯ã©ã¹ã®ãããããäœããã®å€æŽã«å¯ŸããŠéãããŠããå Žåããããã¯ãã¹ãŠãã®çš®é¡ã®å€æŽã«å¯ŸããŠéãããŠããŸãã
ã«ããŽãªå
ã®ã¯ã©ã¹ã¯äžç·ã«ã®ã¿åå©çšãããŸãã ãããã¯çžäºäŸåé¢ä¿ã«ãããäºãã«åé¢ããããšã¯ã§ããŸããã ãããã£ãŠãã«ããŽãªå
ã®1ã€ã®ã¯ã©ã¹ãåå©çšããããšãããšãä»ã®ãã¹ãŠã®ã¯ã©ã¹ãåå©çšããå¿
èŠããããŸãã
ã«ããŽãªå
ã®ã¯ã©ã¹ã¯ãå
±éã®æ©èœãå
±æããããå
±éã®ç®æšãéæããŸãã
ã«ããŽãªã®è²¬ä»»ãç¬ç«æ§ãããã³å®å®æ§ã¯ããã®ã«ããŽãªãšçžäºäœçšããäŸåé¢ä¿ãã«ãŠã³ãããããšã§æž¬å®ã§ããŸãã 次ã®3ã€ã®ã¡ããªãã¯ãå®çŸ©ã§ããŸãã
1. CaïŒæ±å¿æ§ã°ãªããã ãã®ã«ããŽãªå
ã®ã¯ã©ã¹ã«äŸåãããã®ã«ããŽãªå€ã®ã¯ã©ã¹ã®æ°ã
2. CeïŒé å¿ã¯ã©ããã ãã®ã«ããŽãªå€ã®ã¯ã©ã¹ã«äŸåãããã®ã«ããŽãªå
ã®ã¯ã©ã¹ã®æ°ã
3. IïŒäžå®å®æ§ïŒI = Ce /ïŒCa + CeïŒã ãã®ã¡ããªãã¯ã®å€ã®ç¯å²ã¯[0,1]ã§ãã
I = 0ã¯æãå®å®ããã«ããŽãªã瀺ããŸãã
I = 1ã¯æãäžå®å®ãªã«ããŽãªã瀺ããŸãã
次ã®ããã«ãæœè±¡æ§ã枬å®ããã¡ããªãã¯ãå®çŸ©ã§ããŸãïŒã«ããŽãªãæœè±¡ã®å Žåã¯ãååã«æè»ã§ç°¡åã«æ¡åŒµã§ããŸãïŒã
AïŒèŠçŽïŒA = nA / nAllã
nAã¯ãã«ããŽãªå
ã®abstract_classesã®æ°ã§ãã
nAll-total_number_classes_of_categoryã
ãã®ã¡ããªãã¯ã®å€ã¯ãç¯å²[0,1]ã§ç°ãªããŸãã
0 =ã«ããŽãªãŒã¯å®å
šã«ç¹å®çã§ããã
1 =ã«ããŽãªã¯å®å
šã«æœè±¡çã§ãã
çŸåšãMartinã®ã¡ããªãã¯ã«åºã¥ããŠãæœè±¡æ§ãšäžå®å®æ§ã®é¢ä¿ã瀺ãã°ã©ããäœæã§ããŸãã åŒI + A = 1ã§å®çŸ©ãããç·ãäœæãããšããã®ç·ã«ã¯ãæœè±¡æ§ãšäžå®å®æ§ã®ãã©ã³ã¹ãæãè¯ãã«ããŽãªããããŸãã ãã®è¡ã¯ã¡ã€ã³ã·ãŒã±ã³ã¹ãšåŒã°ããŸãã
次ã«ãããã«2ã€ã®ã¡ããªãã¯ãå
¥åã§ããŸãã
ã¡ã€ã³ã·ãŒã±ã³ã¹ãŸã§ã®è·é¢ïŒD = |ïŒA + I-1ïŒ/ sqrtïŒ2ïŒ|
ã¡ã€ã³ã·ãŒã±ã³ã¹ãžã®æ£èŠåè·é¢ïŒDn = | A + I-2 |
ã»ãŒãã¹ãŠã®ã«ããŽãªã«ã€ããŠãã¡ã€ã³ã·ãŒã±ã³ã¹ã«è¿ãã»ã©è¯ãããšã¯äºå®ã§ãã
ã¡ããªãã¯ã®æ¬¡ã®ãµãã°ã«ãŒãã¯ãChidamberããã³Kemererã¡ããªãã¯ã§ã[10]ã ãããã®ã¡ããªãã¯ã¯ãã¯ã©ã¹ã¡ãœãããç¶æ¿ããªãŒãªã©ã®åæã«åºã¥ããŠããŸãã
WMCïŒã¯ã©ã¹ããšã®å éã¡ãœããïŒããã¹ãŠã®ã¯ã©ã¹ã¡ãœããã®åèšè€é床ïŒWMC = SUMMAc
i ãi = 1 ... nãããã§c
iã¯içªç®ã®ã¡ãœããã®è€é床ã§ãã¡ããªãã¯ïŒãã«ã¹ããããªã©ïŒã«ãã£ãŠèšç®ãããŸãã察象ã®åºæºã«å¿ããŠïŒããã¹ãŠã®ã¡ãœããã®è€éããåãå ŽåãWMC = nã
DITïŒDepth of Inheritance treeïŒ-ç¶æ¿ããªãŒã®æ·±ãïŒç¥å
ã¯ã©ã¹ããç¹å®ã®ã¯ã©ã¹ãžã®ã¯ã©ã¹éå±€ã®æ倧ãã¹ïŒæ·±ãã¯ãããã°ã©ã ã®ç解ãšäœæã®è€éãã倧å¹
ã«å¢å ãããŸãã
NOCïŒåã®æ°ïŒ-åå«ïŒå³æïŒã®æ°ãå€ãã»ã©ãããŒã¿ã®æœè±¡åã¯é«ããªããŸãã
CBOïŒãªããžã§ã¯ãã¯ã©ã¹éã®çµåïŒ-ã¯ã©ã¹éã®çµåã¯ããœãŒã¹ã¯ã©ã¹ãé¢é£ä»ããããŠããã¯ã©ã¹ã®æ°ã瀺ããŸãã ãã®ã¡ããªãã¯ã§ã¯ãã¢ãžã¥ãŒã«æ¥ç¶ã«é¢ããŠä»¥åã«å°å
¥ããããã¹ãŠã®ã¢ãµãŒã·ã§ã³ãçã§ããã€ãŸããCBOãé«ããšãããŒã¿ã®æœè±¡åãæžå°ããã¯ã©ã¹ã®åå©çšãå°é£ã«ãªããŸãã
RFCïŒã¯ã©ã¹ã®å¿çïŒ-RFC = | RS |ãããã§RSã¯ã¯ã©ã¹ã®å¿çã»ãããã€ãŸããã¯ã©ã¹ãªããžã§ã¯ããåä¿¡ããããŒã¿ã«å¿ããŠã¯ã©ã¹ã¡ãœããã«ãã£ãŠåŒã³åºãããå¯èœæ§ã®ããã¡ãœããã®ã»ããã§ãã ã€ãŸããRS =ïŒïŒ{M}ïŒ{R
i }ïŒãi = 1 ... nãããã§Mã¯ã¯ã©ã¹ã®ãã¹ãŠã®å¯èœãªã¡ãœãããR
iã¯ã¯ã©ã¹Iã«ãã£ãŠåŒã³åºãããšãã§ãããã¹ãŠã®å¯èœãªã¡ãœããã§ããRFC RFCã倧ããã»ã©ããã¹ããšãããã°ãé£ãããªããŸãã
LCOMïŒã¡ãœããã®çµæã®æ¬ åŠïŒ-ã¡ãœããã®ãªã³ã¯ã®æ¬ åŠã ãã®ãã©ã¡ãŒã¿ãŒã決å®ããããã«ãnåã®ã¡ãœããM1ãM2ã...ãMnãæã€ã¯ã©ã¹Cãæ€èšããŸãã次ã«ã{I1}ã{I2}ã...ã{In}ã¯ãããã®ã¡ãœããã§äœ¿çšãããå€æ°ã®ã»ããã§ãã ããã§ãå
±éå€æ°ãæããªãã¡ãœããã®ãã¢ã®ã»ããã§ããPãå®çŸ©ããŸãã Q-å
±éã®å€æ°ãæã€ã¡ãœããã®å€ãã®ãã¢ã 次ã«ãLCOM = | P |-| Q |ã ã«ãããªã³ã°ã®æ¬ åŠã¯ãã¯ã©ã¹ãä»ã®ããã€ãã®ã¯ã©ã¹ãŸãã¯ãµãã¯ã©ã¹ã«åå²ã§ããããšã瀺ãä¿¡å·ã«ãªãå¯èœæ§ããããããã«ãããªã³ã°ãå¢ãããŠããŒã¿ã®ã«ãã»ã«åãå¢ãããã¯ã©ã¹ãšã¡ãœããã®è€éãã軜æžããããšããå§ãããŸãã
6.ä¿¡é Œæ§ææš
次ã®ã¿ã€ãã®ã¡ããªãã¯ã¯ãå®éçã«è¿ãã¡ããªãã¯ã§ãããããã°ã©ã ã®ãšã©ãŒãšæ¬ é¥ã®æ°ã«åºã¥ããŠããŸãã ãããã®åã¡ããªãã¯ã®æ©èœãèæ
®ããããšã¯æå³ããããŸãããåã«ãããããªã¹ãããã ãã§ååã§ããæåŸã®ãã§ãã¯ä»¥éã«è¡ãããæ§é å€æŽã®æ°ãã³ãŒãã¬ãã¥ãŒäžã«æ€åºããããšã©ãŒã®æ°ãããã°ã©ã ã®ãã¹ãäžã«æ€åºããããšã©ãŒã®æ°ãããã³æ£ããããã«å¿
èŠãªå¿
èŠãªæ§é å€æŽã®æ°ããã°ã©ã äœæ¥ã 倧èŠæš¡ãªãããžã§ã¯ãã®å Žåããããã®ææšã¯éåžž1000è¡ã®ã³ãŒãã«é¢é£ããŠèæ
®ãããŸãã .
7.
, . . . :
H_M = (M + R1 * M(M1) +⊠+ Rn * M(Mn)/(1 + R1 +⊠+ Rn)
M â , Mi â , Ri â , M(Mi) â .
M(Mi) Ri .
, : , SLOC, . «», «» «».
, , . :
(, , , ) (a, b, c, d).
( , , /, ) (x, y, z, p).
, â .
ãããã«
, , . , , , , . , â , , - , .